
API
Version 6



ALIAS � 210 KING STREET EAST � TORONTO, CANADA M5A 1J7

© Copyright 2004 Alias Systems, a division of Silicon Graphics Limited ("Alias"). All images © Copyright Alias unless otherwise noted. 

All rights reserved.

Alias is a registered trademark and the swirl logo, the Maya logo, Conductors, Trax, IPR, Maya Shockwave 3D Exporter and MEL are 

trademarks of Alias in the United States and/or other countries worldwide. Maya is a registered trademark of Silicon Graphics, Inc. in 

the United States and/or other countries worldwide, used exclusively by Alias. SGI, IRIX, Open GL and Silicon Graphics are 

registered trademarks of Silicon Graphics, Inc. in the United States and/or other countries worldwide. mental ray and mental images 

are registered trademarks of mental images GmbH & CO. KG. in the United States and/or other countries. Lingo, Macromedia, 

Director, Shockwave and Macromedia Flash are trademarks or registered trademarks of Macromedia, Inc. Wacom is a trademark of 

Wacom Co., Ltd. NVidia is a registered trademark and Gforce is a trademark of NVidia Corporation. Linux is a registered trademark of 

Linus Torvalds. Intel and Pentium are registered trademarks of Intel Corporation. Red Hat is a registered trademark of Red Hat, Inc. 

ActiveX, Microsoft and Windows are either registered trademarks or trademarks of Microsoft Corporation in the United States and/or 

other countries. Mac, Macintosh and QuickTime are trademarks of Apple Computer, Inc., registered in the United States and other 

countries. Adobe, Adobe Illustrator, Photoshop and Acrobat are either registered trademarks or trademarks of Adobe Systems 

Incorporated. UNIX is a registered trademark, licensed exclusively through X/Open Company, Ltd. AutoCAD, Discreet Logic, Inferno 

and Flame are either registered trademarks or trademarks of Autodesk, Inc. in the USA and/or other countries. OpenFlight is a 

registered trademark of MultiGen Inc. Java is a registered trademark of Sun Microsystems, Inc. RenderMan is a registered trademark 

of Pixar Corporation. Softimage is either a registered trademark or trademark of Avid Technology, Inc. in the United States and/or 

other countries. All other trademarks, trade names, service marks, or product names mentioned herein are property of their 

respective owners.

This document contains proprietary and confidential information of Alias, and is protected by Federal copyright law and international 

intellectual property conventions and treaties. The contents of this document may not be disclosed to third parties, translated, copied, 

or duplicated in any form, in whole or in part, or by any means, electronic, mechanical, photocopying, recording or otherwise, without 

the express prior written consent of Alias. The information contained in this document is subject to change without notice. Neither 

Alias, nor its affiliates, nor their respective directors, officers, employees, or agents are responsible for any damages of any kind 

arising out of or resulting from the use of this material, including, without limitation, any lost profits or any other direct, indirect, special, 

incidental, or consequential damages or for technical or editorial omissions made herein.



Table of Contents
1 Plug-in API introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

Developer Plug-in API . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Overview of plug-in API . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

The Maya API on IRIX, Windows, Linux, and Mac OS X . . . . . . . . . . . 11

Loading a Plug-in  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

Unloading a plug-in  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

Writing a simple plug-in. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

Important plug-in features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

MSimple.h. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

MStatus  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

DeclareSimpleCommand . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

MArgList . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

Interacting with Maya. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

Object ownership in the API . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

MObject . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

Wrappers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

Objects and Function Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

Function sets  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

Proxies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

Typelessness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

Naming Conventions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

Adding arguments  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

Error checking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

MStatus class  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

Error logging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2 Selecting with the API . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

Developer Plug-in API . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
Selecting with the API . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  25

Overview of selecting with the API . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

MGlobal::setActiveSelectionList() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

MSelectionList. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
API guide

3



Table of Contents
MItSelectionList  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

setObject() method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

MFn::Type enumeration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

MGlobal::selectByName()  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3 Command plug-ins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

Developer Plug-in API . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
Add commands to Maya  . . . . . . . . . . . . . . . . . . . . . . . . . . .  31

Overview of adding commands to Maya . . . . . . . . . . . . . . . . . . . . . . . 31

Plug-ins. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

Command plug-ins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

Registering commands  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

MFnPlugin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

initializePlugin(). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

uninitializePlugin()  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

Creator methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

MPxCommand  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

doIt() and redoIt() methods. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

Returning results to MEL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

Syntax objects. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

Flags. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

Creating the Syntax Object. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

Parsing the Arguments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

Registration  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

Contexts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

MPxContext . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

MPxContextCommand . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

Creating a context command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

Adding a context command to the Maya shelf . . . . . . . . . . . . . . . . . . . 50

Tool property sheets. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

MPxToolCommand. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4 DAG Hierarchy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

Developer Plug-in API . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
API guide 

4



Table of Contents
DAG Hierarchy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  63

Overview of the DAG Hierarchy  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

Nodes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

Instancing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

Transforms and shapes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

DAG paths . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

DAG paths and worldspace operations in the API . . . . . . . . . . . . . . . . 65

Adding or removing nodes from the representation . . . . . . . . . . . . . . . 65

Inclusive and exclusive matrices  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

Why add the shape node to a DAG path . . . . . . . . . . . . . . . . . . . . . . . 66

Unique Names . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

Generalized instancing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

Transforms with multiple shapes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

The Underworld  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

DAG walking example  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

5 Dependency graph plug-ins . . . . . . . . . . . . . . . . . . . . . . . . . . 77

Developer Plug-in API . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
Dependency graph plug-ins . . . . . . . . . . . . . . . . . . . . . . . . .  77

Overview of dependency graph plug-ins . . . . . . . . . . . . . . . . . . . . . . . 77

Parent class descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

The basics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

Dependency Graph (DG) nodes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

Nodes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

Attributes and plugs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

Complex Attributes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

Compound attribute  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

Child attributes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

Dynamic Attributes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

Data blocks  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

Data handles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

Data creators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

Compute methods  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

A more complex example  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
API guide

5



Table of Contents
MPxNode and its derived classes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

6 Writing a Shading Node . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

Developer Plug-in API . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
Write a shading node . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  99

Overview of shading node plug-ins  . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

Writing a shading node plug-in . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

Anatomy of a shading node plug-in . . . . . . . . . . . . . . . . . . . . . . . . . . 101

InterpNode example code walkthrough . . . . . . . . . . . . . . . . . . . . . . . 102

Attribute Editor view for InterpNode Example. . . . . . . . . . . . . . . . . . . 111

Connection Editor view of an InterpNode connection. . . . . . . . . . . . . 111

Hypergraph view of an InterpNode connection  . . . . . . . . . . . . . . . . . 112

Shading nodes classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

Implicit connections and the Create Render Node window  . . . . . . . . 112

Shading node icons for Hypershade. . . . . . . . . . . . . . . . . . . . . . . . . . 115

Special shading nodes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

SuperSampling within shading nodes . . . . . . . . . . . . . . . . . . . . . . . . 116

Evaluating shading nodes outside of the rendering context  . . . . . . 116

7 Manipulators  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

Developer Plug-in API . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
Write a manipulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  119

Overview of creating manipulators . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

What is a manipulator?  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

Base manipulators  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

Writing a manipulator  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

Manipulator containers  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

Communication between manipulators and nodes. . . . . . . . . . . . . . 125

One-to-one associations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

Conversion functions  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

Connect manipulators to the Show Manipulator Tool  . . . . . . . . . . . 131

Writing a manipulator to work with the Show Manipulator Tool . . . . . 131

Adding the manipulator to a Context  . . . . . . . . . . . . . . . . . . . . . . . . . 132

Example Manipulators  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
API guide 

6



Table of Contents
8 Shapes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

Developer Plug-in API . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
Define a shape . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  135

Shapes in Maya. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

User-defined shapes  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

Shape classes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

Writing a shape . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

Where to start . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

Registering and deregistering shapes  . . . . . . . . . . . . . . . . . . . . . . . . 137

Drawing and refresh . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

Drawing in shaded mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

Selection  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

Components  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

Mapping attributes to components . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

Component matching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

Component iteration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

Translate, scale, and rotate tools for components . . . . . . . . . . . . . . . 143

Tweaks and internal attributes  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

Geometry data  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

File IO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

Deformers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

Example Shapes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

9 Polygon API . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

Developer Polygon API  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
Overview of Polygon API . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

How polygons are handled internally . . . . . . . . . . . . . . . . . . . . . . . . . 147

Polygon components  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

The polygonal shape node . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

The five basic polygonal API classes  . . . . . . . . . . . . . . . . . . . . . . . . . 156

MItMeshPolygon. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

MItMeshEdge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

MItMeshVertex and MItMeshFaceVertex . . . . . . . . . . . . . . . . . . . . . . 159
API guide

7



Table of Contents
MFnMesh . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

Construction History and Tweaks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161

Construction History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161

Tweaks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163

polyModifierCmd example  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164

polyModifierCmd initialization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168

polyModifierCmd preprocessing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171

polyModifierCmd processing  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174

Implementing a polyModifierCmd command  . . . . . . . . . . . . . . . . . . . 184

splitUVCmd example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186

Initial implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187

Integrating into the Maya architecture  . . . . . . . . . . . . . . . . . . . . . . . . 192

polyModifierCmd enhanced splitUV . . . . . . . . . . . . . . . . . . . . . . . . . . 192

Poly exporter plug-ins  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208

Classes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208

polyX3DExporter  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208

polyRawExporter  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209

10 Setting up your plug-in build environment  . . . . . . . . . . . . . 211

Developer Plug-in API . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211
Setting up a build area. . . . . . . . . . . . . . . . . . . . . . . . . . . .  211

IRIX and Linux environments  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211

Maya plug-ins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211

Maya API applications  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212

Linux compiler requirement  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213

Using a debugger to debug your plug-ins . . . . . . . . . . . . . . . . . . . . . 214

Windows environment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215

Maya plug-ins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215

Maya API Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216

Creating your own plug-in build file  . . . . . . . . . . . . . . . . . . . . . . . . . . 216

Using the Maya Plug-in Wizard for Developer Studio  . . . . . . . . . . . . 216

Mac OSX environment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217

Maya Plug-ins. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217

Maya API applications  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219
API guide 

8



Table of Contents
11 Appendices. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221

Developer Plug-in API . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221
Appendices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221

Appendix A: NURBS Geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221

Appendix B: Dependency graph rendering nodes. . . . . . . . . . . . . . . 224

Appendix C: Rendering attributes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229

Output Attributes requested by Shading Groups . . . . . . . . . . . . . . . . 229

Rendering Attributes available per sample. . . . . . . . . . . . . . . . . . . . . 230

Rendering Attributes available per frame . . . . . . . . . . . . . . . . . . . . . . 235

Appendix D: Frequently asked questions . . . . . . . . . . . . . . . . . . . . . . 236

General Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 237

Documentation Questions  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 243

Dependency Graph Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 244

GUI Questions  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 252

Animation Questions  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 254

Windows Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 256

Developer Plug-in API . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 259
Example plug-ins  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  259

Overview of example plug-ins. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 259

MEL command plug-ins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 260

Dependency Graph Node Plug-ins. . . . . . . . . . . . . . . . . . . . . . . . . . . 264

User-defined dependency graph nodes—creating dynamics nodes  . 266

Rendering plug-ins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 266

Miscellaneous plug-ins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 267

Shader source code examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 268

System plug-ins  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 268

Example stand-alone applications  . . . . . . . . . . . . . . . . . . . . . . . . . . . 269

Example plug-in descriptions  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 269

scanDagSyntax  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 305

Example stand-alone application descriptions  . . . . . . . . . . . . . . . . . 315

Shader source code examples. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 315

Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 325
API guide

9



Table of Contents
API guide 

10



1 Plug-in API 
introduction
Developer Plug-in API

Overview of plug-in API

Maya is an open product, meaning anyone outside of Alias can change 
existing features or add entirely new features. There are two ways to 
modify Maya: 

• MEL—(Maya Embedded Language) is a powerful and easy to learn 
scripting language. Most common operations can be done using MEL.

• API—(Application Programmer Interface) provides better 
performance than MEL. You can add new objects to Maya using API, 
and code executes approximately ten times faster than when you 
perform the same task using MEL.

The Maya API on IRIX, Windows, Linux, and 
Mac OS X

The Maya API is a C++ API that provides internal access to Maya. The 
API is packaged as a set of libraries corresponding to different functional 
areas of Maya. These libraries are:

OpenMaya—Contains fundamental classes for defining nodes and 
commands and for assembling them into a plug-in.

OpenMayaUI—Contains classes necessary for creating new user interface 
elements such as manipulators, contexts, and locators.

OpenMayaAnim—Contains classes for animation, including deformers 
and inverse kinematics.

OpenMayaFX—Contains classes for dynamics.

OpenMayaRender—Contains classes for performing rendering functions.

Note Maya does not provide binary compatibility for plug-ins. With 
each new release, the source must be recompiled. However, it is 
our goal to maintain source-code compatibility, and in the 
majority of cases, no changes to the source will be required. At 
some point, we may identify a core API that will provide source 
and binary compatibility going forward.
API guide

11



1 | Plug-in API introduction 
Developer > Loading a Plug-in
Loading a Plug-in

There are two ways to load and unload a plug-in. The easiest way to load 
a plug-in is to use the Plug-in Manager. 

To load a plug-in from the Plug-in manager:

1 Choose Window > Settings/Preferences > Plug-in Manager to open 
the Plug-in Manager window and display the list of all known plug-
ins.

2 Find the plug-in you need and either click the loaded or auto load 
check box to load the plug-in.

The Plug-in Manager uses the MAYA_PLUG_IN_PATH environment variable 
to locate available plug-ins to load. 

To load a plug-in from the command line:

Use MEL’s loadPlugin command.

loadPlugin “hello”;

This searches MAYA_PLUG_IN_PATH looking for a file named hello.so on 
IRIX and Linux platforms, a file named hello.mll on Windows 
platforms, and a file named hello.lib on Mac OS X. Once found, it will 
be loaded into Maya as a plug-in.

Unloading a plug-in

Unloading a plug-in through MEL is simple—you use the unloadPlugin 
command and supply the plug-in name.

Notes • A plug-in must be unloaded before it is recompiled. Failure 
to do so causes Maya to crash.

• Before you can unload a plug-in, you must first remove all 
references to it from the Maya scene. Along with deleting 
nodes from the scene that are defined in plug-ins, it is also 
necessary to flush references to deleted nodes and executed 
commands from the undo queue. Even though the artifacts 
are no longer in the scene, they are still there for undo 
purposes.

• If you force the unload of a plug-in while it is in use, it will 
not be possible to reload node plug-ins. This is because 
existing nodes in the scene will have to be converted to 
“Unknown” nodes, and on plug-in reload, you will not be 
allowed to change the type of these existing nodes.
API guide 

12



1 | Plug-in API introduction

Developer > Writing a simple plug-in
Writing a simple plug-in

The following shows how to write a simple plug-in called Hello World.

Writing your first plug-in

When learning a new computer language, the first program you are likely 
to see is a “Hello World” program. Following this tradition, the first plug-
in we create is a “Hello World” plug-in, which simply outputs “Hello 
World” to the window from which Maya was launched.

#include <maya/MSimple.h>
DeclareSimpleCommand( helloWorld, "Alias", "6.0");
MStatus helloWorld::doIt( const MArgList& )
{
    printf(“Hello World\n”);
    return MS::kSuccess;
}

IRIX:

If this is put into a file called helloWorld.cpp it can be compiled with:

CC -c -I/usr/aw/maya/include -g -mips3 -n32 \
-DSGI  helloCmd.cpp

CC -shared -no_transitive_link -g -mips3 -n32 \
-DSGI  -o helloCmd.so helloCmd.o \
-L/usr/aw/maya/lib -lOpenMaya

Linux:

If this is put into a file called helloWorld.cpp it can be compiled with:

g++332 -c -I/usr/aw/maya6.0/include \
-I/usr/X11R6/include -O3 -pipe \
-D_BOOL -DLINUX  -mcpu=pentium4  \
-Wno-deprecated -fno-gnu-keywords helloCmd.cpp

g++332 -shared  -O3 -pipe -D_BOOL -DLINUX  \
-mcpu=pentium4  -Wno-deprecated \
-fno-gnu-keywords -o helloCmd.so helloCmd.o \
-L/usr/aw/maya6.0/lib –lOpenMaya

Windows and Mac OS X:

If this is put into a file called helloWorld.cpp, it can be compiled by 
following the platform-specific instructions in “Creating your own plug-in 
build file” in Chapter 10, “Setting up your plug-in build environment”.

Once the file has compiled, you can load it into Maya (see “Loading a 
Plug-in”). Type “helloWorld” into the command window (press Enter to 
invoke the command), and “Hello World” displays in the output window.
API guide

13



1 | Plug-in API introduction 
Developer > Important plug-in features
Important plug-in features

The “Hello World” plug-in introduces a number of important features, 
outlined below.

MSimple.h

A special header file used for simple command plug-ins. It takes care of all 
the work necessary to register the new command with Maya through the 
DeclareSimpleCommand macro. However, you can only create a plug-in 
that contains a single command. 

MStatus

Indicates the success or failure of a method. Most methods in API classes 
return a status code through MStatus and the documentation for each 
method details the possible status codes returned. To avoid possible name 
space collisions with other status codes, all MStatus values are scoped 
with “MS”. For example, MS::kSuccess is the success status code. The 
complete list is in MStatus.h.

DeclareSimpleCommand

The DeclareSimpleCommand macro requires three parameters: the name 
of a class that will be used to implement the command, the name of the 
vendor (or author) of the command, and the command’s version number.

Notes • It is quite possible, and even common, to write a plug-in that 
implements several features, such as dependency graph 
nodes and commands. For such plug-ins, MSimple.h cannot 
be used. You must write custom registration code to tell 
Maya the plug-ins’ capabilities.

• A major limitation of this macro is that you can only create 
non-undoable commands. The following sections describe 
this limitation in detail.

Note API uses few status codes, but if error logging is enabled in the 
API through MGlobal::startErrorLogging() additional 
detailed error messages are output to the error log file when a 
method returns something other than MS::kSuccess. This is 
described in more detail in “Error checking”, “MStatus class”, 
and “Error logging” in this chapter.
API guide 

14



1 | Plug-in API introduction

Developer > Important plug-in features
As in MSimple.h, the DeclareSimpleCommand() macro saves you from 
writing the registration code necessary for Maya to properly recognize 
your file as a plug-in. To keep it simple, though, you cannot specify an 
undo method for the command, so you cannot create truly undoable 
commands using this macro. 

Writing a plug-in that interacts with Maya

There are only a few changes between this plug-in and the Hello World 
plug-in (see “Writing your first plug-in”. Since the “helloWorld” plug-in 
always prints the same thing, you may want to write a plug-in that 
interacts with Maya. (One way is through command line arguments in 
MEL). 

The following is another simple program which prints “Hello” followed 
by its input.

#include <maya/MSimple.h>
DeclareSimpleCommand( hello, "Alias", "6.0");
MStatus hello::doIt( const MArgList& args )
{
    printf("Hello %s\n", args.asString( 0 ).asChar() );
    return MS::kSuccess;
}

This is put in a file called hello.cpp and compiled. Once loaded, typing 
“hello neighbor” into the command window outputs “Hello neighbor”.

MArgList

The MArgList class provides functionality similar to the argc/argv 
parameters of the entry point of a C or C++ program, which provides a 
list of arguments to your function. The class provides methods to retrieve 
the arguments as various types, such as including an integer, a double, a 
string, or a vector.

In the next example, the helix command is defined to allow several 
arguments to be passed in via the MArgList object. The two arguments are 
pitch and radius.

#include <math.h>

#include <maya/MSimple.h>

Note Commands that do not support undo must not change the state 
of the scene in any way. They can be used to query different 
aspects of the scene, but not to change anything. If an non-
undoable command does in fact change anything, Maya’s undo 
capability will break.
API guide

15



1 | Plug-in API introduction 
Developer > Important plug-in features
#include <maya/MFnNurbsCurve.h>
#include <maya/MPointArray.h>
#include <maya/MDoubleArray.h>
#include <maya/MPoint.h>

DeclareSimpleCommand( helix, "Alias - Example", "3.0");

MStatus helix::doIt( const MArgList& args )
{

MStatus stat;

const unsigneddeg = 3; // Curve Degree
const unsignedncvs = 20; // Number of CVs
const unsignedspans = ncvs - deg;// Number of spans
const unsignednknots= spans+2*deg-1;// Number of knots
double radius = 4.0; // Helix radius
double pitch = 0.5; // Helix pitch
unsignedi;

// Parse the arguments.
for ( i = 0; i < args.length(); i++ )

if ( MString( "-p" ) == args.asString( i, &stat )
&& MS::kSuccess == stat)

{
double tmp = args.asDouble( ++i, &stat );
if ( MS::kSuccess == stat )

pitch = tmp;
}
else if ( MString( "-r" ) == args.asString( i, &stat )

&& MS::kSuccess == stat)
{

double tmp = args.asDouble( ++i, &stat );
if ( MS::kSuccess == stat )

radius = tmp;
}

MPointArray controlVertices;
MDoubleArray knotSequences;

// Set up cvs and knots for the helix
//
for (i = 0; i < ncvs; i++)

controlVertices.append( MPoint( radius * cos( (double)i ),
pitch * (double)i, radius * sin( (double)i ) ) );

for (i = 0; i < nknots; i++)
knotSequences.append( (double)i );

// Now create the curve
//
API guide 

16



1 | Plug-in API introduction

Developer > Important plug-in features
MFnNurbsCurve curveFn;

MObject curve = curveFn.create( controlVertices,
knotSequences, 

deg, 

MFnNurbsCurve::kOpen, 
false, false, 

MObject::kNullObj, 
&stat );

if ( MS::kSuccess != stat )
printf("Error creating curve.\n");

return stat;
}

Building a curve using a plug-in

The following is a plug-in that builds a helical curve. See “Appendix A: 
NURBS Geometry” for a brief explanation of NURBS geometry.

#include <math.h>
#include <maya/MSimple.h>
#include <maya/MPoint.h>
#include <maya/MPointArray.h>
#include <maya/MDoubleArray.h>
#include <maya/MFnNurbsCurve.h>

DeclareSimpleCommand( doHelix, "Alias - Example", "6.0");

MStatus doHelix::doIt( const MArgList& )
{
    MStatus stat;

    const unsigned     deg       = 3;                 // Curve Degree
    const unsigned     ncvs      = 20;                // Number of CVs
    const unsigned     spans     = ncvs - deg;        // Number of spans
    const unsigned     nknots    = spans+2*deg-1;     // Number of knots
    double     radius            = 4.0;               // Helix radius
    double     pitch             = 0.5;               // Helix pitch
    unsigned     i;

Tip One important difference between using argc/argv and an 
MArgList is that the zeroth element of an MArgList is the first 
argument to the command and not the command name, as in a C 
or C++ program.
API guide

17



1 | Plug-in API introduction 
Developer > Interacting with Maya
    MPointArray     controlVertices;
    MDoubleArray    knotSequences;

    // Set up cvs and knots for the helix
    //
    for (i = 0; i < ncvs; i++)
        controlVertices.append( MPoint( radius * cos( (double)i ),
            pitch * (double)i, radius * sin( (double)i ) ) );

    for (i = 0; i < nknots; i++)
        knotSequences.append( (double)i );

    // Now create the curve
    //
    MFnNurbsCurve curveFn;

    MObject curve = curveFn.create( controlVertices,
        knotSequences, deg, MFnNurbsCurve::kOpen, false, false, 
MObject::kNullObj, &stat );

    if ( MS::kSuccess != stat )
        printf(“Error creating curve.\n”);

    return stat;
}

Compile this plug-in, load it, then enter “doHelix” at the prompt. A 
helical curve displays in the Maya views.

Interacting with Maya

Maya’s API contains four types of C++ objects which you use in the code 
to interact with Maya. These are wrappers, objects, function sets, and proxies. 

Object ownership in the API

The combination of an object and a function set is similar to a wrapper, 
but the distinction is necessary to simplify ownership. Object ownership 
in the API is important. If not properly defined, you may delete 
something the system needs, or use something the system has just deleted. 
API wrappers, objects, and function sets remove any question of 
ownership. Therefore, the potential for using an object at an inconvenient 
time, like right after the system has deleted it, is removed.

MObject

Access to all Maya objects (curves, surfaces, DAG nodes, dependency 
graph nodes, lights, shaders, textures, etc.) is done through a handle object 
called an MObject. This handle provides a few simple methods to help 
API guide 

18



1 | Plug-in API introduction

Developer > Wrappers
determine the object type (see the MObject class documentation for a 
complete description). The MObject destructor does not delete the Maya 
object that it references—calling the destructor only deletes the handle 
object, thereby maintaining ownership. 

Wrappers

Wrappers exist for simple objects such as math classes (like vectors or 
matrices). They are generally fully implemented C++ classes with public 
constructors and destructors. API methods may return a wrapper, which 
you are then responsible for—leaving scope will usually be adequate for 
deleting the wrapper. You are also free to allocate and deallocate them as 
necessary. In the previous example (“Building a curve using a plug-in”), 
MPointArray and MDoubleArray are wrappers. You always own the 
wrapper that you reference. 

Objects and Function Sets

Objects and function sets are always used together. They are separate 
which easily establishes ownership—objects are always owned by Maya, 
and function sets are always owned by you.

Function sets

Function sets are C++ classes which operate on objects. In the example, 
Building a curve using a plug-in, MFnNurbsCurve is a function set (the 
MFn prefix indicates this). 

These two lines create a new curve.

MFnNurbsCurve curveFn;
MObject curve = curveFn.create( ... );

• MFnNurbsCurve curveFn; creates a new curve function set which 
contains methods for operating on curve objects, and the create 
method in particular is used to create new curves. 

• MObject curve = curveFn.create( ... );creates a new Maya 
curve object which you can then use however you like.

If you add a third line:

curve = curveFn.create( ... );

Important Tip You should never keep a pointer to an MObject between 
“runs” of the plug-in. 

Instead you may want to use an MObjectHandle since this object 
contains information on the validity of the MObject.
API guide

19



1 | Plug-in API introduction 
Developer > Naming Conventions
a second curve is created and the curve MObject now references the new 
curve. The first curve still exists—it simply is no longer referenced by the 
MObject handle.

Proxies

The Maya API uses proxy objects to create new types of Maya objects. 
Proxies are objects that you create but Maya owns.

A common misunderstanding is that you can create new types of objects 
by deriving from an existing function set. For example, MFnNurbsSurface 
derives from MFnDagNode. You might conclude that if you derive 
MySurface from MFnDagNode and provide all the methods to operate on 
a special surface type, you would have added a new surface type to Maya. 
Unfortunately this doesn’t work. What you would have is simply a new 
function set which operates on existing objects using the new methods. 
Remember that function sets are entirely owned by you. Maya never sees 
or uses them; Maya only uses the objects underlying the MObject handle.

Typelessness

An interesting consequence of the separation of objects and function sets 
is that the API can operate in a typeless manner. For example:

MFnNurbsCurve curveFn;
MObject curve = curveFn.create( ... );
MFnNurbsSurface surface( curve );

This code creates a curve and passes it to a surface function set on which 
to operate. Since MFnNurbsSurface only operates on surface objects, the 
above example does not do anything, but you may not know it. The error 
checking code in the API checks for such erroneous initializations. 

Function sets accept MObjects of any type and if they do not recognize 
them, ignores them and returns error values whenever you try to operate 
on them. See “Error checking”, “MStatus class”, and “Error logging” in 
this chapter.

Naming Conventions

The Maya API uses a convention of prefixes on its classes to distinguish 
the various types of C++ objects that it uses.

MFn

Any class with this prefix is a function set used to operate on MObjects of 
a particular type.

MIt
API guide 

20



1 | Plug-in API introduction

Developer > Adding arguments
These classes are iterators and work on MObjects much the way a function 
set does. For example, MItCurveCV is used to operate on an individual 
NURBS curve CV (there is no MFnNurbsCurveCV), or iteratively, on all 
the CVs of a curve.

MPx

Classes with this prefix are all “Proxies”, API classes designed for you to 
derive from and create your own object types.

M classes

Most of these classes are “Wrappers”, though there are others. For 
example, “Function sets” is a handle on Maya’s internal objects, and 
MGlobal is a class of static methods that operate globally and do not 
require an MObject on which to operate. (See Chapter 2, “Selecting with 
the API” for information on MGlobal.)

Adding arguments

The helix plug-in generates a simple curve, but it always produces the 
same curve (see “Building a curve using a plug-in”).

Adding arguments to the curve example

You can make a few changes so you can specify the radius and pitch of 
the curve. Change the function definition by adding the args parameter 
name:

MStatus doHelix::doIt( const MArgList& args )

Add the following lines after the variable declarations:

// Parse the arguments.
for ( i = 0; i < args.length(); i++ )
    if ( MString( “-p” ) == args.asString( i ) )
        pitch = args.asDouble( ++i );
    else if ( MString( “-r” ) == args.asString( i ) )
        radius = args.asDouble( ++i );

This code fragment reads arguments so you can change the pitch and 
radius of the helix you generate. This change is quite simple:

The for-loop walks through all arguments in the MArgList wrapper. The 
two if-statements convert the current argument (referenced by the index 
variable “i”) to an MString (the Maya API’s string wrapper class) and 
compare them with the two possible argument flags.

If there is a match, the next argument is converted to a double and 
assigned to the appropriate variable. For example:

doHelix -p 0.5 -r 5
API guide

21



1 | Plug-in API introduction 
Developer > Error checking
produces a helix with a pitch of 0.5 units and a radius of 5 units.

Error checking

In the examples presented so far you have not been prompted to do much 
error checking. This is usually fine for examples, but when producing a 
production plug-in you really want to check for errors.

Most methods take an optional final argument, which is a pointer to an 
“MStatus” variable into which the status return value is put. 

If you replace the argument parsing code with the following fragment in 
the helix example, the example will be checking for, and handling, most 
possible errors.

// Parse the arguments.
for ( i = 0; i < args.length(); i++ )
    if ( MString( “-p” ) == args.asString( i, &stat )
         && MS::kSuccess == stat )
    {
         double tmp = args.asDouble( ++i, &stat );
         // argument can be retrieved as a double
         if ( MS::kSuccess == stat )
              pitch = tmp;
    }
    else if ( MString( “-r” ) == args.asString( i, &stat )
         && MS::kSuccess == stat )
    {
         double tmp = args.asDouble( ++i, &stat );
         // argument can be retrieved as a double
         if ( MS::kSuccess == stat )
              radius = tmp;
    }

The addition of &stat to the asString() and asDouble() methods allows 
you to check if the casting operation succeeds. 

For example, args.asString(i, &stat) could return MS::kFailure if 
the index is greater than the number of arguments, 

or 

args.asDouble(++i, &stat) could fail if the argument could not be 
converted to a double.

MStatus class

The MStatus class can determine if a method has failed.
API guide 

22



1 | Plug-in API introduction

Developer > Error logging
Many API methods either return an instance of the MStatus class, or fill in 
an instance passed as an optional parameter. The MStatus class contains 
the methods error, and an overloaded operator bool, both of which return 
false if the instance is holding an error status. This means you can check 
the success of a call quickly, for example:

MStatus stat = MGlobal::clearSelectionList;
    if (!stat) {
        // Do error handling
    ...
    }

If the MStatus instance contains an error, you can do one of several things:

• Use the statusCode method to retrieve an element of the MStatusCode 
enum that indicates the reason for the failure.

• Use the errorString method to retrieve an MString containing a 
detailed description of the error.

• Use the perror method to print the detailed description of the error to 
standard error, optionally pre-pended by a string you provide.

• Use the overloaded equality and inequality operators to compare the 
instance to a specific MStatusCode.

• Reset the instance to the successful state with the clear method.

Error logging

As well as using the MStatus class, you can check for failures in API 
methods using error logging. 

To enable and disable error logging:

1 From MEL, use the -errlog flag of the openMayaPref command.

or

2 From the plug-in, use the methods MGlobal::startErrorLogging() 
and MGlobal::stopErrorLogging().

Once you enable error logging, Maya creates a log file and each time an 
API method fails, Maya writes a description of the error to the file along 
with a mini stack trace that shows where the call to the routine was made. 

The default name of this file is OpenMayaErrorLog located in the current 
directory. This can be changed, however, by calling:

MGlobal::setErrorLogPathName.

Tip Plug-ins can also use the method, MGlobal::doErrorLogEntry() 
to add their own messages to the error log.
API guide

23



1 | Plug-in API introduction 
Developer > Error logging
API guide 

24



2 Selecting with the 
API
Developer Plug-in API

Selecting with the API

Overview of selecting with the API

A command usually gets input from the selection list. The result of the 
MGlobal::getActiveSelectionList() method contains all selected objects and 
can easily be checked through “MSelectionList” and 
“MItSelectionList”—two API classes you can use to edit selection lists.

MGlobal::setActiveSelectionList()

The global active selection list can be copied through:

MGlobal::getActiveSelectionList()

This returns an MSelectionList and makes a copy of the list. 

Any changes you might make through MSelectionList methods will not 
affect the global list unless you use:

MGlobal::setActiveSelectionList()

You can also create your own lists using MSelectionList to merge with 
other lists, including the global list. You can use this list to create sets of 
objects (see “setObject() method”).

MSelectionList

MSelectionList provides you with methods to add and remove objects 
from the selection list, as well as walk through the objects on the list. 

For example, the following simple plug-in prints the names of all selected 
DAG nodes. If you create geometry and then select it, this plug-in prints 
the name of each selected object.

Simple plug-in example

#include <maya/MSimple.h>
#include <maya/MGlobal.h>
#include <maya/MString.h>
#include <maya/MDagPath.h>
#include <maya/MFnDagNode.h>
#include <maya/MSelectionList.h>

MStatus pickExample::doIt( const MArgList& )
API guide

25



2 | Selecting with the API 
Developer > MSelectionList
{
    MDagPath            node;
    MObject             component;
    MSelectionList      list;
    MFnDagNode          nodeFn;

    MGlobal::getActiveSelectionList( list );
    for ( unsigned int index = 0; index < list.length(); 
index++ )
    {
        list.getDagPath( index, node, component );
        nodeFn.setObject( node );
        printf(“%s is selected\n”, nodeFn.name().asChar() );
    }

    return MS::kSuccess;
}
DeclareSimpleCommand( pickExample, "Alias", "1.0" );

Walking through the list of selected objects is quite simple. If you create 
geometry and then select it, this plug-in prints the name of each selected 
object. 

The setObject() method on MFnDagNode is inherited by all function sets 
from MFnBase and is used to set the object the function set will operate 
on. Usually this is done through the function set's constructor, but if the 
function set has already been created and you want to change the object 
the function set operates on, you use setObject(). This is far more efficient 
than creating and destroying function sets each time you need one. 

Try selecting a few CVs and then calling this plug-in. Notice that you do 
not get the name of the CV output, but rather the name of the parent 
object (the curve, surface, or mesh). Also notice that the number of objects 
selected is not the same as the number of names printed. 

The Maya selection architecture simplifies the selection of object 
components such as CVs. Rather than putting each component object (for 
instance, each CV) onto the selection list, the parent object is put on the list 
and the components are grouped together. 

For example, if several CVs of nurbSphereShape1 were selected, the 
list.getDagPath() call above would return an MDagPath to 
nurbSphereShape1 and an MObject grouping all the selected CVs 
together. The MDagPath and the MObject could then be passed to an 
MItSurfaceCV iterator to examine the selected CVs. 

As long as you continue to select components of only one object, the object 
appears on the selection list only once. However, if you pick some 
components of one object, and then some components of another object, 
and then more components of the first object, the first object would 
actually appear on the selection list twice. This is so that you can 
API guide 

26



2 | Selecting with the API

Developer > MItSelectionList
determine the order in which objects were selected. Within each 
component MObject the individual components are listed in the order 
they were selected. 

MItSelectionList

MltSelectionList is a wrapper class containing selected objects. This can 
either be a copy of the global active selection list, or a list you build 
yourself. 

MItSelectionList lets you filter the objects on the selection list to only see 
objects of a particular type (MSelectionList does not let you filter selected 
objects).

MGlobal::getActiveSelectionList( list );
for ( MItSelectionList listIter( list ); !listIter.isDone(); 
listIter.next() )
{
    listIter.getDagPath( node, component );
    nodeFn.setObject( node );
    printf(“%s is selected\n”, nodeFn.name().asChar() );
}

The “MSelectionList” example can be changed with this code fragment to 
use MItSelectionList instead to iterate through the selection list. This 
produces exactly the same results as before when selecting objects.

You can easily change the code to only look for objects of a particular 
type. For example, changing the constructor of the selection list iterator to:

MItSelectionList listIter( list, MFn::kNurbsSurface )

causes the loop to only iterate across selected NURB surfaces—it also 
ignores surface CVs. If, however, you wanted to just iterate across selected 
surface CVs, you would change the iterator to:

MItSelectionList listIter( list, MFn::kSurfaceCVComponent )

which would only iterate across surfaces with selected CVs.

setObject() method

The setObject() method on MFnDagNode is inherited by all function sets 
from MFnBase. It sets the object on which the function set operates. This is 
usually done through the function set’s constructor, but if the function set 
already exists and you want to change the object, use setObject(). This is 
more efficient than creating and destroying function sets each time you 
need one.
API guide

27



2 | Selecting with the API 
Developer > MFn::Type enumeration
Example

Try selecting a few CVs then calling this plug-in. Instead of the name of 
the CV output, you get the name of the parent object (the curve, surface, 
or mesh). You may also notice the number of selected objects is not the 
same as the number of printed names.

The Maya selection architecture simplifies the selection of object 
components such as CVs. Instead of putting each component object (for 
instance, each CV) onto the selection list, the parent object is put on the list 
and the components are grouped together. 

So, if several CVs of nurbSphereShape1 are selected, the 
list.getDagPath()call in the “Simple plug-in example” returns an 
MDagPath to nurbSphereShape1, and an MObject groups all selected CVs. 
The MDagPath and the MObject can then be passed to an MItSurfaceCV 
iterator to examine the selected CVs.

As long as you continue to select components of only one object, the object 
appears on the selection list only once. If you pick components of one 
object, components of another object, then more components of the first 
object, the first object appears on the selection list twice. This is so you can 
determine the order in which objects were selected. Within each 
component MObject, the individual components are listed in the order 
they were selected. 

Limitation—Mesh vertices, faces, or edges are not returned in the order 
selected.

MFn::Type enumeration

The MFn::Type enumeration is used throughout the API to indicate item 
types. 

• The “Function sets” class has an apiType() method which you can use 
to determine the type of object the MObject is referencing. Each 
function set also has a type() method which can be used to determine 
the function set type. 

• The MGlobal::getFunctionSetList() also returns an array of strings 
representing the types of function sets that will accept an object.

See also “Objects and Function Sets” in Chapter 1.

MGlobal::selectByName()

The add() method on MSelectionList combined with 
“MGlobal::setActiveSelectionList()” provides one method for a plug-in to 
modify the active selection list. 
API guide 

28



2 | Selecting with the API

Developer > MGlobal::selectByName()
Another way is to use MGlobal::selectByName(). This finds all objects 
matching a pattern and adds them to the active selection list. For example:

MGlobal::selectByName( “*Sphere*” );

selects everything with Sphere in the name.

Tip You can also use MGlobal::select() to add an object to the global 
selection list without creating an MSelectionList first.
API guide

29



2 | Selecting with the API 
Developer > MGlobal::selectByName()
API guide 

30



3 Command plug-ins
Developer Plug-in API

Add commands to Maya

Overview of adding commands to Maya

Plug-ins

The API supports several different types of plug-ins:

• Command plug-ins—commands that extend the MEL scripting 
language.

• Tool commands—plug-ins that take mouse input.

• “Dependency graph plug-ins”—plug-ins that add new operations, 
such as dependency graph nodes.

• Device plug-ins—plug-ins that allow new devices to interact with 
Maya.

Command plug-ins

This chapter describes the following command plug-in topics:

• ”MFnPlugin” on page 31

• ”initializePlugin()” on page 32

• ”uninitializePlugin()” on page 33

• ”MPxCommand” on page 34

• ”MPxContext” on page 44

• ”MPxContextCommand” on page 49

• ”MPxToolCommand” on page 51

Registering commands

Before you can write more complex commands, you have to know how to 
properly register them with Maya. The MFnPlugin is a class used for 
registering the command with Maya.

MFnPlugin

The following is a new version of the hello command which uses 
MFnPlugin to register itself instead of using the macros in “MSimple.h”.
API guide

31



3 | Command plug-ins 
Developer > initializePlugin()
#include <stdio.h>
#include <maya/MString.h>
#include <maya/MArgList.h>
#include <maya/MFnPlugin.h>
#include <maya/MPxCommand.h>

class hello : public MPxCommand
{
public:
    MStatus        doIt( const MArgList& args );
    static void*   creator();
};

MStatus hello::doIt( const MArgList& args ) {
    printf(“Hello %s\n”, args.asString( 0 ).asChar() );
    return MS::kSuccess;
}

void* hello::creator() {
    return new hello;
}

MStatus initializePlugin( MObject obj ) {
    MFnPlugin plugin( obj, “Alias”, “1.0”, “Any” );
    plugin.registerCommand( “hello”, hello::creator );
    return MS::kSuccess;
}

MStatus uninitializePlugin( MObject obj ) {
    MFnPlugin plugin( obj );
    plugin.deregisterCommand( “hello” );

    return MS::kSuccess;
}

initializePlugin()

The initializePlugin() function can be defined as either a C or C++ 
function. If you do not define this function, the plug-in will not be 
loaded.

Note! initializePlugin() and uninitializePlugin() must be present in all 
plug-ins. If both or either is absent the plug-in will not be loaded 
and the creator is necessary to allow Maya to create instances of 
the class. See the following for details.
API guide 

32



3 | Command plug-ins

Developer > uninitializePlugin()
initializePlugin() contains the code to register any commands, tools, 
devices, and so on, defined by the plug-in with Maya. It is called only 
once—immediately after the plug-in is loaded. 

For example, commands and tools are registered by instantiating an 
MFnPlugin function set to operate on the MObject passed in. This 
MObject contains Maya private information such as the name of the plug-
in file and the directory it was loaded from. It is passed in to the 
MFnPlugin constructor, along with the vendor name which defaults to 
“Unknown” if not specified, the version number of the plug-in as a string 
which defaults to “1.0”, and the version of the API required for the plug-
in to operate properly, which defaults to “Any”. 

Once constructed, the MFnPlugin function set is used to register the 
contents of the plug-in file. In the example (“MFnPlugin”), the 
MFnPlugin::registerCommand() is called to register the “hello” command, 
along with the creator (see “Creator methods”) for the command. Once 
done, the function returns a status code indicating whether or not it 
succeeded. After an unsuccessful initialization, the plug-in is unloaded 
automatically.

uninitializePlugin()

uninitializePlugin(), like initializePlugin(), can be a C or C++ function. If 
you neglect to declare this function, your plug-in will not be loaded.

The uninitializePlugin() function contains the code necessary to de-
register from Maya whatever was registered through initializePlugin(). It 
is called once only—when the plug-in is unloaded. 

This function should be used for a few quick clean-up operations, such as 
closing files. It is not necessary for you to delete those commands, or 
nodes created by your plug-in when it exits since Maya takes care of them. 
You should therefore not be keeping a list of the Maya objects allocated by 
your plug-in nor freeing them when uninitializePlugin() is called.

Creator methods

The items, such as commands, tools, or devices, registered by a plug-in are 
not available when Maya is compiled. As a result , Maya has no way of 
determining the size of a new command object (or any other plug-in 
defined C++ object). This makes it impossible for Maya to allocate these 
objects without some help. 

The creator methods on API objects provide a mechanism for Maya to 
allocate an object of unknown characteristics. When you register a new 
object, you are actually registering its creator method which Maya can 
then call to allocate a new instance of an object.
API guide

33



3 | Command plug-ins 
Developer > MPxCommand
MPxCommand

The new hello command introduced earlier uses a proxy object to add 
new functionality to Maya (see “MFnPlugin”). This proxy object is derived 
from MPxCommand which provides all the functionality necessary for 
Maya to use the command as if it were built in.

A minimum of two methods must be defined. These are the doIt() method 
and the creator. 

class hello : public MPxCommand
{
public:
    MStatus        doIt( const MArgList& args );
    static void*   creator();
};

doIt() and redoIt() methods

The doIt() method is a pure virtual method, and since there is no creator 
defined in the base class, you must define both doIt() and creator. 

For simple commands, the doIt() method performs the actions of the 
command. In more complex commands, the doIt() method parses the 
argument list, the selection list, and whatever else may be necessary. It 
then uses this information to set data internal to the command before 
calling the redoIt() method, which does the bulk of the work. This avoids 
code duplication between the doIt() and redoIt() methods.

Verifying when methods are called

The following is a simple plug-in that outputs a string when any of its 
methods are called by Maya. You can use it to see when the methods are 
called.

#include <stdio.h>
#include <maya/MString.h>
#include <maya/MArgList.h>
#include <maya/MFnPlugin.h>
#include <maya/MPxCommand.h>

class commandExample : public MPxCommand
{
public:
                   commandExample();
    virtual        ~commandExample();
    MStatus        doIt( const MArgList& );
    MStatus        redoIt();
    MStatus        undoIt();
    bool           isUndoable() const;
    static void*   creator();
API guide 

34



3 | Command plug-ins

Developer > MPxCommand
};

commandExample::commandExample() {
    printf(“In commandExample::commandExample()\n”);
}
commandExample::~commandExample() {
    printf(“In commandExample::~commandExample()\n”);
}
MStatus commandExample::doIt( const MArgList& ) {
    printf(“In commandExample::doIt()\n”);
    return MS::kSuccess;
}
MStatus commandExample::redoIt() {
    printf(“In commandExample::redoIt()\n”);
    return MS::kSuccess;
}
MStatus commandExample::undoIt() {
    printf(“In commandExample::undoIt()\n”);
    return MS::kSuccess;
}
bool commandExample::isUndoable() const {
    printf(“In commandExample::isUndoable()\n”);
    return true;
}
void* commandExample::creator() {
    printf(“In commandExample::creator()\n”);
    return new commandExample();
}

MStatus initializePlugin( MObject obj )
{
    MFnPlugin plugin( obj, “My plug-in”, “1.0”, “Any” );
    plugin.registerCommand( “commandExample”, 
commandExample::creator );
    printf(“In initializePlugin()\n”);
    return MS::kSuccess;
}

MStatus uninitializePlugin( MObject obj )
{
    MFnPlugin plugin( obj );
    plugin.deregisterCommand( “commandExample” );
    printf(“In uninitializePlugin()\n”);
    return MS::kSuccess;
}

When you first load this plug-in, notice that “In initializePlugin()” is 
printed immediately. If you then type “commandExample” in the 
command window you will see:

In commandExample::creator()
API guide

35



3 | Command plug-ins 
Developer > MPxCommand
In commandExample::commandExample()
In commandExample::doIt()
In commandExample::isUndoable()

Note that the destructor is not called. This is because the command object 
remains indefinitely so that it can be undone, or redone (after being 
undone). 

This is how Maya’s undo mechanism works. Command objects maintain 
information which allows them to undo themselves when necessary. The 
destructor is called when the command falls off the end of the undo 
queue, it is undone and not redone, or the plug-in is unloaded.

If you now use Edit > Undo (or you use the MEL undo command) and 
Edit > Redo (or you use the MEL redo command), the undoIt() and 
redoIt() methods of the command get called when these menu items are 
invoked.

If you modify this example so that the isUndoable() method returns false 
rather than true (remember to unload the plug-in before recompiling) 
when you run it, the output becomes:

In commandExample::creator()
In commandExample::commandExample()
In commandExample::doIt()
In commandExample::isUndoable()
In commandExample::~commandExample()

In this case the destructor is called immediately since the command 
cannot be undone. Maya treats a non-undoable command as an action that 
does not affect the scene in any way. This means that no information 
needs to be saved after the command executes, and when undoing and 
redoing commands, it does not need to be executed since it does not 
change anything.

Helix example with undo and redo

The following example is another implementation of the helix plug-in. 
This version is implemented as a full command with undo and redo. It 
works by taking a selected curve and turning it into a helix.

#include <stdio.h>
#include <math.h>

#include <maya/MFnPlugin.h>
#include <maya/MFnNurbsCurve.h>
#include <maya/MPointArray.h>
#include <maya/MDoubleArray.h>
#include <maya/MPoint.h>
#include <maya/MSelectionList.h>
#include <maya/MItSelectionList.h>
#include <maya/MItCurveCV.h>
API guide 

36



3 | Command plug-ins

Developer > MPxCommand
#include <maya/MGlobal.h>
#include <maya/MDagPath.h>
#include <maya/MString.h>
#include <maya/MPxCommand.h>
#include <maya/MArgList.h>

class helix2 : public MPxCommand {
public:
                   helix2();
    virtual        ~helix2();
    MStatus        doIt( const MArgList& );
    MStatus        redoIt();
    MStatus        undoIt();
    bool           isUndoable() const;
    static         void* creator();

The command starts out as the previous example, declaring the methods it 
will be defining.

private:
    MDagPath        fDagPath;
    MPointArray     fCVs;
    double          radius;
    double          pitch;
};

This command will be modifying the model. So that it will be able to undo 
the changes it makes, it allocates space to store the original definition of 
the curve. It also stores the description of the helix so that it can reproduce 
it if the redoIt method is called.

It is important to notice that the command does not store a pointer to an 
MObject, but rather uses an MDagPath to reference the curve for undo 
and redo. An MObject is not guaranteed to be valid the next time your 
command is executed. As a result, if you had used an MObject, Maya 
would likely core dump when performing your undoIt() or redoIt(). An 
MDagPath however, being simply a description of the path to the curve, is 
guaranteed to be correct whenever your command is executed.

void* helix2::creator() {
    return new helix2;
}

The creator simply returns an instance of the object.

helix2::helix2() : radius( 4.0 ), pitch( 0.5 ) {}

The constructor initializes the radius and pitch.

helix2::~helix2() {}

The destructor does not need to do anything since the private data will be 
cleaned up automatically. 
API guide

37



3 | Command plug-ins 
Developer > MPxCommand
MStatus helix2::doIt( const MArgList& args ) {
    MStatus status;

    // Parse the arguments.
    for ( int i = 0; i < args.length(); i++ )
        if ( MString( “-p” ) == args.asString( i, &status )
            && MS::kSuccess == status )
        {
            double tmp = args.asDouble( ++i, &status );
            if ( MS::kSuccess == status )
                pitch = tmp;
        }
        else if ( MString( “-r” ) == args.asString( i, 
&status )
            && MS::kSuccess == status )
        {
            double tmp = args.asDouble( ++i, &status );
            if ( MS::kSuccess == status )
                radius = tmp;
        }
        else
        {
            MString msg = “Invalid flag: “;
            msg += args.asString( i );
            displayError( msg );
            return MS::kFailure;
        }

As before, this simply parses the arguments passed into the doIt() method 
and uses them to set the internal radius and pitch fields which will be 
used by the redoIt() method. The doIt() method is the only one that 
receives arguments. The undoIt() and redoIt() methods each take their 
data from internal data of the command itself.

In the final else-clause, the displayError() method, inherited from 
MPxCommand, outputs the message in the command window and in the 
command output window. Messages output with displayError() are 
prefixed with “Error:”. Another option is displayWarning() which would 
prefix the message with “Warning:”.

    // Get the first selected curve from the selection list.
    MSelectionList slist;
    MGlobal::getActiveSelectionList( slist );
    MItSelectionList list( slist, MFn::kNurbsCurve, &status 
);
    if (MS::kSuccess != status) {

Note Data owned by Maya should not be deleted.
API guide 

38



3 | Command plug-ins

Developer > MPxCommand
        displayError( “Could not create selection list 
iterator” );
        return status;
    }

    if (list.isDone()) {
        displayError( “No curve selected” );
        return MS::kFailure;
    }

    MObject component;
    list.getDagPath( fDagPath, component );

This code gets the first curve object off the selection list. The fDagPath 
field of the command is set to the selected object selection is covered in 
detail in Chapter 2, “Selecting with the API”).

    return redoIt();
}

Once the internal data of the command is set , the redoIt() method is 
called. The doIt() method could perform the necessary actions itself, but 
these actions are always identical to those performed by redoIt() so, 
having doIt() call redoIt() reduces code duplication.

You might wonder why doIt() calls redoIt() and not the other way around. 
Although this is possible—the redoIt() method could take the cached data 
and turn it into an MArgList which it could then pass to doIt()—it would 
be far less efficient.

MStatus helix2::redoIt()
{
    unsigned            i, numCVs;
    MStatus             status;
    MFnNurbsCurve       curveFn( fDagPath );

    numCVs = curveFn.numCVs();
    status = curveFn.getCVs( fCVs );
    if ( MS::kSuccess != status )
    {
        displayError( “Could not get curve’s CVs” );
        return MS::kFailure;
    }

This code gets the CVs from the selected curve and stores them in the 
command’s internal MPointArray. These stored CV positions could then 
be used if the undoIt() method is called to return the curve to its original 
shape.

    MPointArray        points(fCVs);
    for (i = 0; i < numCVs; i++)
        points[i] = MPoint( radius * cos( (double)i ),
API guide

39



3 | Command plug-ins 
Developer > MPxCommand
            pitch * (double)i, radius * sin( (double)i ) );
    status = curveFn.setCVs( points );
    if ( MS::kSuccess != status )
    {
        displayError( “Could not set new CV information” );
        fCVs.clear();
        return status;
    }

As with the earlier helix examples, this code sets the position of the 
curve’s CVs so that the curve forms a helix. 

    status = curveFn.updateCurve();
    if ( MS::kSuccess != status )
    {
        displayError( “Could not update curve” );
        return status;
    }

The updateCurve() method is used to inform Maya that the geometry of 
the curve has changed. Failing to call this method after modifying 
geometry causes the display of the object to remain unchanged.

    return MS::kSuccess;
}

Returning MS::kSuccess at the completion of a function indicates to Maya 
that the operation completed successfully.

MStatus helix2::undoIt()
{
    MStatus        status;

    MFnNurbsCurve  curveFn( fDagPath );
    status = curveFn.setCVs( fCVs );
    if ( MS::kSuccess != status)
    {
        displayError( “Could not set old CV information” );
        return status;
    }

These few lines take the stored CV positions (the original positions of the 
curve’s CVs) and resets them. 

Note You needn’t worry about the number of CVs changing, or the 
curve being deleted in an undo function. You assume that 
anything done after your command has been undone before 
your undoIt() is called. As a result the model is in the same state 
as it was immediately after your command finished.
API guide 

40



3 | Command plug-ins

Developer > Returning results to MEL
    status = curveFn.updateCurve();
    if ( MS::kSuccess != status )
    {
        displayError( “Could not update curve” );
        return status;
    }

    fCVs.clear();
    return MS::kSuccess;
}

The MPointArray is cleared here just as a precaution.

bool helix2::isUndoable() const
{
    return true;
}

This command is undoable. It modified the model, but an undoIt() 
method has been provided which returns the model to the state it was in 
before the command was run.

MStatus initializePlugin( MObject obj )
{ 
    MFnPlugin plugin( obj, “Alias”, “1.0”, “Any”);
    plugin.registerCommand( “helix2”, helix2::creator );

    return MS::kSuccess;
}

MStatus uninitializePlugin( MObject obj )
{
    MFnPlugin plugin( obj );
    plugin.deregisterCommand( “helix2” );

    return MS::kSuccess;
}

The plug-in is completed with the usual initialize and uninitialize 
functions.

Returning results to MEL

Commands can also return results to MEL. This is done using the set of 
overloaded “setResult” and “appendToResult” methods  inherited from 
MPxCommand. For example, if the command needs to return an integer 
value of 4, it can be done using code that looks like the following:

int result =4;
clearResult();
setResult( result );
API guide

41



3 | Command plug-ins 
Developer > Syntax objects
You can return arrays by making multiple calls to the appendToResult 
method. For example, to return three doubles indicating the position of 
apoint in three-space, you could do something like the following:

MPoint result (1.0, 2.0, 3.0);
...
clearResult();
appendToResult( result.x );
appendToResult( result.y );
appendToResult( result.z );

Or, this can also be done by returning an array.

MDoubleArray result;
MPoint point (1.0, 2.0, 3.0);

result.append( point.x );
result.append( point.y );
result.append( point.z );

clearResult();
setResult( result );

Syntax objects

The classes you need to work with when writing syntax objects are 
MSyntax and MArgDatabase. These classes are required for defining and 
handling command flag input.

MSyntax—Used to specify flags and arguments passed to commands.

MArgDatabase—Class used to parse and store all flags, arguments, and 
objects passed to a command. The MArgDatabase accepts an MSyntax 
object, which describes the format for a command, and uses it to parse the 
command arguments into a form which is easy to query .

Flags

Syntax objects require flags. You need to define both short flags and long 
flags. Short flags are three letters or less; long flags are four letters or 
more. 

Define these flags in one place using the #define declaration. For 
example, scanDagSyntax uses the following flags:

#define kBreadthFlag     "-b"

Note MArgParser is similar to MArgDatabase except that it is used for 
context commands rather than commands.
API guide 

42



3 | Command plug-ins

Developer > Flags
#define kBreadthFlagLong "-breadthFirst"
#define kDepthFlag       "-d"
#define kDepthFlagLong   "-depthFirst"

Creating the Syntax Object

In your command class, you need to write a newSyntax method in which 
the syntax for your command is set up. This method needs to be a static 
method that returns the syntax object, MSyntax.

Inside your newSyntax method, you need to add the necessary flags to a 
syntax object and then return it.

The scanDagSyntax class’s newSyntax is defined in the following way:

class scanDagSyntax: public MPxCommand
{
public:
    ...
    static MSyntax newSyntax();
    ...
};

MSyntax scanDagSyntax::newSyntax()
{
    MSyntax syntax;

    syntax.addFlag(kBreadthFlag, kBreadthFlagLong);
    syntax.addFlag(kDepthFlag, kDepthFlagLong);
    ...
    return syntax;
}

Parsing the Arguments

By convention, the arguments to your command are typically parsed in a 
parseArgs method which is called from doIt. This parseArgs method 
creates a local MArgDatabase which is initialized with a syntax object and 
the arguments to the command. MArgDatabase has convenient methods 
which enable you to determine which flags are set.

MStatus scanDagSyntax::parseArgs(const MArgList &args,
                                 MItDag::TraversalType &
                                     traversalType,
                                 MFn::Type &filter,
                                 bool &quiet)

Note Unless otherwise specified, all API methods use Maya internal 
units—cm and radians.
API guide

43



3 | Command plug-ins 
Developer > Contexts
{
    MArgDatabase  argData(syntax(), args);

    if (argData.isFlagSet(kBreadthFlag))
        traversalType = MItDag::kBreadthFirst;
    else if (argData.isFlagSet(kDepthFlag))
        traversalType = MItDag::kDepthFirst;
    ...
    return MS::kSuccess;
}

Registration

The method that creates the syntax object is registered with the command 
in the initializePlugin method.

MStatus initializePlugin( MObject obj )
{ 
    MStatus status;
    MFnPlugin plugin(obj, "Alias - Example", 
                     "2.0", "Any");
    status = plugin.registerCommand("scanDagSyntax",
                                   scanDagSyntax::creator,
                                   
scanDagSyntax::newSyntax); 
    return status;
}

Contexts

Contexts in Maya are modes which define how mouse interaction will be 
interpreted. A context can execute commands, modify the current 
selection, or perform drawing operations, etc. In addition, the context can 
draw the cursor differently denoting the context. In Maya, contexts are 
presented with the name “tool.”

MPxContext

The MPxContext class allows you to create your own context.

The realization of a context in the Maya application is done through a 
special command which creates the context. In this regard, a context is 
similar to a shape—it is created and modified by a command and has state 
which defines its behavior or appearance. When you write a context by 
subclassing MPxContext, you must also define a command for it by 
subclassing from MPxContextCommand described in the following. 
API guide 

44



3 | Command plug-ins

Developer > MPxContext
The following is the marqueeTool example which does simple selection 
using a user drawn OpenGL selection box. For the purposes of brevity, the 
header files have been left out. See the example code in the devkit/plug-
ins directory for the complete example.

const char helpString[] =
    “Click with left button or drag with middle button to 
select”;

class marqueeContext : public MPxContext
{
public:
                            marqueeContext();
    virtual     void        toolOnSetup( MEvent & event );
    virtual MStatus         doPress( MEvent & event );
    virtual MStatus         doDrag( MEvent & event );
    virtual MStatus         doRelease( MEvent & event );
    virtual MStatus         doEnterRegion( MEvent & event );

The methods on MPxContext provide default actions if they are not 
overridden so you need only define those methods which are necessary 
for the proper functioning of your context. What each of these methods 
does is described below.

private:
    short                    start_x, start_y;
    short                    last_x, last_y;
    MGlobal::ListAdjustment  listAdjustment
    M3dView                  view;
};

marqueeContext::marqueeContext()
{
    setTitleString ( “Marquee Tool” );
}

The constructor sets the title that will appear in the UI when this tool is 
selected.

void marqueeContext::toolOnSetup ( MEvent & )
{
    setHelpString( helpString );
}

When the tool is selected this method is called to put user help 
information on the prompt line and so that you can do any initialization 
that may be required.

MStatus marqueeContext::doPress( MEvent & event )
{

API guide

45



3 | Command plug-ins 
Developer > MPxContext
This method is called after the tool has been selected and you have 
pressed a mouse button. The MEvent object contains the relevant 
information to the user’s mouse down event, such as the co-ordinates the 
user clicked on.

    if (event.isModifierShift() || event.isModifierControl() 
) {
        if ( event.isModifierShift() ) {
            if ( event.isModifierControl() ) {
                // both shift and control pressed, merge new 
selections
                listAdjustment = MGlobal::kAddToList;
            } else {
                // shift only, xor new selections with 
previous ones
                listAdjustment = MGlobal::kXORWithList;
            }
        } else if ( event.isModifierControl() ) {
            // control only, remove new selections from the 
previous list
            listAdjustment = MGlobal::kRemoveFromList; 
        }
    }
    else
        listAdjustment = MGlobal::kReplaceList;

Since the mode of selection can be varied by what modifier keys are held 
down, the mouse up event is checked to see what if any modifiers were 
down, and then adjusts the type of selection accordingly.

    event.getPosition( start_x, start_y );

The positions of the selection are determined. This method returns screen 
co-ordinates.

    view = M3dView::active3dView();
    view.beginGL();

This determines the active view and enables OpenGl rendering into it.

    view.beginOverlayDrawing();
    return MS::kSuccess;
}

MStatus marqueeContext::doDrag( MEvent & event )
{

This method is called while the mouse button is down and you drag the 
cursor around the screen.

    event.getPosition( last_x, last_y );
    view.clearOverlayPlane();
API guide 

46



3 | Command plug-ins

Developer > MPxContext
Each time this method is called the overlay planes are cleared before 
rendering the new selection box.

    glMatrixMode( GL_PROJECTION );
    glLoadIdentity();
    gluOrtho2D(
            0.0, (GLdouble) view.portWidth(),
            0.0, (GLdouble) view.portHeight()
    );
    glMatrixMode( GL_MODELVIEW );
    glLoadIdentity();
    glTranslatef(0.375, 0.375, 0.0);

This sets up the view transformations to make sure that the rendering 
correctly appears in the active view.

    glLineStipple( 1, 0x5555 );
    glLineWidth( 1.0 );
    glEnable( GL_LINE_STIPPLE );
    glIndexi( 2 );

Next the line style is selected.

    // Draw marquee
    //
    glBegin( GL_LINE_LOOP );
        glVertex2i( start_x, start_y );
        glVertex2i( last_x, start_y );
        glVertex2i( last_x, last_y );
        glVertex2i( start_x, last_y );
    glEnd();

The selection box is drawn.

#ifndef _WIN32
     glXSwapBuffers(view.display(), view.window() );
#else
     SwapBuffers(view.deviceContext() );
#endif

The buffers are swapped.

    glDisable( GL_LINE_STIPPLE );

Finally the special draw mode for the lines is disabled.

    return MS::kSuccess;
}

MStatus marqueeContext::doRelease( MEvent & event )
{

This method is called when the mouse button is released.
API guide

47



3 | Command plug-ins 
Developer > MPxContext
    MSelectionList             incomingList, marqueeList;
    MGlobal::ListAdjustment    listAdjustment;

    view.clearOverlayPlane();
    view.endOverlayDrawing();
    view.endGL();

All OpenGL rendering is done so the overlay planes are cleared and 
OpenGL rendering is turned off for the active view.

    event.getPosition( last_x, last_y );

This determines the co-ordinates where the mouse button was released.

    MGlobal::getActiveSelectionList(incomingList);

This gets the current selection list and saves a copy for later use.

    if ( abs(start_x - last_x) < 2 && abs(start_y - last_y) 
< 2 )
        MGlobal::selectFromScreen( start_x, start_y, 
MGlobal::kReplaceList );

If the co-ordinates are the same at the beginning and end, then a click-pick 
was done rather than a bounding box pick.

    else
        // Select all the objects or components within the 
marquee.
        MGlobal::selectFromScreen( start_x, start_y, last_x, 
last_y,
            MGlobal::kReplaceList );

Do a bounding box pick.

    // Get the list of selected items
    MGlobal::getActiveSelectionList(marqueeList);

This gets the list of objects just selected.

    MGlobal::setActiveSelectionList(incomingList, \
        MGlobal::kReplaceList);

Restore the original selection list.

    MGlobal::selectCommand(marqueeList, listAdjustment);

Modify the original selection list using your modifier and the selected 
object’s.

    return MS::kSuccess;
}

MStatus marqueeContext::doEnterRegion( MEvent & )
{
    return setHelpString( helpString );
}

API guide 

48



3 | Command plug-ins

Developer > MPxContextCommand
This method is called whenever you move the mouse on top of one of the 
modeling views.

class marqueeContextCmd : public MPxContextCommand
{
public:    
                           marqueeContextCmd();
    virtual MPxContext*    makeObj();
    static  void*          creator();
};

MPxContextCommand

The MPxContextCommand is the class used to define the special 
command for creating contexts. Context commands are similar to regular 
commands in that they can be executed from the command line and put 
into MEL scripts. They can have edit and query options which modify the 
properties of the context. They create an instance of the context and give it 
to Maya. Context commands are not undoable. 

Creating a context command

The following is the implementation of the context command used to 
create the marquee context described previously.

marqueeContextCmd::marqueeContextCmd() {}

This method is used by Maya to create an instance of the context.

MPxContext* marqueeContextCmd::makeObj()
{
    return new marqueeContext();
}

void* marqueeContextCmd::creator()
{
    return new marqueeContextCmd;
}

MStatus initializePlugin( MObject obj )
{
    MStatus status;
    MFnPlugin plugin( obj, “Alias”, “1.0”, “Any”);
    status = plugin.registerContextCommand( \
           “marqueeToolContext”, marqueeContextCmd::creator 
);
API guide

49



3 | Command plug-ins 
Developer > MPxContextCommand
The context command must be registered, but in this case 
MFnPlugin::registerContextCommand() is used rather than 
MFnPlugin::registerCommand().

    return status;
}

MStatus uninitializePlugin( MObject obj )
{
    MStatus status;
    MFnPlugin plugin( obj );
    status = plugin.deregisterContextCommand( \
            “marqueeToolContext” );

MFnPlugin::deregisterContextCommand() is likewise used to deregister 
the context command.

    return status;
}

And that’s all that’s necessary to create a simple context.

Adding a context command to the Maya shelf

There are two ways to “activate” or make your context the current context 
in Maya. The first is through the use of the setToolTo command. This 
command takes the name of a context (tool) and makes it the current 
context. 

A second method is by making an icon to represent your context and 
putting it in the Maya tool shelf. The Maya tool shelf can store two kinds 
of buttons, command buttons and tool buttons. When the tool is activated, 
its icon is displayed next to the standard Maya tools in the toolbar.

The following is a set of MEL commands you can use to create a context 
and tool button for the context.

marqueeToolContext marqueeToolContext1;
setParent Shelf1;
toolButton  -cl toolCluster
            -t marqueeToolContext1
            -i1 “marqueeTool.xpm” marqueeTool1;

This MEL code instantiates an instance of the marqueeToolContext and 
adds it to the “Common” tools shelf. 

marqueeTool.xpm, the icon for the tool, must be in the XBMLANGPATH 
to be found and added to the UI. If it is not found, a blank spot will 
appear on the shelf, but the tool will still be usable.

This code could either be sourced by hand from the MEL command 
window, or it could be invoked with MGlobal::sourceFile() in the 
initializePlugin() method of the plug-in.
API guide 

50



3 | Command plug-ins

Developer > Tool property sheets
Tool property sheets

Tool property sheets are interactive editors for displaying and modifying 
the properties of a context. They are similar to attribute editors for 
modifying properties of a dependency graph node. They execute the 
context command following user actions in the editor to perform editing 
operations on the activated context. The tool property sheet for the 
activated context is displayed by double-clicking on the tool’s icon.

• Implementation of a tool property sheet for your context entails 
writing two MEL files, one for editing the context and one for 
querying the context. 

• The files must be named <yourContextName>Properties.mel and 
<yourContextNameValues.mel where <yourContextName> is the 
name of your context as returned by the getClassName() method of 
your context. 

• The <>Properties.mel file defines the layout of the editor and the 
actions to be taken by widgets in the editor. 

• The <>Values.mel file is used to retrieve values from the context with 
the editor is initialized. 

Refer to the helixProperties.mel and helixValues.mel files in the example 
plug-in directory for a sample implementation of a property sheet.

To effectively implement a tool property sheet for your context, you must 
implement sufficient edit and query options in your context command as 
well as sufficient access methods in your MPxContext class for setting and 
retrieving its internal properties.

MPxToolCommand

The MPxToolCommand is the base class for creating commands that can 
be executed from within a context. Tool commands are similar to regular 
commands in that they are defined with command flags and can be 
executed from the Maya command line. However, they must perform 
extra duties, as the actions taken by a context do not come from the 
normal Maya command mechanism but from inside the methods of the 
MPxContext class. These duties are to alert Maya of the execution of the 
command so that the undo/redo and journalling mechanisms operate 
correctly on the command. The MPxToolCommand is a subclass of 
MPxCommand with the additional methods.

If a context wants to perform its own command, it must register the 
command when the context and context command are registered. A 
context can only have one tool command associated with it.
API guide

51



3 | Command plug-ins 
Developer > MPxToolCommand
The following is an example of a tool command, the helixTool. As with the 
marqueeTool, the list of include files is omitted for brevity. See the 
helixTool.cpp file in devkit/plug-ins for the complete example.

#define        NUMBER_OF_CVS        20

class helixTool : public MPxToolCommand
{
public:
                       helixTool(); 
    virtual            ~helixTool(); 
    static void*       creator();

    MStatus            doIt( const MArgList& args );
    MStatus            redoIt();
    MStatus            undoIt();
    bool               isUndoable() const;
    MStatus            finalize();
    static MSyntax     newSyntax();

The set of methods on MPxToolCommand are similar to those on 
MPxCommand but with the addition of finalize(). The finalize method is 
used to create a string representing the command and its arguments.

    void               setRadius( double newRadius );
    void               setPitch( double newPitch );
    void               setNumCVs( unsigned newNumCVs );
    void               setUpsideDown( bool newUpsideDown );

These methods are necessary since the properties of the helix will be set 
from the context object.

private:
    double             radius;     // Helix radius
    double             pitch;      // Helix pitch
    unsigned           numCV;      // Helix number of CVs
    bool               upDown;     // Helis upsideDown
    MDagPath           path;       // Dag path to the curve.
                                   // Don’t save the 
pointer!
};

void* helixTool::creator()
{
    return new helixTool;
}

helixTool::~helixTool() {}

These first two methods are identical to the earlier “helix2” example.

helixTool::helixTool()
{ 
API guide 

52



3 | Command plug-ins

Developer > MPxToolCommand
    numCV = NUMBER_OF_CVS;
    upDown = false;
    setCommandString( “helixToolCmd” );
}

The constructor saves away the name of the MEL command for later use 
in the finalize() method.

MSyntax helixTool::newSyntax()
{
    MSyntax syntax;

    syntax.addFlag(kPitchFlag, kPitchFlagLong,
            MSyntax::kDouble);
    syntax.addFlag(kRadiusFlag, kRadiusFlagLong,
            MSyntax::kDouble);
    syntax.addFlag(kNumberCVsFlag, kNumberCVsFlagLong,
            MSyntax::kUnsigned);
    syntax.addFlag(kUpsideDownFlag, kUpsideDownFlagLong,
            MSyntax::kBoolean);

    return syntax;
}

MStatus helixTool::doIt( const MArgList &args )
{
    MStatus status;
    
    status = parseArgs(args);

    if (MS::kSuccess != status)
        return status;

    return redoIt();
}

MStatus helixTool::parseArgs(const MArgList &args)
{
    MStatus status;
    MArgDatabase argData(syntax(), args);

    if (argData.isFlagSet(kPitchFlag)) {
        double tmp;
        status = argData.getFlagArgument(kPitchFlag, 0, 
tmp);
        if (!status) {
            status.perror("pitch flag parsing failed.");
            return status;
        }
        pitch = tmp;
    }
API guide

53



3 | Command plug-ins 
Developer > MPxToolCommand
    if (argData.isFlagSet(kRadiusFlag)) {
        double tmp;
        status = argData.getFlagArgument(kRadiusFlag, 0, 
tmp);
        if (!status) {
            status.perror("radius flag parsing failed.");
            return status;
        }
        radius = tmp;
    }

    if (argData.isFlagSet(kNumberCVsFlag)) {
        unsigned tmp;
        status = argData.getFlagArgument(kNumberCVsFlag,
                0, tmp);
        if (!status) {
            status.perror("numCVs flag parsing failed.");
            return status;
        }
        numCV = tmp;
    }

    if (argData.isFlagSet(kUpsideDownFlag)) {
        bool tmp;
        status = argData.getFlagArgument(kUpsideDownFlag,
                0, tmp);
        if (!status) {
            status.perror("upside down flag parsing 
failed.");
            return status;
        }
        upDown = tmp;
    }

    return MS::kSuccess;
}

This method is similar to the earlier helix example—it parses the 
arguments and uses them to set its internal state. In general, this 
command will be used through the UI, but since it is still a MEL 
command, it can be invoked from the MEL command shell.

MStatus helixTool::redoIt()
{
    MStatus stat;

    const unsigned  deg     = 3;            // Curve Degree
    const unsigned  ncvs    = NUMBER_OF_CVS;// Number of CVs
    const unsigned  spans   = ncvs - deg;   // Number of 
spans
API guide 

54



3 | Command plug-ins

Developer > MPxToolCommand
    const unsigned  nknots  = spans+2*deg-1;// Number of 
knots
    unsigned        i;
    MPointArray     controlVertices;
    MDoubleArray    knotSequences;

    int upFactor;
    if (upDown) upFactor = -1;
    else upFactor = 1;

    // Set up cvs and knots for the helix
    //
    for (i = 0; i < ncvs; i++)
        controlVertices.append( MPoint(
                radius * cos( (double)i ),
                upFactor * pitch * (double)i,
                radius * sin( (double)i ) ) );

    for (i = 0; i < nknots; i++)
        knotSequences.append( (double)i );

    // Now create the curve
    //
    MFnNurbsCurve curveFn;

    MObject curve = curveFn.create( controlVertices,
            knotSequences, deg, MFnNurbsCurve::kOpen,
            false, false, MObject::kNullObj, &stat );

    if ( !stat )
    {
        stat.perror(“Error creating curve”);
        return stat;
    }

    stat = curveFn.getPath( path );

    return stat;
}

This is essentially the same as the earlier helix example. 

MStatus helixTool::undoIt()
{
    MStatus stat; 
    MObject transform = path.transform();
    stat = MGlobal::removeFromModel( transform );
    return stat;
}

API guide

55



3 | Command plug-ins 
Developer > MPxToolCommand
Again this is essentially the same as the earlier helix example. You should 
be noticing a pattern developing. It is quite easy to change a command 
into a tool. Little of the command has to be changed, additions just have to 
be made to hook the tool up to the UI.

bool helixTool::isUndoable() const
{
    return true;    
}

This tool is undoable.

MStatus helixTool::finalize()
{
    MArgList command;
    command.addArg( commandString() );
    command.addArg( MString(kRadiusFlag) );
    command.addArg( radius );
    command.addArg( MString(kPitchFlag) );
    command.addArg( pitch );
    command.addArg( MString(kNumberCVsFlag) );
    command.addArg( (int)numCV );
    command.addArg( MString(kUpsideDownFlag) );
    command.addArg( upDown );
    return MPxToolCommand::doFinalize( command );
}

This method is the one noticeable addition to the tool which wasn’t 
necessary in the command. When a command is typed in it is easy to take 
it and print it out to a journal file. Since a tool is not typed in, but created 
through mouse input, no text string exists to be output to a journal file. 
The finalize() method solves this by outputting a string when the tool has 
completed. It is necessary for you to call MPxToolCommand::doFinalize() 
to have the command output to the journal file.

void helixTool::setRadius( double newRadius )
{
    radius = newRadius;
}

void helixTool::setPitch( double newPitch )
{
    pitch = newPitch;
}

void helixTool::setNumCVs( unsigned newNumCVs )
{
    numCV = newNumCVs;
}

void helixTool::setUpsideDown( double newUpsideDown )
{

API guide 

56



3 | Command plug-ins

Developer > MPxToolCommand
    upDown = newUpsideDown;
}

const char helpString[] = “Click and drag to draw helix”;

class helixContext : public MPxContext
{

This is the context which will be executing the helixTool command..

public:
                            helixContext();
    virtual void            toolOnSetup( MEvent & event );
    virtual MStatus         doPress( MEvent & event );
    virtual MStatus         doDrag( MEvent & event );
    virtual MStatus         doRelease( MEvent & event );
    virtual MStatus         doEnterRegion( MEvent & event );

The set of methods are the same as for the marqueeTool example.

private:
    short                   startPos_x, startPos_y;
    short                   endPos_x, endPos_y;
    unsigned                numCV;
    bool                    upDown;
    M3dView                 view;
    GLdouble                height,radius;
};

helixContext::helixContext() 
{
    setTitleString( “Helix Tool” );
}

void helixContext::toolOnSetup( MEvent & )
{
    setHelpString( helpString );
}

MStatus helixContext::doPress( MEvent & event )
{
    event.getPosition( startPos_x, startPos_y );
    view = MGlobal::active3dView();
    view.beginGL();
    view.beginOverlayDrawing();
    return MS::kSuccess;
}

These three methods are essentially the same as the marqueeTool 
examples, the only difference being that doPress() for the helixTool does 
not need to determine the modifier key state.

MStatus helixContext::doDrag( MEvent & event )
API guide

57



3 | Command plug-ins 
Developer > MPxToolCommand
{
    event.getPosition( endPos_x, endPos_y );
    view.clearOverlayPlane();
    glIndexi( 2 );

    int upFactor;
    if (upDown) upFactor = 1;
    else upFactor = -1;

    // Draw the guide cylinder
    //
    glMatrixMode( GL_MODELVIEW );
    glPushMatrix();
        glRotatef( upFactor * 90.0, 1.0f, 0.0f, 0.0f );
        GLUquadricObj *qobj = gluNewQuadric();
        gluQuadricDrawStyle(qobj, GLU_LINE);
        GLdouble factor = (GLdouble)numCV;
        radius = fabs(endPos_x - startPos_x)/factor + 0.1;
        height = fabs(endPos_y - startPos_y)/factor + 0.1;
        gluCylinder( qobj, radius, radius, height, 8, 1 );
    glPopMatrix();

This code draws a cylinder in the current view defining the outlines of the 
helix that will be generated.

    #ifndef _WIN32
        glXSwapBuffers(view.display(), view.window() );
    #else
        SwapBuffers(view.deviceContext() );
    #endif

    return MS::kSuccess;
}

MStatus helixContext::doRelease( MEvent & )
{
    // Clear the overlay plane & restore from overlay 
drawing
    //
    view.clearOverlayPlane();
    view.endOverlayDrawing();
    view.endGL();

The user has released the mouse so this code cleans up the OpenGL 
drawing.

    helixTool * cmd = (helixTool*)newToolCommand();
    cmd->setPitch( height/NumCVs );
    cmd->setRadius( radius );
    cmd->setNumCVs( numCV );
    cmd->setUpsideDown( upDown );
    cmd->redoIt();
API guide 

58



3 | Command plug-ins

Developer > MPxToolCommand
    cmd->finalize();

This code creates the actual helixTool command, by calling the 
helixTool::creator method that you will register later, sets the radius and 
pitch, and then calls the redoIt() method to generate the data. As a last 
step, the finalize() method is called to ensure that this command is written 
out to the journal file. 

    return MS::kSuccess;
}

MStatus helixContext::doEnterRegion( MEvent & )
{
    return setHelpString( helpString );
}

void helixContex::getClassName( MString &name ) const
{
    name.set("helix");
}

The next four methods are used in the interaction between the context and 
the contextCommand’s edit and query methods. These will be called by 
the tool property sheet for the context. The MToolsInfo::setDirtyFlag() 
method alerts the tool property sheet so it can redraw itself with the new 
property values for the context.

void helixContext::setNumCVs( unsigned newNumCVs )
{
    numCV = newNumCVs;
    MToolsInfo::setDirtyFlag(*this);
}

void helixContext::setUpsideDown( bool newUpsideDown )
{
    upDown = newUpsideDown;
    MToolsInfo::setDirtyFlag(*this);
}

unsigned helixContext::numCVs()
{
    return numCV;
}

bool helixContext::upsideDown()
{
    return upDown;
}

API guide

59



3 | Command plug-ins 
Developer > MPxToolCommand
The next class and implementation repeats the code from the 
marqueeTool example. This class is necessary to create instances of the 
tool context.

class helixContextCmd : public MPxContextCommand
{
public:    
                            helixContextCmd();
    virtual MStatus         doEditFlags();
    virtual MStatus         doQueryFlags();
    virtual MPxContext*     makeObj();
    virtual MStatus         appendSyntax();
    static void*            creator();

protected:
    helixContext *          fHelixContext;
};

helixContextCmd::helixContextCmd() {}

MPxContext* helixContextCmd::makeObj()
{
    fHelixContext = new helixContext();
    return fHelixContext;
}

void* helixContextCmd::creator()
{
    return new helixContextCmd;
}

The next two methods handle the argument parsing for the command. 
There are two types of arguments—those which make modifications to the 
properties of a context, and those which query the properties of a context. 

MStatus helixContextCmd::doEditFlags()
{
    MArgParser argData = parser();

    if (argData.isFlagSet(kNumberCVsFlag)) {
        unsigned numCVs;
        status = argData.getFlagArgument(kNumberCVsFlag,

Note Argument parsing is done through the 
MPxContextCommand::parser() method which returns an 
MArgParser. This class is analogous to the MArgDatabase class 
that is used with the MPxCommand class.
API guide 

60



3 | Command plug-ins

Developer > MPxToolCommand
                0, numCVs);
        if (!status) {
            status.perror("numCVs flag parsing failed.");
            return status;
        }
        fHelixContext->setNumCVs(numCVs);
    }

    if (argData.isFlagSet(kUpsideDownFlag)) {
        bool upsideDown;
        status = argData.getFlagArgument(kUpsideDownFlag,
                0, upsideDown);
        if (!status) {
            status.perror("upsideDown flag parsing 
failed.");
            return status;
        }
        fHelixContext->setUpsideDown(upsideDown);
    }
 
    return MS::kSuccess;
}

MStatus helixContextCmd::doQueryFlags()
{
    MArgParser argData = parser();

    if (argData.isFlagSet(kNumberCVsFlag)) {
        setResult((int) fHelixContext->numCVs());
    }
    if (argData.isFlagSet(kUpsideDownFlag)) {
        setResult(fHelixContext->upsideDown());
    }

    return MS::kSuccess;
}

MStatus helixContextCmd::appendSyntax()
{
    MStatus status;

    MSyntax mySyntax = syntax();

    if (MS::kSuccess != mySyntax.addFlag(kNumberCVsFlag,
            kNumberCVsFlagLong, MSyntax::kUnsigned)) {
        return MS::kFailure;
    }

    if (MS::kSuccess != mySyntax.addFlag(kUpsideDownFlag,
            kUpsideDownFlagLong, MSyntax::kBoolean)) {
API guide

61



3 | Command plug-ins 
Developer > MPxToolCommand
        return MS::kFailure;
    }

    return MS::kSuccess;
}

MStatus initializePlugin( MObject obj )
{
    MStatus status;

    MFnPlugin plugin( obj, “Alias”, “1.0”, “Any”);

    // Register the context creation command and the tool
    // command that the helixContext will use.
    // 
    status = plugin.registerContextCommand(
            “helixToolContext”, helixContextCmd::creator,
            “helixToolCmd”, helixTool::creator,
            helixTool::newSyntax);
    if (!status) {
        status.perror(“registerContextCommand”);
        return status;
    }

    return status;
}

The initializePlugin() method registers both the helix command and the 
context via a single register call.

MStatus uninitializePlugin( MObject obj)
{
    MStatus status;
    MFnPlugin plugin( obj );

    // Deregister the tool command and the context
    // creation command.
    //
    status = plugin.deregisterContextCommand(
            “helixToolContext” “helixToolCmd”);
    if (!status) {
        status.perror(“deregisterContextCommand”);
        return status;
    }

    return status;
}

MEL code similar to the marqueeTool example’s is necessary to attach the 
helixTool to the UI.
API guide 

62



4 DAG Hierarchy
Developer Plug-in API

DAG Hierarchy

Overview of the DAG Hierarchy

In Maya, a directed acyclic graph (DAG), defines elements such as the 
position, orientation, and scale of geometry. The DAG is composed of two 
types of DAG nodes, transforms and shapes.

Transform nodes—Maintain transformation information (position, 
rotation, scale, etc.) as well as parenting information. For example, if you 
model a hand, you would like to apply a single transformation to rotate 
the palm and fingers, rather than rotating each individually—in this case 
the palm and fingers would share a common parent transformation node. 

Shape nodes—Reference geometry and do not provide parenting or 
transformation information.

In the simplest case, the DAG describes how an instance of an object is 
constructed from a piece of geometry. For example, when you create a 
sphere, you create both a shape node (the sphere) and a transformation 
node that allows you to specify the sphere’s position, scale, or rotation. 
The transformation node’s shape node is its child.

Nodes

Transform nodes can have multiple child nodes—the child nodes are 
“grouped” beneath the transformation node. Node grouping allows them 
to share transformation information and be treated as a unit.

Instancing

Transform nodes and shape nodes can also have multiple parent nodes—
these nodes are “instanced”. Instancing can be useful to reduce the 
amount of geometry for a model. For example, if you model a tree, you 
could create a thousand unique leaves to populate the tree. This would 
make for a very data heavy model, since each leaf would have it’s own 
transformation nodes, shape nodes, and NURBS or polygon data. Instead, 
you can create a single leaf and instance it a thousand times to create a 
thousand identical leaves and position them independently around the 
branches of the tree. This way the shape node and NURBS or polygon 
data is shared.
API guide

63



4 | DAG Hierarchy 
Developer > Transforms and shapes
This DAG hierarchy has three transform nodes (Transform1, Transform2, 
Transform3) and one shape node (Leaf). This DAG hierarchy would cause 
two leaves to be displayed since Transform3 and the Leaf is instanced (it 
has two parents).

Transforms and shapes

A DAG node is simply an entity in the DAG. It may have and know about 
parents, siblings, and children, but it does not necessarily know about 
transformations or geometry. Transforms and Shapes are two types of 
nodes derived from a DAG node. A transform node is a type of DAG 
node which handles transformations (translate, rotate, and scale), while a 
shape node is a type of DAG node which handles geometry. A shape node 
does not maintain transformation information, and geometry cannot be 
hung below a transform node. This means that any piece of geometry 
requires two DAG nodes above it, a shape node immediately above it, and 
a transform node above the shape node.

For example:

MFnDagNode—has methods for determining the number of parents, and 
the parents of a node. 

MFnTransform—is the function set for operating on transform nodes 
(derived from MFnDagNode) and has methods to get and set 
transformation, such as rotation, translation, or scale. 

MFnNurbsSurface—is one of many types of function sets which operate 
on the many types of shape nodes (also derived from MFnDagNode, but 
not derived from MFnTransform) and has methods to get and set the CVs 
of the surface, etc.

DAG paths

A path through the DAG is a set of nodes which uniquely identifies the 
location of a particular node or instance of a node in the graph. The path 
represents a graph ancestry beginning with the root node of the graph and 
containing, in succession, a particular child of the root node followed by a 

Transform 3

Leaf

Transform1 Transform 2
API guide 

64



4 | DAG Hierarchy

Developer > DAG paths
particular child of this child, etc., down to the node identified by the path. 
For instanced nodes, there are multiple paths which lead from the root 
node to the instanced node, one path for each instance. Paths are 
displayed in Maya by naming each node in the path starting with the root 
node and separated by the vertical line character, “|”.

DAG paths and worldspace operations in the API

It is important to note that because the DAG path represents how a shape 
is inserted into the scene, a DAG path must be used when attempting any 
world space operation via the API. If one simply gets an “MObject” 
handle to a node and asks for the world space position of a component of 
that node, the API operation will fail. This is because without the DAG 
path Maya has no idea where in world space the object is. In fact, in the 
case of instanced objects, there can be multiple answers to that question, 
and only the DAG path will uniquely identify the particular instance of 
the node. Almost all of the classes that contains methods that will return 
an MObject for a node also contain methods that will return DAG paths so 
you can get an MDagPath handle to the desired node. As well, all the MFn 
classes can be constructed with either an MObject or an MDagPath. If an 
MObject is used, all world space operations attempted using methods of 
the MFn class will fail, if an MDagPath is used, they will succeed.

Adding or removing nodes from the representation

The MDagPath class builds a representation of a path and lets you 
examine and modify this representation. The MDagPath represents paths 
as a stack of nodes with the root node being on the bottom of the stack. 
The push() and pop() methods allow nodes along the path to be added or 
removed from the representation. 

Inclusive and exclusive matrices

Since the nodes in a path exist at different levels of the DAG hierarchy, 
there is a different transformation that may have accumulated at each 
node in the path. The MDagPath class allows these transformations to be 
returned using the inclusiveMatrix() and exclusiveMatrix() classes. 

Note These methods do not add and remove nodes from the actual 
DAG but only from the representation constructed by the 
MDagPath class. The comparison and assignment operators 
operate on the representations constructed by the MDagPath 
class and not on the graph itself. So assigning one path to 
another will not modify the graph but only the contents of the 
destination MDagPath instance. 
API guide

65



4 | DAG Hierarchy 
Developer > DAG paths
• An “inclusive matrix” represents the accumulated transformation to 
the last node stored in the DAG path taking into account the last node. 

• An “exclusive matrix” represents the same accumulation with the 
exception that it does not take into account any transformation from 
the last node. 

For example, if a path is defined as: 

|RootTransform|Transform1|Transform2|Shape

the inclusive matrix down to Transform2 would be the accumulation of 
RootTransform, Transform1, and Transform2. The exclusive matrix would 
contain the accumulation of only RootTransform and Transform1.

Why add the shape node to a DAG path

In Maya, selection at the object level results in the selection of the 
transform node that is the parent node of the shape actually selected. 
When querying the selection using MGlobal::getActiveSelectionList(), the 
MDagPath returned to the caller only specifies the path to this transform 
and not down to the actual shape that was picked on the screen. A 
convenience method on MDagPath called extendToShape() can be called 
to add the shape node below the last transform to the path.

The valid function sets applicable to a particular MDagPath are 
determined by the last node on the path. If the last node is a transform 
node, then the function sets that can operate on transform nodes can be 
applied to the MDagPath instance. If a shape node is the last node of the 
path, then the applicable function sets for the MDagPath instance are 
those sets which can operate on the shape.

Unique Names

The use of the DAG path allows for object names to be reused. Object 
names can be reused as long as the same name does not appear on more 
than one DAG node with a common parent.

This is legal.

Fred

Barney George

This is illegal.

Fred

George George
API guide 

66



4 | DAG Hierarchy

Developer > Generalized instancing
Generalized instancing

Maya supports generalized instancing. Generalized instancing means 
nodes which instance another node do not have to be siblings.

Node 2 and Node 4 are not siblings yet they each instance Node 3. More 
complex hierarchies can be created, so long as a reference is not made 
back up the hierarchy. Doing so could create a cycle which would break 
the acyclic nature of the DAG (remember that a DAG is a directed acyclic 
graph).

Transforms with multiple shapes

A transform node can have any number of transform nodes as children. In 
general, a transform node can only have a single shape node as a child, 
and when viewing the DAG through an interactive window this will 
always be the case. However when examining the DAG through the API 
you will find that transforms may have multiple shape nodes as children. 
This happens when the original shape under the transform has been 
modified by the dependency graph. To maintain the transformations on 
the result of the dependency graph, the result is placed under the same 
transform as the original node. The new node would have the same DAG 
transforms applied as the original, but would be modified in some way 
(for example, its CVs could have been moved). When this happens, only 
the final product is visible in an interactive window, and the original 
nodes are historical.

Node 1

Node 2

Node 2

Node 3

Node 4

Shape 1a Shape 1Move CV

Transform1
API guide

67



4 | DAG Hierarchy 
Developer > Transforms with multiple shapes
|Transform1|Shape1 is the original historical object while 
|Transform1|Shape1a is the actual object visible in any interactive 
window. |Transform1|Shape1 is also called an intermediate object.This is 
important later when working with the dependency graph. 

The Underworld

The “underworld” is a name given to the parameter space of a shape 
node, such as the UV space of a NURBS surface. Nodes and whole 
subgraphs of nodes may be defined in this underworld space. 

For example, the transform and shape nodes that define a curve on a 
NURBS surface. The control points defining the curve are in the UV space 
of the surface. The paths that uniquely identify the nodes of an 
underworld are rooted inside the shape node which defines the parameter 
space of the underworld. The first node of an underworld path is the first 
node that is defined in the parameter space of the containing shape. Most 
likely this first node is a transform node. 

Underworld paths are specified in Maya like regular paths, using the “|” 
character to separate the node names in the path. The extra nomenclature 
is the use of the “->” characters to specify the transition between the shape 
node and the root node of the underworld path. 

For example, the complete specification of a path to a curve on surface 
node of a NURBS surface could be listed as 
|SurfaceTransform|NURBSSurface-
>UnderworldTransform|CurvesShape. Underworlds may be recursively 
defined on the shapes in the underworld as long as the shapes have some 
parameter space which defines them.

The MDagPath contains methods for accessing the different paths from a 
shape down through its underworld. The methods 
MDagPath::pathCount() method returns the total number of paths 
represented by the given MDagPath instance. In the above curve on 
surface example, if the MDagPath instance represents the path down to 
the curve shape in the underworld, the pathCount would be 2. The 
MDagPath::getPath() method returns a path, either in the underworld or 
in the 3D space. Path 0 always specifies the 3D path. Path 1 specifies the 

WARNING If you use the MDagPath::extendToShape() method on a path 
whose last node is a transform that contains multiple shapes, the 
first child shape node will be the node that is added onto the end 
of the path. If this is not the desired node, it is recommended that 
you not use the extendToShape() method. Instead, use the 
MDagPath::child() and MDagPath::childCount() methods to help 
examine and access the desired shape node.
API guide 

68



4 | DAG Hierarchy

Developer > DAG walking example
path in the underworld directly inside the shape at the end of path 0. Path 
2 specifies the path in the underworld inside the shape at the end of path 
1, and so forth.

DAG walking example

The following example is the scanDagSyntaxCmd example. It 
demonstrates iterating through the DAG in either a depth first, or a 
breadth first manner. This code makes a good basis for many DAG 
walking plug-ins, in particular those written as file translators.

As with previous examples, the list of include files is omitted for brevity. 
See the scanDagSyntaxCmd.cpp file in devkit/plug-ins for the complete 
example.

class scanDagSyntax: public MPxCommand
{
public:
                    scanDagSyntax() {};
    virtual         ~scanDagSyntax();
    static void*    creator();
    static MSyntax  newSyntax();
    virtual MStatus doIt( const MArgList& );

This is a simple example so the undoIt() and redoIt() methods are not 
implemented. 
private:
    MStatus         parseArgs( const MArgList& args,
                               MItDag::TraversalType& traversalType,
                               MFn::Type& filter, bool & quiet);
    MStatus         doScan( const MItDag::TraversalType traversalType,
                            MFn::Type filter, bool quiet);
    void            printTransformData(const MDagPath& dagPath, bool quiet);
};

scanDagSyntax::~scanDagSyntax() {}

void* scanDagSyntax::creator()
{
    return new scanDagSyntax;
}

    MSyntax scanDagSyntax::newSyntax()
{
    MSyntax syntax;

    syntax.addFlag(kBreadthFlag, kBreadthFlagLong);
    syntax.addFlag(kDepthFlag, kDepthFlagLong);
    syntax.addFlag(kCameraFlag, kCameraFlagLong);
    syntax.addFlag(kLightFlag, kLightFlagLong);
API guide

69



4 | DAG Hierarchy 
Developer > DAG walking example
    syntax.addFlag(kNurbsSurfaceFlag, kNurbsSurfaceFlagLong);
    syntax.addFlag(kQuietFlag, kQuietFlagLong);

    return syntax;
}

MStatus scanDagSyntax::doIt( const MArgList& args )
{
    MItDag::TraversalType   traversalType = MItDag::kDepthFirst;
    MFn::Type               filter        = MFn::kInvalid;
    MStatus                 status;
    bool                    quiet = false;

The DAG iterator being used later can be set to only iterate across objects 
of a particular type (for example cameras). If the filter mode is set to 
MFn::kInvalid, no filtering will be done and all DAG nodes will be 
iterated across.

    status = parseArgs ( args, traversalType, filter, quiet );
    if (!status)
        return status;

    return doScan( traversalType, filter, quiet);
};
The doIt() method is simply calling a few auxiliary methods which do the real 
work.
MStatus scanDagSyntax::parseArgs( const MArgList& args,
                                  MItDag::TraversalType& traversalType,
                                  MFn::Type& filter,
                                  bool & quiet)
{
    MStatus         stat;
    MArgDatabase    argData(syntax(), args);

    MString         arg;

    if (argData.isFlagSet(kBreadthFlag))
        traversalType = MItDag::kBreadthFirst;
    else if (argData.isFlagSet(kDepthFlag))
        traversalType = MItDag::kDepthFirst;

    if (argData.isFlagSet(kCameraFlag))
        filter = MFn::kCamera;
    else if (argData.isFlagSet(kLightFlag))
        filter = MFn::kLight;
    else if (argData.isFlagSet(kNurbsSurfaceFlag))
        filter = MFn::kNurbsSurface;
        
    if (argData.isFlagSet(kQuietFlag))
API guide 

70



4 | DAG Hierarchy

Developer > DAG walking example
        quiet = true;
        
    return stat;
}

The DAG iterator can either iterate across the DAG depth first or breadth 
first. This simple example only filters on cameras, lights, and NURBS 
surfaces, but it is possible to iterate across any type in MFn::Type.

MStatus scanDagSyntax::doScan( const MItDag::TraversalType traversalType,
                               MFn::Type filter,
                               bool quiet)
{ 

This method will do all the real work of this command. It uses the 
traversal type (depth or breadth first) and the filter type to initialize an 
MItDag (a DAG iterator) to walk across the DAG.

    MStatus status;

    MItDag dagIterator( traversalType, filter, &status);

The DAG iterator is initialized looking at the DAG. It will walk the DAG 
downwards.

    if ( !status) {
        status.perror("MItDag constructor");
        return status;
    }

    //  Scan the entire DAG and output the name and depth of each node

    if (traversalType == MItDag::kBreadthFirst)
        if (!quiet)
            cout << endl << "Starting Breadth First scan of the Dag";
    else
        if (!quiet)
            cout << endl << "Starting Depth First scan of the Dag";

Breadth first walking of the DAG means that siblings will be visited 
before children, while depth first means that children will be visited 
before siblings.

    switch (filter) {
        case MFn::kCamera:
            if (!quiet)
                cout << ": Filtering for Cameras\n";
            break;
        case MFn::kLight:
            if (!quiet)
                cout << ": Filtering for Lights\n";
            break;
API guide

71



4 | DAG Hierarchy 
Developer > DAG walking example
        case MFn::kNurbsSurface:
            if (!quiet)
                cout << ": Filtering for Nurbs Surfaces\n";
            break;
        default:
            cout << endl;
    }
    
    int objectCount = 0;
    for ( ; !dagIterator.isDone(); dagIterator.next() ) {

        MDagPath dagPath;

        status = dagIterator.getPath(dagPath);
        if ( !status ) {
            status.perror("MItDag::getPath");
            continue;
        }

MItDag::getPath() gets the reference to the object that the iterator is 
currently on. This DAG path can then be used in a function set to operate 
on the object. In general it is not a good idea to rearrange the DAG from 
with an iterator.

        MFnDagNode dagNode(dagPath, &status);
        if ( !status ) {
            status.perror("MFnDagNode constructor");
            continue;
        }

        if (!quiet)
            cout << dagNode.name() << ": " << dagNode.typeName() << endl;

        if (!quiet)
            cout << "  dagPath: " << dagPath.fullPathName() << endl;

        objectCount += 1;
        if (dagPath.hasFn(MFn::kCamera)) {

This determines if the object the iterator is currently visiting is a camera or 
not, and if it is, the following code outputs camera specific information.

            MFnCamera camera (dagPath, &status);
            if ( !status ) {
                status.perror("MFnCamera constructor");
                continue;
            }

            // Get the translation/rotation/scale data
            printTransformData(dagPath, quiet);
API guide 

72



4 | DAG Hierarchy

Developer > DAG walking example
            // Extract some interesting Camera data
            if (!quiet)
            {
                cout << "  eyePoint: "
                     << camera.eyePoint(MSpace::kWorld) << endl;
                cout << "  upDirection: "
                     << camera.upDirection(MSpace::kWorld) << endl;
                cout << "  viewDirection: "
                     << camera.viewDirection(MSpace::kWorld) << endl;
                cout << "  aspectRatio: " << camera.aspectRatio() << endl;
                cout << "  horizontalFilmAperture: "
                     << camera.horizontalFilmAperture() << endl;
                cout << "  verticalFilmAperture: "
                     << camera.verticalFilmAperture() << endl;
            }
        } else if (dagPath.hasFn(MFn::kLight)) {

If the object is a light, this code outputs light specific information.

            MFnLight light (dagPath, &status);
            if ( !status ) {
                status.perror("MFnLight constructor");
                continue;
            }

            // Get the translation/rotation/scale data
            printTransformData(dagPath, quiet);

            // Extract some interesting Light data
            MColor color;

            color = light.color();
            if (!quiet)
            {
                cout << "  color: ["
                     << color.r << ", "
                     << color.g << ", "
                     << color.b << "]\n";
            }
            color = light.shadowColor();
            if (!quiet)
            {
                cout << "  shadowColor: ["
                     << color.r << ", "
                     << color.g << ", "
                     << color.b << "]\n";

                cout << "  intensity: " << light.intensity() << endl;
            }
        } else if (dagPath.hasFn(MFn::kNurbsSurface)) {
API guide

73



4 | DAG Hierarchy 
Developer > DAG walking example
Finally, if the object is a NURBS surface, surface specific information is 
output.
            MFnNurbsSurface surface (dagPath, &status);
            if ( !status ) {
                status.perror("MFnNurbsSurface constructor");
                continue;
            }

            // Get the translation/rotation/scale data
            printTransformData(dagPath, quiet);

            // Extract some interesting Surface data
            if (!quiet)
            {
                cout << "  numCVs: "
                     << surface.numCVsInU()
                     << " * "
                     << surface.numCVsInV()
                     << endl;
                cout << "  numKnots: "
                     << surface.numKnotsInU()
                     << " * "
                     << surface.numKnotsInV()
                     << endl;
                cout << "  numSpans: "
                     << surface.numSpansInU()
                     << " * "
                     << surface.numSpansInV()
                     << endl;
            }
        } else {

For any other type of DAG node, just the transformation information is 
printed. 

            // Get the translation/rotation/scale data
            printTransformData(dagPath, quiet);
        }
    }

    if (!quiet)
    {
        cout.flush();
    }
    setResult(objectCount);
    return MS::kSuccess;
}

void scanDagSyntax::printTransformData(const MDagPath& dagPath, bool quiet)
{

API guide 

74



4 | DAG Hierarchy

Developer > DAG walking example
This method simply determines the transformation information on the DAG node 
and prints it out.
    MStatus     status;
    MObject     transformNode = dagPath.transform(&status);
    // This node has no transform - i.e., it’s the world node
    if (!status && status.statusCode () == MStatus::kInvalidParameter)
        return;
    MFnDagNode  transform (transformNode, &status);
    if (!status) {
        status.perror("MFnDagNode constructor");
        return;
    }
    MTransformationMatrix   matrix (transform.transformationMatrix());

    if (!quiet)
    {
        cout << "  translation: " << matrix.translation(MSpace::kWorld)
             << endl;
    }
    double                                  threeDoubles[3];
    MTransformationMatrix::RotationOrder    rOrder;

    matrix.getRotation (threeDoubles, rOrder, MSpace::kWorld);
    if (!quiet)
    {
        cout << "  rotation: ["
             << threeDoubles[0] << ", "
             << threeDoubles[1] << ", "
             << threeDoubles[2] << "]\n";
    }
    matrix.getScale (threeDoubles, MSpace::kWorld);
    if (!quiet)
    {
        cout << "  scale: ["
             << threeDoubles[0] << ", "
             << threeDoubles[1] << ", "
             << threeDoubles[2] << "]\n";
    }
}

MStatus initializePlugin( MObject obj )
{ 
    MStatus status;

    MFnPlugin plugin ( obj, "Alias - Example", "2.0", "Any" );
    status = plugin.registerCommand( "scanDagSyntax", 
                                     scanDagSyntax::creator,
                                     scanDagSyntax::newSyntax ); 
    
    return status;
API guide

75



4 | DAG Hierarchy 
Developer > DAG walking example
}

MStatus uninitializePlugin( MObject obj )
{
    MStatus status;

    MFnPlugin plugin( obj );
    status = plugin.deregisterCommand( "scanDagSyntax" );

    return status;
}

The plug-in finishes with the usual initializePlugin and uninitializePlugin 
methods.

This plug-in can easily be modified for use as a file translator, or any other 
type of plug-in which needs to visit the DAG nodes in the model.
API guide 

76



5 Dependency graph 
plug-ins
Developer Plug-in API

Dependency graph plug-ins

Overview of dependency graph plug-ins

The dependency graph is the heart of Maya. It is used for animation and 
construction history. You can add new nodes to this graph to allow for 
entirely new operations.

Parent class descriptions

Twelve different parent classes are defined from which you can subclass a 
new node. Each parent class specializes in a different functional area of 
Maya. The parent classes are:

Name Description

MPxNode Allows the creation of a new dependency node. This is 
derived from the most basic DG node in Maya and has no 
inherited behavior.

MPxLocatorNode Allows the creation of a new locator node. This is a DAG 
object that does not render, but which is allowed to draw 
into the 3d views.

MPxIkSolverNode Allows the creation of a new type of IK solver.

MPxDeformerNode Allows the creation of a new deformer.

MPxFieldNode Allows the creation of a new type of dynamic field.

MPxEmitterNode Allows the creation of a new type of dynamic emitter.

MPxSpringNode Allows the creation of a new type of dynamic spring.

MPxManipContainer Allows the creation of a new type of manipulator.

MPxSurfaceShape Allows the creation of a new DAG object. This is often 
used to create a new type of shape (i.e. something other 
than a NURBS or mesh surface), but can also be used in 
many other ways.
API guide

77



5 | Dependency graph plug-ins 
Developer > The basics
The basics

The following is a simple user-defined dependency graph node subclasses 
from the MPxNode parent class which takes a floating point number as 
input, takes the sine of it, and outputs the result.

#include <string.h>
#include <iostream.h>
#include <math.h>

#include <maya/MString.h> 
#include <maya/MFnPlugin.h>

This is still a plug-in so you still need MFnPlugin.h. However, you use a 
different method to register a node than a command.

#include <maya/MPxNode.h> 
#include <maya/MTypeId.h> 
#include <maya/MPlug.h>
#include <maya/MDataBlock.h>
#include <maya/MDataHandle.h>

These header files are used by most plug-in dependency graph nodes.

#include <maya/MFnNumericAttribute.h>

There are a number of different types of attributes (which you will be 
introduced to) and the ones you need are dependent on the type of node 
you write. For this example, only numeric data is used.

class sine : public MPxNode
{

User-defined dependency graph nodes are derived from the MPxNode 
class.

public:
                    sine();

constructor

MPxObjectSet Allows for the creation of a new type of set.

MPxHwShaderNode Allows the creation of a new hardware shader.

MPxTransform Allows the creation of new types of transformation 
matricies.

Name Description
API guide 

78



5 | Dependency graph plug-ins

Developer > The basics
The constructor for the node is called whenever an instance of this node is 
created. This can either be when the createNode command is called, the 
MFnDependencyNode::create() method is invoked, etc.

    virtual         ~sine();

destructor

The destructor is only called when the node is truly deleted. Because of 
the undo queue in Maya, deleting the node does not actually cause the 
node’s destructor to be called, so if the deletion is undone, the node can be 
returned without recreating it. Generally, a deleted node’s destructor is 
only called when the undo queue is flushed.

    virtual MStatus        compute( const MPlug& plug,
                                    MDataBlock& data );

compute() method

The compute() method is the brains of a node. It does the actual work of 
the node using the inputs on the node to generate its outputs.

    static  void*        creator();

creator() method

The creator() method serves the same purpose as the creator method on 
commands. It allows Maya to instantiate instances of this node. It is called 
every time a new instance of the node is requested by either the 
createNode command or the MFnDependencyNode::create() method. 

    static  MStatus      initialize();

The initialize() method is called by the registration mechanism for 
dependency nodes. As a result it is called once immediately after a plug-in 
containing a user-defined node is loaded. It is used to define the inputs 
and outputs of the node (for instance, its attributes). 

public:
    static  MObject input;
    static  MObject output;

These two MObjects are the attributes of the sine node. You are free to use 
any names for a node’s attributes—input and output are just used here for 
clarity.

    static  MTypeId id;

Each node requires a unique identifier which is used by 
MFnDependencyNode::create() to identify which node to create, and by 
the Maya file format. 
API guide

79



5 | Dependency graph plug-ins 
Developer > The basics
For local testing of nodes you can use any identifier between 0x00000000 
and 0x0007ffff, but for any node that you plan to use for more permanent 
purposes, you should get a universally unique id from Alias Technical 
Support. You will be assigned a unique range that you can manage on 
your own.

};

MTypeId     sine::id( 0x80000 );

This initializes the node’s identifier to a unique tag. These tags must be 
unique between all nodes (the tag is used by the file format to recreate the 
node) and will be assigned to API users by Alias.

MObject     sine::input;        
MObject     sine::output;       

The attributes of the node are initialized to NULL values.

void* sine::creator() {
    return new sine;
}

As mentioned earlier, the creator() method simply returns new instances 
of this node. In more complex situations where several nodes may need to 
be interconnected, it is possible to define a single creator for the connected 
nodes and have this creator allocate and connect all the nodes together.

MStatus sine::initialize() {

The initialize method is called only once when the node is first registered 
with Maya. In this method you define the attributes of the node, what 
data comes in and goes out of the node that other nodes may want to 
connect to.

    MFnNumericAttribute nAttr;

This example only uses numeric data so all it’s attributes are numeric and 
therefore only MFnNumericAttribute is necessary.

    output = nAttr.create( “output”, “out”,
            MFnNumericData::kFloat, 0.0 );
    nAttr.setWritable(false);
    nAttr.setStorable(false);

The first of these three lines defines the output attribute for the sine node. 
When defining an attribute, you must specify a long name (four characters 
or longer) and a short name (no more than three characters) for the 
attribute. These names are used in MEL scripts and UI editors to identify 
particular attributes. While it is not necessary, it is generally a good idea if 
the long name is the same as the C++ identifier for the attribute—in this 
example they are both called “output”.
API guide 

80



5 | Dependency graph plug-ins

Developer > The basics
The create method also indicates the type of the attribute, in this case a 
float (MFnNumericData::kFloat) and sets its default value to zero. The 
names of attributes need only be unique within a node, different nodes 
may have similarly named attributes. 

The next two lines set specific characteristics of this attribute. Since this is 
the output of the sine node, it is not writable by other nodes. That means it 
is not possible for the output attribute of another node to be connected to 
this attribute. Also, because this is an output, it is not necessary to store 
the output when writing a file, since the output can be generated from the 
inputs. (It wouldn’t cause problems if you stored an output—it would just 
waste space.)

When instantiating a new node, Maya sets the following characteristics to 
true:

• readable (can it be used as an output?)

• writable (can it be used as an input?)

• connectable (can another attribute connect to it?)

• storable (can it be stored to a file?) 

• settable (can its value be set?)

and the following characteristics to false:

• multi (an array)

• keyable (can be keyframed)

• indeterminant (attribute may or may not be used -- rendering related)

• hidden (not visible in the Attribute Editor)

    input = nAttr.create( “input”, “in”,
            MFnNumericData::kFloat, 0.0 );
    nAttr.setStorable(true);

The initialization of the input attribute is similar to the output attribute, 
but since the value of the input cannot be calculated by the node, it must 
be stored when the node is stored.

    addAttribute( input );
    attributeAffects( input, output );

The input attribute is added as an attribute to the sine node. The 
attributeAffects() method is used to indicate when the input attribute 
affects the output attribute. This knowledge allows Maya to optimize 
dependencies in the graph in more complex nodes where there may be 
several inputs and outputs, but not all the inputs affect all the outputs.

    addAttribute( output );
API guide

81



5 | Dependency graph plug-ins 
Developer > The basics
The output attribute is added to the sine node. Since the output attribute 
is generated it does not affect the input attribute so no attributeAffects() 
method is required.

    return MS::kSuccess;

Success is returned to indicate to Maya that the node was successfully 
initialized. A failure return would stop the initialization, and since the 
initialization method is called only once, the node would never be usable 
in the session. Failure returns should be made whenever a resource is 
unavailable that the node requires.

}

sine::sine()  {}
sine::~sine() {}

Since this is a very simple node, the constructor and destructor do not do 
anything.

MStatus sine::compute( const MPlug& plug, MDataBlock& data ) 
{

The compute() method is the brains of a dependency graph node doing all 
the actual work of the node. It takes two arguments. The first is a 
reference to the plug for which a compute is being requested, and the 
second is the data block for the node. Plugs and data blocks will be 
described in more detail in a later section.

    MStatus returnStatus;
 
    if( plug == output )
    {

plugs

A plug can be thought of as the recomputed attribute. This test checks 
which output attribute the recompute is being requested for. 

In this simple example, it will only be the output attribute, but in more 
complex nodes it could be any of the outputs. You should always test that 
the plug represents a known attribute. For example, someone may attach a 
dynamic attribute to your node that might have connections. This could 
cause your compute method to be called when none of your inputs have 
changed.

        MDataHandle inputData = data.inputValue( input,
                &returnStatus );

data blocks
API guide 

82



5 | Dependency graph plug-ins

Developer > The basics
The data block contains all the data for this instance of the node. For 
efficiency this data is kept as a single block, so the data handles are used 
to reference a piece of the block. In this case the data handle is being set to 
reference the input attribute.

        if( returnStatus != MS::kSuccess )
            cerr << “ERROR getting data” << endl;
        else
        {
            float result = sin( inputData.asFloat() );

The data is retrieved from the data handle through the as*() methods on 
MFnDataHandle. It is vital that the as*() method matches the declared 
type of the attribute. The input attribute was declared as 
MFnNumericAttribute::kFloat so the data must be retrieved with asFloat(). 
Mixing types and retrieve methods will cause fatal errors. For example 
declaring an attribute as MFnNumericAttribute::kDouble and retrieving it 
with asFloat() will result in a fatal error.

            MDataHandle outputHandle = data.outputValue(
                    output );

A new data handle is allocated to be used to reference the piece of the data 
block for the output attribute.

            outputHandle.set( result );

The output attribute is then assigned the result of the calculation.

            data.setClean(plug);

The plug in the data block which caused the recompute is marked clean 
indicating that it has been newly recomputed.

        }
    }

    return MS::kSuccess;
}

A successful status return indicates that the computation completed 
properly.

MStatus initializePlugin( MObject obj ) { 
    MStatus status;
    MFnPlugin plugin( obj, “My plug-in”, “1.0”, “Any”);
    status = plugin.registerNode( “sine”, sine::id, 
sine::creator, sine::initialize );

The plug-in requires an initializePlugin() and an uninitializePlugin() as 
with command plug-ins, but rather than using registerCommand(), 
registerNode() is used to add the node to Maya’s database of nodes. The 
API guide

83



5 | Dependency graph plug-ins 
Developer > Dependency Graph (DG) nodes
initialize method for the node is called as a result of the call to 
registerNode. If the initialize method returns a failure code, registerNode 
will also fail and your node will fail to load.

    return status;
}

MStatus uninitializePlugin( MObject obj) {
    MStatus status;
    MFnPlugin plugin( obj );
    status = plugin.deregisterNode( sine::id );

    return status;
}

And that’s a simple dependency graph node.

Dependency Graph (DG) nodes

The dependency graph (DG) is a collection of entities connected together. 
Unlike the DAG, these connections can be cyclic, and do not represent a 
parenting relationship. Instead, the connections in the graph allow data to 
move from one entity in the graph to another. The entities in the graph 
which accept and output data are called dependency graph nodes.

Dependency graph nodes are the part of a dependency graph which 
perform computations. A node takes in a set of input data (supplied by 
connections to other nodes, or which are simply supplied to the node) and 
use them to create a set of output data. Dependency graph nodes are used 
for almost everything in Maya such as model creation, deformation, 
animation, simulation, and audio processing.

Most objects in Maya are dependency graph nodes, or networks of nodes 
(several nodes connected together). For example, DAG nodes are 
dependency graph nodes, and shaders are networks of nodes.

When dependency graph nodes are connected together they can affect 
DAG nodes and thus affect what is rendered.

Scale x

Scale y

Scale z

output Transform 3

Sphere

Transform1 Transform 2

Time
API guide 

84



5 | Dependency graph plug-ins

Developer > Dependency Graph (DG) nodes
This illustration combines a DAG hierarchy with a dependency graph. 
Transform1, Transform2, Transform3, and Sphere are all DAG nodes (and 
also dependency graph nodes) while Time is just a dependency graph 
node.

The x, y, and z scale parameters of Transform3 are driven by time. 
Alternatively, you can think of the output of Time being plugged into the 
x, y, and z scale connections of Transform3. When the animation is played 
back, the two instances of the sphere increase in size.

The data which flows through the graph can be as simple as numbers, or 
as complicated as a surface. It can also be a completely user-defined 
object.

The dependency graph consists of a very complex architecture, and a 
complete explanation of how it works would require a separate manual. A 
brief explanation is provided instead.

As noted before, the dependency graph is a directed graph, the edges of 
the graph connect plugs on different nodes. Data is sent along these edges, 
and includes basic types such as numbers, vectors, and matrices, and 
complex types such as curves, surfaces, and user defined types.

As part of the definition of Maya nodes, you are required to specify which 
input attributes affect which output attributes (via the API this is done 
with the MPxNode::attributeAffects method). 

When an attribute of a node is changed, the dependency graph checks to 
see if that attribute affects any output. If it does, each of those outputs is 
marked dirty, meaning that its cached value is stale and needs to be 
recomputed. Then for each of those output attributes, the dependency 
graph checks to see if they are the source for a connection. If so, then the 
connection is followed, and the destination attribute is marked dirty also. 
This process recurs, and at the end all attributes of nodes in the graph 
which need to be recomputed are marked dirty. It is important to note 
that at this time no attributes have been recomputed, instead the state has 
just been updated so we know which data is no longer valid. The 
evaluation and re-computation of those invalid attributes occurs as part of 
a separate step.

Certain events cause the dependency graph to re-evaluate itself, examples 
being screen refresh, and animation playback. During a refresh for 
example, the system will walk down the DAG and for each DAG node 
check to see whether it needs to be re-evaluated (by checking if any plugs 
on it are dirty), if so, the compute method of the node affecting the plug 
will be called. This compute method may be dependent on plugs which 
may also be dirty, so the affecting nodes’ compute methods would also be 
called, and in this way the pertinent parts of the DG will be re-evaluated, 
but only those parts that require re-evaluation.
API guide

85



5 | Dependency graph plug-ins 
Developer > Dependency Graph (DG) nodes
One optimization is that the DG does not re-evaluate the graph unless it 
needs to. For example, imagine a revolved surface where there are three 
nodes, a curve DAG node used as input to the second node, a node which 
revolves the curve and generates a surface, which is the output to the 
third node, a DAG node which puts the surface into the DAG. If the input 
curve was modified, the surface would not be regenerated immediately, it 
may not happen until the next screen refresh. To make sure that the 
surface does eventually get rebuilt, modifying the curve would cause all 
plugs connected to the curve’s output plug to be marked dirty, hence the 
input to the revolve node would be marked dirty (the curve’s output plug 
itself would not be marked dirty since it has just been recomputed). When 
declaring attributes it’s necessary to indicate what attributes affect each 
other, so in the revolve node, the output attribute is dependent on the 
input attribute, then marking the input attribute dirty causes the output 
attribute to be marked dirty. The output of the revolve node is connected 
to the surface node, marking the revolve node’s output dirty marks the 
surface as being dirty. So, when the DAG is walked during a screen 
refresh, since the surface is marked dirty, everything that it is dependent 
on which has also been marked dirty needs to be re-evaluated.

Re-evaluation stops at the first node which doesn’t have any dirty inputs. 
For example if the number of degrees to revolve a curve was changed but 
the curve itself was not, then rebuilding the revolved surface would cause 
the revolve node to be recomputed, but the curve would not be affected.

This is a high level description, the actual implementation provides a 
great deal of intelligence so that unnecessary evaluations are avoided.

The data flowing through the graph is analogous to water flowing 
through pipes. The pipes themselves are the connections but unless they 
have data to redirect and modify they are not actually doing anything.

Extending this analogy, the nodes are like taps, showers, fountains, WCs, 
springs, and water piks. They all do something with the water in their 
own unique way but they must have water to operate.

An interesting side effect of using the DG is that it can make it difficult to 
directly affect an object.

For example, consider the sphere in the above figure. If no DG node is 
connected to Transform3 to affect the sphere’s scale, any values set 
through the UI or API will be the new scale. However, if as in the figure 
Time affects the scale of the sphere, the effect would be different when 
Transform3’s scale is additionally modified through the UI or API. If you 
set the scale it would override the scale being set by Time only until the 
next re-evaluation of the dependency graph, when the scale of the sphere 
would again be set by Time and the value you set through the UI or API 
would be lost.
API guide 

86



5 | Dependency graph plug-ins

Developer > Nodes
A more complex example would be a revolved surface. What would 
happen if you tried to move a CV on the generated surface? The CV 
would be moved to its new position only until the DG is re-evaluated, at 
which time the CV would be moved back to the position dictated by the 
revolve node.

However, fine-tuning or “tweaking” a model is a necessary operation for 
building complex models and scenes. So Maya has designed a mechanism 
for handling these tweaks. Mesh shapes have an attribute, pnts, which 
stores local changes made to the mesh vertices. Any upstream connection 
to the mesh shape node which generates a new set of vertices for the mesh 
will not disturb the pnts attribute.   The values in the pnts attribute are 
added to the coordinates of the mesh. For NURBS surfaces and other 
control point based nodes, the controlPoints attribute stores tweak 
information. Maya also has implemented a tweak node which will store 
tweak information for a control point based node. The tweak node is 
placed between the control point based node and an upstream deforming 
node which operates on the control points. The tweak node integrates the 
tweak information in with the deformed control points to generate the 
final set of control points that is then passed to the shape. Refer to the 
manual pages for the tweak node as well as the mesh and NURBS surface 
shape nodes for more information on the attributes which handle tweak 
information.

Nodes

Nodes are the engines which drive the dependency graph. Data comes in 
to nodes, they perform an operation on the data, and they make the new 
data available again. The data comes in through the input plugs 
(instantiations of the nodes attributes) and goes out through the output 
plugs. At no time should a node require any additional external data 
beyond what is available through its plugs.

Attributes and plugs

A node by itself without any means to affect it is not very useful. 
Modification of a node is done through attributes and plugs. 

The attributes of a node define a data interface for the node to the rest of 
the graph. The only data that nodes pass to one another during evaluation 
comes and goes through this interface. They indicate what type of data 
can be accepted, what the name for that data will be (in a long form, or a 
short form), whether the data can be made into a list, and how the data is 
allowed to move in and out of the node. Types of data include simple data 
types such as integer and floating point values, and more complex data 
types such as points, whole polygonal meshes, and NURBS surfaces.
API guide

87



5 | Dependency graph plug-ins 
Developer > Complex Attributes
Plugs are constructs which contain the data for a given attribute. All data 
access for the attribute is done through the plug. The attribute itself only 
defines the data type and name for the attribute. Plugs also are the ports 
for making connections between nodes. 

Attribute names must be unique across the entire node hierarchy, that is, 
across all derived and parent classes, but can be reused between unrelated 
nodes.

Attributes may have a default value assigned to them. This will be the 
value that a plug on that attribute will have if its value has not been set. 
For example, a numeric attribute always has a default value of zero, 
though this can be changed when creating the attribute. Any of the typed 
attributes will have a default value equal to the default value of the data 
type they accept—numeric data defaults to zero, matrix data defaults to 
the identity matrix, etc.

By default, Maya will automatically arrange the attributes of a node in the 
attribute editor. If you desire a special arrangement of the attributes of 
your node, you can write an attribute editor template for the node. This is a 
MEL file on your MAYA_SCRIPT_PATH whose name is of the form 
AE{nodeName}Template.mel that contains a MEL procedure with the name 
AE{nodeName}Template. This procedure contains editorTemplate 
commands that instruct the attribute editor how to alter the default layout 
for the attributes in the node. 

Complex Attributes

By default, attributes have only one associated plug. These are called 
simple attributes. An attribute can also be defined as containing an 
arbitrarily long list of plugs. Attributes of this type are called array 
attributes and the plugs in the array are called elements. Each element 
plug can contain its own value and can have its own connection, and the 
array can be sparse. The data type of each element is defined to be the 
type specified by the attribute. Each element in the array is identified by 
its sparse index into the array. 

Maya’s Hypergraph and Connection Editor display the index of an 
element plug in square brackets ([]) after the attribute name. 

The array of plugs is accessed through another plug called the array plug. 
This plug is returned when asking an attribute for its associated plug (it is 
not recommended to connect this plug to another array plug). Any 

Hypergraph
API guide 

88



5 | Dependency graph plug-ins

Developer > Complex Attributes
attribute can be defined as an array attribute. The specification is made 
using the MFnAttribute::setArray() method and must be called after 
calling the create() method for the attribute.

An important distinction must be made between plugs which are defined 
as array plugs and simple plugs which are defined to contain array data. 
Both constructs can contain multiple values and are referred to as 
“arrays.” 

In the case of a simple array, the data type is defined as an array, such as 
pointArray or intArray (refer to the reference page for the MFnData class 
for a description of the allowable array types). The array is treated as a 
single data item by the plug. When asking for the plug’s value, the whole 
array is returned. If the plug is connected to another plug in the scene, the 
whole array is passed or retrieved along the connection.

For an array attribute, the data type of the attribute is the data type of a 
single value, such as an int or a double. The array comes from the list of 
element plugs, each containing a single data value. Each element is 
independently connectable. The data items are retrieved by accessing each 
plug in the array and retrieving the single values stored at the plugs. So 
there is an advantage and disadvantage to each method. In the single 
attribute case the data are treated as a single unit and can be moved more 
efficiently through the dependency graph network, but there is less 
flexibility in accessing the individual data items. In the array attribute case 
there is great flexibility as each data item can be accessed and connected, 
but there is more overhead for the node and the dependency graph 
network.

Following these rules, one can define an attribute whose data type itself is 
an array. Such an attribute would contain an array plug whose element 
plugs each contained a whole array. Each array could be independently 
accessed and connected. The individual data arrays would each be treated 
as a single block of data when being retrieved and sent along connections.

Compound attribute

An attribute can also be defined as a collection of other attributes. Such an 
attribute is called a compound attribute and the members of its collection 
are called children. Compound attributes are not defined as containing a 
particular data type—they are defined as the set of attributes which make 
up the collection. 

Child attributes

Each child attribute is treated as any other attribute. Child attributes have 
names and data types and can be defined as array attributes or compound 
attributes. A plug is associated with the compound attribute itself and is 
referred to as the parent plug to the members of the compound attribute. 
API guide

89



5 | Dependency graph plug-ins 
Developer > Complex Attributes
Each child attribute also follows the same rules of connectability. A child 
is independently connectable, and if a child attribute is defined as an array 
attribute, its element plugs are also independently connectable. The parent 
plug of a compound attribute can be connected to another node’s 
compound parent plug as long as the child attributes of each plug are 
defined identically. In this case, the data for all of the child plugs is sent 
along the connection. 

If a compound attribute is specified as an array attribute, then each 
element plug of the array will contain children plugs for each of the 
members of the compound attribute. The element plug will be the parent 
plug. 

Compound attributes are created using the MFnCompoundAttribute 
class. This class contains methods for specifying the child attributes which 
will be contained in the compound attribute. Refer to the reference page of 
MFnCompoundAttribute for more information.

Dynamic Attributes

Dynamic attributes are used to attach blind data to a node. Every node 
initially has a set of attributes defined. You may, however, want to add 
new attributes to either a single node or to all nodes of a given type. These 
attributes are called dynamic attributes.

A dynamic attribute is treated much like any other attribute. The main 
difference is that someone is responsible for allocating and deallocating it 
since it will not be statically created.

The following is a code fragment taken from the blindShortDataCmd 
example. It creates a simple dynamic attribute to contain a short which it 
then attaches to a selected dependency graph node. The 
blindComplexDataCmd example demonstrates adding user-defined data 
as a dynamic attribute.

MFnNumericAttribute fnAttr;
const MString fullName( “blindData” );
const MString briefName( “bd” );
double attrDefault = 99;
MObject newAttr = fnAttr.create( fullName, briefName, 
MFnNumericData::kShort,
    attrDefault, &stat );

This creates a new numeric attribute called “blindData” with a short name 
of “bd” which has a default value of 99. When using dynamic attributes as 
blind data the name of the attribute must be unique so that you and 
someone else do not create attributes which conflict with each other.

stat = fnDN.addAttribute(
        newAttr,MFnDependencyNode::kLocalDynamicAttr);
if ( MS::kSuccess != stat ) {
API guide 

90



5 | Dependency graph plug-ins

Developer > Data blocks
    cerr << “Error adding dynamic attribute” << endl;
}

These few lines add the attribute to the selected dependency graph node 
(fnDN is an instance of MFnDependencyNode that was initialized 
elsewhere). Note the use of MFnDependencyNode::kLocalDynamicAttr 
which indicates that this new attribute is a dynamic attribute.

Data blocks

A data block is the storage object for a node’s data. It maintains the 
received and sent data of the node, and is only valid during the execution 
of a node’s compute function. A pointer to the data block must not be 
maintained after the compute function exits.

The dependency graph can be a bottleneck when rendering if care is not 
taken. Since a node can be computed several times per pixel its important 
that it be as efficient as possible.

It may seem that getting at the data being received or sent by a node is a 
little complex at first, but this is necessary to provide a fast mechanism.

Data handles

A data handle is a reference into the data block which references a 
particular piece (attribute or plug) of the node’s data. The type used to get 
or set the data on an attribute or plug must match the type of the attribute. 
For example, if an attribute is declared as an integer attribute, you should 
not use the data handle to get or set it as a float, matrix, or even a short—
you should only get or set it as an integer.

Data creators

Data creators are classes used to create data to be put into a data block, 
most likely to an output plug of a node. Data creators are not required for 
simple data types such as integers and floating point values, but are 
necessary for heavier data such as mesh shapes and NURBS surfaces. 

The classes allow Maya to more efficiently modify and transfer the data 
along dependency graph connections. The subclasses of MFnData are the 
data creator classes. For the data creator classes that create heavier data 
which also corresponds to shape nodes, such as mesh shapes and NURBS 
surfaces, the MFnDependencyNode subclasses pertaining to the data type 
are used to fill the data block item with data. For instance, the 
MFnMeshData class is used to create a new mesh data block item, but the 
MFnMesh class must be used to fill the item with vertices and polygons.
API guide

91



5 | Dependency graph plug-ins 
Developer > Compute methods
Some operations may behave differently depending on the data block 
item. That is because these shape-related dependency node function set 
classes can be used to access data block items that have come from 
connections to other nodes in the graph as well as to access data block 
items that have been created locally within the node. 

Compute methods

The implementation of a dependency graph node is little more than 
assigning attributes and coding a compute method. The DG node is a C++ 
class, with the attributes being static class members. Instances of the class 
make up individual instances of the DG node in the graph. Plugs are 
separate objects which indicate the state of a particular attribute for a 
node. 

The compute method takes its input from the attributes and plugs of an 
instance of the node (the default value of an attribute if there is no plug 
for it, or the specific value of the plug). When requesting information from 
a plug, the plug determines if it is in a proper state (for instance, clean). If 
it is not, it automatically asks the node to which it is connected to update 
itself. This can propagate all the way through the DG. Once all the plugs 
are clean, the node takes the data from the plugs (through the data blocks 
and data handles), computes its results and sends the output to its output 
attributes.

A node must not know anything outside of its attributes and plugs. For 
instance, it should not alter the DAG or other dependency graph nodes. 
Altering the DAG or another node in the DG could prompt a new DG 
evaluation which could cause your node to re-evaluate, causing you to 
alter again, which forces a new DG evaluation putting you in an infinite 
loop. If for some reason a node needs to know something about its 
environment, that knowledge should be provided as an attribute that can 
be connected to. Using any outside data will almost certainly violate one 
of the following: 

• multiprocessing-friendliness 

• evaluating at an alternate context (for example, at time T) 

• node instancing 

Note All operations which can return world space information, such as 
MFnMesh::getPoint(), become invalid when applied to data block 
items that do not come from shape nodes. The shape node is 
required to be able to determine the transformation for calculating 
the world space position. Caution must be used when using these 
methods.
API guide 

92



5 | Dependency graph plug-ins

Developer > A more complex example
• vectorization of computations 

The compute() method in every node must operate with only the data that 
is present in its parameters. If any other data is required then it should be 
made into an attribute. Even if it is only temporarily cached information to 
speed up computation, it could be useful as a hidden attribute to speed up 
the first refresh after file retrieval. 

Also, a node must not save a reference to any of the data coming in on a 
plug. If, for example, surface geometry comes in on a plug, do not save a 
pointer to this geometry. The data coming in on a plug is transitory and 
may cease to exist without you knowing it. You are only guaranteed that 
it will exist during the execution of your node’s compute function.

A more complex example

The following are fragments from a slightly more complex example than 
the previous example. The code fragments are taken from the 
simpleLoftNode example which takes a curve as input and generates a 
surface.

MObject        simpleLoft::inputCurve;
MObject        simpleLoft::outputSurface;

This example has only two attributes, an input curve and an output 
surface.

MStatus simpleLoft::initialize()
{
    MStatus stat;
    MFnTypedAttribute   typedAttr;

The previous example used MFnNumericAttribute since the attributes 
were simply floating point numbers. Since this example uses more 
complex data, MFnTypedAttribute is used.

    inputCurve = typedAttr.create( “inputCurve”, “in”, 
        MFnData::kNurbsCurve, &stat );
    if( !stat )
        return stat;

This creates an attribute to hold curve objects. The Type enumeration in 
MFnData lists the types of data which can be created using a typed 
attribute. This list includes curves, surfaces, meshes, strings, user-defined 
data, etc.

    outputSurface = typedAttr.create( “outputSurface”, “out”,
        MFnData::kNurbsSurface, &stat );
    if( !stat )
        return stat;

This creates an attribute to hold the generated surface object.
API guide

93



5 | Dependency graph plug-ins 
Developer > A more complex example
    typedAttr.setStorable( false );

Since the surface is a generated object, it isn’t necessary to store it when 
storing the node to a file. 

    addAttribute( inputCurve );
    addAttribute( outputSurface );
    attributeAffects( inputCurve, outputSurface );

Finally, the two attributes are added to the node and attributeAffects() is 
used to indicate that when the input curve is modified the resulting 
surface will have to be regenerated.

    return MS::kSuccess;
}

MStatus simpleLoft::compute( const MPlug& plug, MDataBlock& 
data )
{
    MStatus stat;

    if ( plug == outputSurface )
    {

This ensures that the computation of the node is only done for the 
appropriate attribute.

        MDataHandle inputData = data.inputValue( inputCurve, 
&stat );
        if( !stat )
            return stat;

As before, the data block contains all the data for the node in an efficient 
manner. The data handle is required to access this data.

        else
        {
            MObject curve = inputData.asNurbsCurve();
            MFnNurbsCurve curveFn( curve, &stat );
            if( !stat )
                return stat;

With the data handle you can then get the input curve which you can then 
pass on to an MFnNurbsCurve function set to operate on.

            else
            {
                MDataHandle surfHandle = data.outputValue(
                    outputSurface );
                if( !stat )
                    return stat;

A second data handle is used to access the surface’s portion of the data 
block.
API guide 

94



5 | Dependency graph plug-ins

Developer > A more complex example
                MFnNurbsSurfaceData dataCreator;
                MObject newSurfData = dataCreator.create(
                        &stat );
                if ( !stat )
                    return stat;

Notice that you don’t use MFnNurbsSurface in this example, but rather 
MFnNurbsSurfaceData. This is necessary since you want to create a data 
object to pass through the dependency graph and not a DAG object. This 
will always be the case when creating objects in dependency graph nodes. 
There are special nodes used which connect surface data into the DAG, 
and therefore any node that you create which creates geometry need not 
also create a DAG node for it, just the data. 

                MObject newSurf = loft( curve, newSurfData,
                       stat );
                if( !stat )
                    return stat;

This calls some user-written code which creates a lofted surface from the 
curve. The method would use MFnNurbsSurface to operate on the surface 
data object. (MFnNurbsSurface determines whether it is operating on a 
surface in the DAG or not. If not, some of it’s methods will not succeed. 
For example, since the surface data object isn’t in the DAG, determining 
the world position of it does not make sense, so that method would fail.)

                surfHandle.set( newSurfData );

Add the new surface to the data block so that the output changes.

                stat = data.setClean( plug );
                if( !stat )
                    return stat;

Tell the system that the plug has been successfully recomputed and is now 
clean.

            }
        }
    }
else
        {
            cerr << "unknown plug\n";
            return MS::kUnknownParameter;
        }       

You must return MS::kUnknownParameter if the plug is not recognized or 
if there is no computation occurring on a given keyable plug. This causes 
the compute of the base class to be called which will implement default 
data handling and cause: 
API guide

95



5 | Dependency graph plug-ins 
Developer > MPxNode and its derived classes
        return MS::kSuccess;

    }

MPxNode and its derived classes

The MPxNode class is the parent class from which the other functionally-
specific MPx classes are defined. These derived classes possess specific 
knowledge corresponding to their functional area for integrating your 
class into Maya. For example, the MPxLocator class knows that it must 
draw itself in different colors depending on whether it is selected or not. 
Each parent class defines a set of attributes which Maya expects and can 
automatically connect to when your subclass is used in a scene. The 
compute() method that you will define with your subclass can use these 
attributes as desired. Refer to the manual pages for the various MPx 
parent classes for a listing and description of the predefined attributes. 

The MPxManipContainer (see Chapter 7, “Manipulators”) and 
MPxSurfaceShape classes (see Chapter 8, “Shapes”) are complex classes 
which require more in depth descriptions. 

MPxLocatorNode

This parent class is a DAG node which allows you to draw three 
dimensional graphical elements in the Maya scene. The elements are 
associated with a location in the scene which can be manipulated using 
the standard Maya manipulators. 

This class can be used for defining entities which have a location in space 
but no explicit shape, such as a new type of light source, a destination 
point for the behavior of some other entity, or a construction location for a 
shape not yet created. The graphical elements drawn by the locator are not 
rendered. The MPxLocator class itself draws a default graphic, but a 
draw() method is provided which can be implemented in your subclass to 
perform more specialized drawing.

MPxDeformerNode

This class allows you to take an input geometry shape and deform it. 
Maya requires a special protocol for performing deformations, and 
provides a few special methods which you implement. 

The first is the deform() method. The actual deformation does not take 
place in the compute() method of deformer nodes but through an internal 
mechanism which calls the deform() method. 

Two other methods, accessoryAttribute() and accessoryNodeSetup() are 
also defined by the parent class. Accessories are the geometry shapes that 
you select and manipulate to affect the deformation. This can be a set of 
API guide 

96



5 | Dependency graph plug-ins

Developer > MPxNode and its derived classes
wireframe lines, a set of NURBS curves, or any other geometry you desire 
which can intuitively convey the function of your deformer and affect 
useful deformations.   

Accessories are not required by deformers. Your deformer can function 
solely based on the predefined input attributes of the MPxDeformerNode 
class and/or any other attributes you define for your subclass. In this case, 
simply do not implement the two accessory methods.

 MPxIkSolverNode

Inverse Kinematics (IK) describes a class of algorithms for animating 
linkages of rigid bodies based on a set of goals and constraints placed on 
the linkage. An IK solver is a mathematical procedure for finding a set of 
rotations and offsets for the links in order to satisfy the goals and 
constraints. 

Solvers can be tailored for different types of linkages or to behave a 
certain way, such as minimizing the motion of certain joints or keeping 
certain joint angles between certain ranges. Maya defines a set of solvers 
which can be used in different situations.   

The MPxIkSolverNode allows you to write your own solver and use it on 
linkages you build in Maya. As with the MPxDeformerNode class, the real 
computation of the node is not done in the compute() method, but in the 
doSolve() method. There are several other methods which must be 
defined when subclassing a new solver. Refer to the MPxIkSolverNode 
manual page for a description of these methods.

MPxFieldNode

This class lets you define your own dynamic field to affect other geometry 
in the scene. This node follows the normal dependency graph rules of 
evaluation in that the work of the node is done in the compute() method.

MPxEmitterNode

Emitters are nodes which emit particles in to a Maya scene. Different 
emitters emit particles in different ways, such as emitting only in one 
direction, emitting slowly, or emitting randomly from the surface of a 
sphere. Once the particle is emitted, it is no longer controlled by the 
emitter node. The MPxEmitterNode class lets you define the behavior of 
how particles are emitted. The node follows the normal dependency 
graph rules of evaluation in that the work of the node is done in the 
compute() method.

MPxSpringNode

Springs are forces which interact between two endpoints which have 
mass. Maya defines a default spring force which follows a traditional 
mathematical model of springs. You can define a new behavior for 
API guide

97



5 | Dependency graph plug-ins 
Developer > MPxNode and its derived classes
applying a force between two points in a scene by subclassing from 
MPxSpringNode. The predefined attributes supply all of the standard 
spring constants as well as the positions and masses of the endpoints. The 
work of the node is done through the applySpringLaw() method instead 
of the compute() method.

MPxObjectSet

This class can be used to implement new kinds of sets within Maya that 
can have selectable/manipulatable components and behave in a similar 
manner to the objectSet node included in Maya.

MPxHwShaderNode

MPxHwShaderNode allows the creation of user-defined hwShaders. A 
hwShader is a node which takes any number of input geometries, deforms 
them and places the output into the output geometry attribute.

MPxTransform

MPxTransform allows the creation of user defined transform nodes. User 
defined transform nodes can introduce new transform types or change the 
transformation order. They are designed to be an extension of the 
standard Maya transform node and include all of the normal transform 
attributes. Standard behaviors such as limit enforcement and attribute 
locking are managed by this class, but may be overridden in derived 
classes. Although it is not a node, the MPxTransformationMatrix class is 
used in conjunction with MPxTransform to add custom transformation 
matrices to Maya
API guide 

98



6 Writing a Shading 
Node
Developer Plug-in API

Write a shading node

Overview of shading node plug-ins

A shading node plug-in is written as a Maya Dependency Graph Node. A 
basic shading node contains attributes that are treated as inputs and 
outputs, where each shading node must have an output so that it can be 
connected in the Dependency Graph. 

Writing a shading node plug-in

Custom dependency graph nodes include the header file:

<maya/MPxNode.h>

and then derive from the class MPxNode. To build your own shading 
node as a plug-in to Maya, you follow the same guidelines for making a 
Dependency Node (see “Dependency Graph (DG) nodes” in Chapter 5, 
“Dependency graph plug-ins”). 

You request specific rendering information for your plug-in through pre-
defined attributes provided during the rendering process. (See “Appendix 
C: Rendering attributes” for a complete list of rendering specific attributes 
and their corresponding names.) 

There are currently five different types of shading nodes that can be 
created with Maya.

• Surface shaders 

• Light shaders 

• Texture shaders 

• Displacement shaders 

• Volumetric shaders 

Shading nodes in Maya are connected to form shader networks. Any 
Maya dependency node can be part of a shader network. Instead of hard-
coding many effects into each shader, texture and light, the same 
functionality is available in Maya through Utility nodes which can 
implement the same effects and more. In addition, shading nodes can 
contribute to more than one shading network at a time.
API guide

99



6 | Writing a Shading Node 
Developer > Writing a shading node plug-in
The following example shows Maya’s Hypergraph display of a simple 
Lambert shading node (highlighted) that has a texture node as an input 
connected to the Lambert node’s color attribute.

The illustration also shows a placement node connected to the checker 
texture for transforming texture coordinates. Each arrow denotes an 
attribute connection between two dependency nodes. 

A shading network is not complete until is has been connected to a 
Shading Group. A Shading Group is a “Renderable Set” which contains a 
list of objects and/or components of objects which will all be rendered 
using the same shader network. In addition to its list of objects, the 
shading group also maintains a connection to a shading network. The 
shading group is the connection point between objects in the scene, and a 
shader network which describes how they should be rendered.

The following shows the shader network connected to a shading group 
(highlighted) and assigned to a default NURBS sphere. Notice the 
directional light in the scene used for illumination.

As you build a complex shader network with various shading nodes, you 
can see that the all the connections lead into the Lambert nodes inputs 
(highlighted) and the computed result of the Lambert shading node’s 
output is connected to a shading group.
API guide 

100



6 | Writing a Shading Node

Developer > Anatomy of a shading node plug-in
Anatomy of a shading node plug-in

Maya Shading node plug-ins include the header file <maya/MPxNode.h> 
and then derive from the class MPxNode. While this command has a rich 
set of methods, only a few are actually necessary to create a working 
shading node.

Constructor

Initializes elements of the new class itself. 

Destructor

Deletes anything created by the class. 

Creator 

This static method is responsible for actually creating instances of your 
new class (which is derived from MPxNode). When you register a new 
object you are actually registering its creator() method which Maya can 
then call to allocate a new instance of an object. In virtually all cases, is 
should look like:

void* NodeClassName::creator()
{
    return new NodeClassName;
}

initializePlugin/uninitializePlugin

The first of these methods is called by Maya when the plug-in is loaded. 
Its purpose is to create an instance of the MFnPlugin class (initialized with 
the MObject passed to the routine) and call register methods in that class 
to inform Maya what it is capable of doing. 

initialize

All the attributes of your new node are declared as static MObject 
members of the derived class. The initialize method is responsible for 
making MFnAttribute calls to actually provide the type information on the 
attributes. In addition, it sets default values, ranges etc. Like the creator 
function, this is a static method on the class, and will only be called once 
by Maya. 

Important! Both initializePlugin() and uninitializePlugin() must be 
present in all plug-ins. If both or either is absent the plug-in will 
not be loaded. 
API guide

101



6 | Writing a Shading Node 
Developer > InterpNode example code walkthrough
Id String

One of the required attributes of your node has to be of the type 
MTypeID. This maps to Maya’s internal IFF flag, and must be unique. The 
value of this attribute is set in the MTypeID constructor. 

For local node testing, you can use any identifier between 0x00000000 and 
0x0007ffff, but for any node that you plan to use for permanent purposes, 
you should get a universally unique id from Alias Support. They will 
assign you a unique range that you can then manage on your own

compute method

This is just like the compute method for an internal dependency node. It is 
passed a Data Handle to a Data Block and is responsible for extracting its 
input attributes from the datablock in order to compute the new values of 
the requested output attributes.

InterpNode example code walkthrough

Shading node plug-ins rely on the usage of Compound Attributes and 
Simple Attributes. The mapping of data between rendering samplers and 
shading networks is by attribute name. This approach is straightforward 
and easy to learn and remember, and general enough to work with both 
the present rendering requirements and future enhancements. 

All rendering attributes for which a plug-in is interested has been pre-
computed for the current sample being considered. The “datablock” 
argument that is passed into the plug-in’s compute() method contains the 
rendering attribute information the node has requested. When the plug-in 
is evaluated by the dependency graph it also passes in a “plug” argument 
for the specific attribute it wants to evaluate. To optimize evaluations, you 
need to check for only the output attributes you defined in your plug-in. 

This example plug-in node has 20 attributes (aside from its id attribute). 

• Two attributes are color input attributes that are built as a compound 
attribute from three float attributes that represent red, green, and blue 
(eight total attributes). 

• One attribute is a color output attribute that is built as a compound 
attribute from three float attributes that represent red, green, and blue 
(four total attributes).

• One attribute is a surface normal that is built as a compound attribute 
from three float attributes that represent the vector components in x, 
y, and z (four total attributes). 

• One attribute is the position of the geometry in camera space built as a 
compound attribute from three float attributes that represent the 
current sample point in x, y, and z (4 total attributes).
API guide 

102



6 | Writing a Shading Node

Developer > InterpNode example code walkthrough
The node interpolates between two colors based on the direction of the 
surface normal it gets from the datablock, and uses the compute() method 
in that class to derive a result color that is placed into the output color 
attribute.

Derivation

class InterpNode : public MPxNode 
{
public:
                  InterpNode();
  virtual         ~InterpNode();

  virtual MStatus compute( const MPlug&, MDataBlock& );
  static  void *  creator();
  static  MStatus initialize();
  static  MTypeId id;

protected:
  static MObject InputValue;
  static MObject color1R,color1G,color1B,color1;
  static MObject color2R,color2G,color2B,color2;
  static MObject aNormalCameraX, aNormalCameraY,
    aNormalCameraZ, aNormalCamera;
  static MObject aPointCameraX, aPointCameraY,
    aPointCameraZ, aPointCamera;
  static MObject aOutColorR, aOutColorG, aOutColorB,
    aOutColor;

};
MObject InterpNode::InputValue;
MObject InterpNode::color1R;
MObject InterpNode::color1G;
MObject InterpNode::color1B;
MObject InterpNode::color1;
MObject InterpNode::color2R;
MObject InterpNode::color2G;
API guide

103



6 | Writing a Shading Node 
Developer > InterpNode example code walkthrough
MObject InterpNode::color2B;
MObject InterpNode::color2;
MObject InterpNode::aNormalCameraX;
MObject InterpNode::aNormalCameraY;
MObject InterpNode::aNormalCameraZ;
MObject InterpNode::aNormalCamera;
MObject InterpNode::aPointCameraX;
MObject InterpNode::aPointCameraY;
MObject InterpNode::aPointCameraZ;
MObject InterpNode::aPointCamera;
MObject InterpNode::aOutColorR;
MObject InterpNode::aOutColorG;
MObject InterpNode::aOutColorB;
MObject InterpNode::aOutColor;

Constructor/Destructor

InterpNode::InterpNode() { }
InterpNode::~InterpNode() { }

Creator

void* InterpNode::creator()
{
    return new InterpNode();
}

initializePlugin/uninitializePlugin

MStatus initializePlugin( MObject obj )
{
   const MString UserClassify( “utility/general” );

    MFnPlugin plugin( obj, “Alias”, “1.0”,
            “Any”);
    plugin.registerNode( “Interp”, InterpNode::id,
            InterpNode::creator,
            InterpNode::initialize,
            MPxNode::kDependNode, &UserClassify);

    return MS::kSuccess;
}

MStatus uninitializePlugin( MObject obj)
{
    MFnPlugin plugin( obj );
    plugin.deregisterNode( InterpNode::id );

    return MS::kSuccess;
}

initialize

MStatus InterpNode::initialize()
API guide 

104



6 | Writing a Shading Node

Developer > InterpNode example code walkthrough
{
     MFnNumericAttribute nAttr; 

// Inputs and Attributes
//
// User defined attributes require a long-name and short-
// name that are required to be unique within the node.
// (See the compound attribute color1 named “Sides”.)
//
// Rendering attributes that your node wants to get from
// the sampler require them to be defined given the pre-
// defined unique long-name.(See the compound attribute
// aNormalCamera named “normalCamera”.)
// 
// User defined Attributes are generally something that you 
// want to store in the Maya file. The setStorable(true)
// method enables an attribute to be stored into the Maya
// scene file. 
//
// Rendering attributes are primarily data that is
// generated per sample and not something that you want to
// store in a file. To disable an attribute from being
// recorded to the Maya scene file use the
// setStorable(false) method.
//
// Simple attributes that represent a range of values can
// enable a slider on the Attribute Editor by using the
// methods setMin() and setMax(). 
// (See the simple attribute InputValue named “Power”.)
//
// Compound attributes that represent a vector of 3 floats
// can enable a color swatch on the Attribute Editor that
// will launch a color picker tool by using the method
// setUsedAsColor(true).
// (See the compound attribute color1 name “Sides”.)
//
// Both Simple and Compound attributes can be initialized
// with a default value using the method setDefault().
//
// Attributes by default show up in the Attribute Editor
// and in the Connection Editor unless they are specified
// as being hidden by using the method setHidden(true). 
//
// Attributes by default have both read/write access in the
// dependency graph. To change an attributes behaviour you
// can use the methods setReadable() and setWritable(). The
// method setReadable(true) indicates that the attribute
// can be used as the source in a dependency graph
// connection. The method setWritable(true) indicates that
// the attribute can be used as the destination in a
API guide

105



6 | Writing a Shading Node 
Developer > InterpNode example code walkthrough
// dependency graph connection.
// (See the compound attribute aOutColor named “outColor”
// below. It has been marked as a read-only attribute since
// it is the computed result of the node, it is not stored
// in the Maya file since it is always computed, and it is
// marked as hidden to prevent it from being displayed in
// the user interface.)
// 
//

// User defined input value

    InputValue = nAttr.create( “Power”, “pow”,
            MFnNumericData::kFloat);
    nAttr.setDefault(1.0f);
    nAttr.setMin(0.0f);
    nAttr.setMax(3.0f);
    nAttr.setStorable(true);

// User defined color attribute
    color1R = nAttr.create( “color1R”, “c1r”,
            MFnNumericData::kFloat);
    color1G = nAttr.create( “color1G”, “c1g”,
            MFnNumericData::kFloat);
    color1B = nAttr.create( “color1B”, “c1b”,
            MFnNumericData::kFloat);

    color1 = nAttr.create( “Sides”, “c1”, color1R, color1G,
            color1B);
    nAttr.setStorable(true);
    nAttr.setUsedAsColor(true);
    nAttr.setDefault(1.0f, 1.0f, 1.0f);

    color2R = nAttr.create( “color2R”, “c2r”,
            MFnNumericData::kFloat);
    color2G = nAttr.create( “color2G”, “c2g”,
            MFnNumericData::kFloat);
    color2B = nAttr.create( “color2B”, “c2b”,
            MFnNumericData::kFloat);

    color2 = nAttr.create( “Facing”, “c2”, color2R,
            color2G, color2B);
    nAttr.setStorable(true);
    nAttr.setUsedAsColor(true);
    nAttr.setDefault(0.0f, 0.0f, 0.0f);

// Surface Normal supplied by the render sampler
API guide 

106



6 | Writing a Shading Node

Developer > InterpNode example code walkthrough
    aNormalCameraX = nAttr.create( “normalCameraX”, “nx”,
            MFnNumericData::kFloat);
    nAttr.setStorable(false);
    nAttr.setDefault(1.0f);

    aNormalCameraY = nAttr.create( “normalCameraY”, “ny”,
            MFnNumericData::kFloat);
    nAttr.setStorable(false);
    nAttr.setDefault(1.0f);

    aNormalCameraZ = nAttr.create( “normalCameraZ”, “nz”,
            MFnNumericData::kFloat);
    nAttr.setStorable(false);
    nAttr.setDefault(1.0f);

    aNormalCamera = nAttr.create( “normalCamera”,”n”,
            aNormalCameraX, 
            aNormalCameraY, aNormalCameraZ);
    nAttr.setStorable(false);
    nAttr.setHidden(true);

// Point on surface in camera space, will be used to compute 
view vector

    aPointCameraX = nAttr.create( “pointCameraX”, “px”,
            MFnNumericData::kFloat);
    nAttr.setStorable(false);
    nAttr.setDefault(1.0f);

    aPointCameraY = nAttr.create( “pointCameraY”, “py”,
            MFnNumericData::kFloat);
    nAttr.setStorable(false);
    nAttr.setDefault(1.0f);

    aPointCameraZ = nAttr.create( “pointCameraZ”, “pz”,
            MFnNumericData::kFloat);
    nAttr.setStorable(false);
    nAttr.setDefault(1.0f);

    aPointCamera = nAttr.create( “pointCamera”,”p”,
            aPointCameraX, 
            aPointCameraY, aPointCameraZ);
    nAttr.setStorable(false);
    nAttr.setHidden(true);

// Outputs

    aOutColorR = nAttr.create( “outColorR”, “ocr”,
            MFnNumericData::kFloat);
    aOutColorG = nAttr.create( “outColorG”, “ocg”,
API guide

107



6 | Writing a Shading Node 
Developer > InterpNode example code walkthrough
            MFnNumericData::kFloat);
    aOutColorB = nAttr.create( “outColorB”, “ocb”,
            MFnNumericData::kFloat);
    aOutColor  = nAttr.create( “outColor”,   “oc”,
            aOutColorR, aOutColorG, aOutColorB);
    nAttr.setStorable(false);
    nAttr.setHidden(false);
    nAttr.setReadable(true);
    nAttr.setWritable(false);

    addAttribute(InputValue);
    addAttribute(color1R);
    addAttribute(color1G);
    addAttribute(color1B);
    addAttribute(color1);
    addAttribute(color2R);
    addAttribute(color2G);
    addAttribute(color2B);
    addAttribute(color2);
    addAttribute(aNormalCameraX);
    addAttribute(aNormalCameraY);
    addAttribute(aNormalCameraZ);
    addAttribute(aNormalCamera);
    addAttribute(aPointCameraX);
    addAttribute(aPointCameraY);
    addAttribute(aPointCameraZ);
    addAttribute(aPointCamera);
    addAttribute(aOutColorR);
    addAttribute(aOutColorG);
    addAttribute(aOutColorB);
    addAttribute(aOutColor);

    attributeAffects (InputValue, aOutColor);
    attributeAffects (color1R, color1);
    attributeAffects (color1G, color1);
    attributeAffects (color1B, color1);
    attributeAffects (color1,  aOutColor);
    attributeAffects (color2R, color2);
    attributeAffects (color2G, color2);
    attributeAffects (color2B, color2);
    attributeAffects (color2,  aOutColor);
    attributeAffects (aNormalCameraX, aOutColor);
    attributeAffects (aNormalCameraY, aOutColor);
    attributeAffects (aNormalCameraZ, aOutColor);
    attributeAffects (aNormalCamera,  aOutColor);
    attributeAffects (aPointCameraX, aOutColor);
    attributeAffects (aPointCameraY, aOutColor);
    attributeAffects (aPointCameraZ,  aOutColor);
    attributeAffects (aPointCamera, aOutColor);
API guide 

108



6 | Writing a Shading Node

Developer > InterpNode example code walkthrough
    return MS::kSuccess;
}

Id String

MTypeId InterpNode::id( 0x81005 );

compute method

MStatus InterpNode::compute( const MPlug& plug, MDataBlock&
    block )
{
    int k=0;
    float gamma,scalar;

    k |= (plug == aOutColor);
    k |= (plug == aOutColorR);
    k |= (plug == aOutColorG);
    k |= (plug == aOutColorB);
    if (!k) return MS::kUnknownParameter;

    MFloatVector resultColor(0.0,0.0,0.0);

    MFloatVector&  Side = block.inputValue( color1 ).
            asFloatVector();
    MFloatVector&  Face = block.inputValue( color2 ).
            asFloatVector();
    MFloatVector&  surfaceNormal = block.
            inputValue( aNormalCamera ).
                asFloatVector();
    MFloatVector&  viewVector = block.
            inputValue( aPointCamera ).
                asFloatVector();
    float power = block.inputValue( InputValue ).asFloat();

    // Normalize the view vector
    double d = sqrt((viewVector[0] * viewVector[0]) +
                    (viewVector[1] * viewVector[1]) +
                    (viewVector[2] * viewVector[2]));

    if (d != (double)0.0) {
        viewVector[0] /= d;
        viewVector[1] /= d;
        viewVector[2] /= d;
    }
        
    // find dot product
    float scalarNormal = ((viewVector[0]*surfaceNormal[0])
            + (viewVector[1]*surfaceNormal[1])
            + (viewVector[2]*surfaceNormal[2]));
API guide

109



6 | Writing a Shading Node 
Developer > InterpNode example code walkthrough
    // take the absolute value
    if (scalarNormal < 0.0) scalarNormal *= -1.0;

    // Use InputValue to change interpolation
    //     power == 1.0 linear
    //     power >= 0.0 use gamma function
    //
    if (power > 0.0) {
        gamma = 1.0 / power;
        scalar = pow(scalarNormal,gamma);
    }
    else { scalar = 0.0; }

    // Interpolate the colors
    MFloatVector interp(0.0,0.0,0.0);
    interp[0] = scalar * (Face[0] - Side[0]);
    interp[1] = scalar * (Face[1] - Side[1]);
    interp[2] = scalar * (Face[2] - Side[2]);

    resultColor[0] = Side[0] + interp[0];
    resultColor[1] = Side[1] + interp[1];
    resultColor[2] = Side[2] + interp[2];

    // set ouput color attribute
    MDataHandle outColorHandle = block.
            outputValue( aOutColor );
    MFloatVector& outColor = outColorHandle.
            asFloatVector();
    outColor = resultColor;
    outColorHandle.setClean();

    return MS::kSuccess;
}

API guide 

110



6 | Writing a Shading Node

Developer > InterpNode example code walkthrough
Attribute Editor view for InterpNode Example

Connection Editor view of an InterpNode connection
API guide

111



6 | Writing a Shading Node 
Developer > Shading nodes classification
Hypergraph view of an InterpNode connection

Shading nodes classification

When registering your new shading node in Maya, you can assign a 
classification to your node that will determine where it appears in the 
Create Render Node interface. Each classification corresponds to a Tab 
and Frame in which it appears. 

The following is a list of classification strings and where they appear in 
the interface when you use them. 

Implicit connections and the Create Render Node 
window 

When you create a rendering node using Create Render Node, you are 
really executing embedded commands that are used to create a shading 
node and connect them together. The creation command is 

Tab Frame Classification String

Textures 2D Textures
3D Textures
Environment Textures

“texture/2d”
“texture/3d”
“texture/environment”

Materials Surface Materials
Volumetric Materials
Displacement Materials 

“shader/surface”
“shader/volume”
“shader/displacement”

Lights Lights “light”

Utilities General Utilities
Color Utilities 
Particle Utilities 
Image Planes
Glow

“utility/general”
“utility/color”
“utility/particle”
“imageplane”
“postprocess/opticalFX”
API guide 

112



6 | Writing a Shading Node

Developer > Shading nodes classification
“shadingNode” and the connection command is “connectAttr”. If you use 
the commands in the command shell window, no auxiliary nodes are 
created. All auxiliary nodes are created by the user interface. 

The following is a complete description of what the buttons in the Create 
Render Node window do. The commands are listed by what they execute; 
this shows you what nodes get created, and how they are connected. For 
some classifications, the behavior is dependent on the status of check 
boxes or radio buttons in the window.

Shaders

shader/surface

(for example, blinn)

1 “shadingNode -asShader blinn;” 

The command creates the ‘blinn’ node, connects its “.message” 
attribute to the “.shaders” attribute on the defaultShaderList1 node - 
this lets the multilister know that the node is a shader. 

If the “With Shading Group” check box is checked, then the following 
also occurs: 

2 “sets -renderable true -noSurfaceShader true -empty -name blinn1SG;”

“connectAttr -f blinn1.outColor blinn1SG.surfaceShader;” 

These command create a new shadingGroup and make the shading 
group’s surface shader the newly created blinn node. 

shader/volume

(for example, lightFog)

1 “shadingNode -asShader lightFog;” 

Same as above, used to let the multilister know that the node is a 
shader. 

If the “With Shading Group” check box is checked, then the following 
also occurs: 

2 “sets -renderable true -noSurfaceShader true -empty -name 
lightFog1SG;”

“connectAttr -f lightFog1.outColor lightFog1SG.volumeShader;” 

This will create a new shading group and make the shading group’s 
volume shader the newly created light fog node. 

shader/displacement

(for example, displacementShader)

1 “shadingNode -asShader displacementShader;” 
API guide

113



6 | Writing a Shading Node 
Developer > Shading nodes classification
Same as above. 

If the “With Shading Group” check box is checked, then the following 
also occurs: 

2 “sets -renderable true -noSurfaceShader true -empty -name 
displacementShader1SG;”

“connectAttr -f displacementShader1.displacement 
DisplacementShader1SG.displacementShader;” 

Same as above, except that the new shader becomes the displacement 
shader for the new shading group. 

Textures

texture/2d

(for example, checker)

1 “shadingNode -asTexture checker;” 

Creates the texture node, tells the multilister that it is a texture. 

If the “With New Texture Placement” button is checked, then the 
following are also executed: 

2 “shadingNode -asUtility place2dTexture;” 

“connectAttr place2dTexture1.outUV checker1.uv;” 

Creates a 2d texture placement and connects it to the texture node. 

If the “As Projection” button is checked, then the following are also 
executed: 

3 “shadingNode -asTexture projection;” 

“shadingNode -asUtility place3dTexture;” 

“connectAttr place3dTexture1.wim[0] projection1.pm;” 

“connectAttr checker1.outColor projection1.image;” 

Creates a projection 3d texture with placement, and connects the 
newly created 2d texture to its “image” attribute. 

If the “As Stencil” button is checked, then the following are also 
executed: 

4 “shadingNode -asTexture stencil;” 

“shadingNode -asUtility place2dTexture;” 

“connectAttr place2dTexture2.outUV stencil1.uv;” 

“connectAttr checker1.outColor stencil1.image;” 

Creates a stencil 2d texture with placement, and connects the newly 
created 2d texture to its “image” attribute. 
API guide 

114



6 | Writing a Shading Node

Developer > Shading node icons for Hypershade
texture/3d

(for example, brownian) 

1 “shadingNode -asTexture brownian;” 

Creates the texture node, tells the multilister that it is a texture. 

If the “With New Texture Placement” button is checked, then the 
following are also executed: 

2 ”shadingNode -asUtility place3dTexture;” 

“connectAttr place3dTexture2.wim[0] brownian1.pm;” 

Creates a new 3d texture placement and connects its 
“.worldInverseMatrix” to the “placementMatrix” attribute of the 
newly created texture node. 

texture/environment

(for example, sphere)

Identical to texture/3d above. 

Lights 

light

(for example, pointLight) 

“shadingNode -asLight pointLight;” 

Creates the light node, tells the multilister that it is a light.

Utilities 

all utilities

(for example, imagePlane)

“shadingNode -asTexture -asUtility imagePlane;” 

Creates the utility node, tells the multilister that it is a utility. 

Shading node icons for Hypershade

For Hypershade, create 32x32 icons in xpm format. (You can use 
imconvert to convert images to xpm.) The icon name must have the 
preface "render_". For example, for the shader lambertShader.mll, name 
the icon render_lambertShader.xpm.  

Put the icons in one of the directories specified in your XBMLANGPATH. 
You can extend this path by modifying maya.env. Type "getenv 
XBMLANGPATH" in the Maya script editor to see the current setting for 
the path.
API guide

115



6 | Writing a Shading Node 
Developer > Special shading nodes
Special shading nodes

Maya also contains special shading nodes—surfaceShader, volumeShader 
and displacementShader. These nodes do nothing except provide 
appropriately named attributes. You can connect anything you like to 
these nodes, which then presents that connection to rendering as the 
appropriate attribute name. Special mechanisms internal to Maya ensure 
that these special nodes do not impose any execution time overhead, and 
so can be used with impunity. 

For descriptions of shading nodes, see “Shader source code examples” in 
Chapter , “Example Plug-ins”.

SuperSampling within shading nodes

As explained previously, you can request specific rendering information 
regarding the current sample position through pre-defined attributes 
provided during the rendering process. (See Appendix C: Rendering 
attributes for a complete list of rendering specific attributes and their 
corresponding names.) However, it is sometimes desirable to describe a 
hypothetical position and force a shading network evaluation to sample 
this hypothetical position. Some applications of this technique are bump 
mapping, and filtering (antialiasing).

A shading node can mark attributes as "render sources" through the API 
call MFnAttribute::setRenderSource. If the shadingNode then sets the 
values of the one of these attributes, subsequent calls to request data from 
the datablock will force the shading network to reevaluate.

The devkit contains an example plug-in, shiftNode.cpp, that demonstrates 
modifying uvCoord and refPointCamera from within a plug-in texture. 
The uvCoord and refPointCamera are marked as "renderSource" 
attributes. The uvCoord and refPointCamera for the current sample 
position are requested and then subsequently shifted four times. Each 
time these attributes are modified, the inColor attribute is requested, and 
because the attributes are render sources, the request for inColor forces a 
shading evaluation. Thus the 2D or 3D texture connected to inColor will 
be evaluated four additional times for every point shaded. The inColor 
values are averaged which produces a blurred result.

Evaluating shading nodes outside of the 
rendering context

Shading nodes can request rendering information regarding the current 
sample position through pre-defined attributes (See Appendix C: 
Rendering attributes for a complete list of rendering specific attributes and 
their corresponding names.). However, these pre-defined attributes are 
API guide 

116



6 | Writing a Shading Node

Developer > Evaluating shading nodes outside of the rendering context
not supplied in a non-rendering context. Evaluation of shading nodes 
outside of the rendering context is supported using the call 
MRenderUtil::sampleShadingNetwork.

MStatus MRenderUtil::sampleShadingNetwork(

    MString             shadingNodeName,
    long                numSamples,
    bool                useShadowMaps,
    bool                reuseMaps,

    MFloatPointArray    *points,  // sample points in world
    MFloatArray         *uCoords,
    MFloatArray         *vCoords,
    MFloatVectorArray   *normals, // normals in world
    MFloatPointArray    *refPoints, // refPoints in world
    MFloatVectorArray   *tangentUs,
    MFloatVectorArray   *tangentVs,
    MFloatArray         *filterSizes,

    MFloatVectorArray   &resultColors,
    MFloatVectorArray   &resultTransparencies
);

You provide lists of sample points, normals, UVs, etc., and the function 
will return lists of colors and transparencies calculated based on the 
supplied sample data.

Shadow calculation can also be done by forcing a test rendering to 
generate shadow maps before samples are taken.

An example plug-in, sampleCmd.cpp, has been provided. This command 
takes a particle object and a shading node/shading engine name as input, 
and creates particles which have the color assigned based on the sampling 
result.
API guide

117



6 | Writing a Shading Node 
Developer > Evaluating shading nodes outside of the rendering context
API guide 

118



7 Manipulators
Developer Plug-in API

Write a manipulator

Overview of creating manipulators

This chapter describes how to create manipulators in Maya.

• “What is a manipulator?”

• “Base manipulators”

• “Writing a manipulator”

• “Manipulator containers”

• “Communication between manipulators and nodes”

• “Connect manipulators to the Show Manipulator Tool”

What is a manipulator?

A manipulator is a node that draws itself using 3D graphical elements that 
respond to user events. Manipulators translate the events into values 
which are used to modify attribute values of other nodes in a scene. The 
attribute values are modified directly by the manipulator and not through 
the standard plug and connection mechanism used by other dependency 
graph nodes. 

You invoke manipulators through the Show Manipulator Tool or a user-
defined context. Manipulators exist in the DAG as subclasses of transform 
nodes, but they only exist while the Show Manipulator Tool or context is 
active, and the object that they correspond to is selected. Unlike 
transforms, they are not visible in the hypergraph or outliner, and they are 
not added to the Maya selection list. Additionally, their attributes are not 
accessible from MEL or the attribute editor and they are not written to file.

Manipulators are designed to operate on data types, ranging from integer 
and floating point values to matrix data and can operate on one or more 
attribute values at the same time. Maya defines a set of simple 
manipulators, called base manipulators. These operate on a range of data 
types from a single boolean, integer, or floating point value, to vectors of 
floating point values of different lengths.
API guide

119



7 | Manipulators 
Developer > Base manipulators
More complex manipulators, called container manipulators, can be designed 
by combining one or more base manipulators. In the API, you construct a 
manipulator by creating a container manipulator and adding one or more 
base manipulators to it. The new manipulator can be invokes either 
through the Show Manipulator Tool or through a user-defined context.

Base manipulators

The OpenMaya API supports 10 base manipulator classes that can be 
combined to form a composite manipulator. 

The following lists these base manipulators and the C++ function sets that 
correspond to them:

• “FreePointTriadManip”: MFnFreePointTriadManip

• “DirectionManip”: MFnDirectionManip

• “DistanceManip”: MFnDistanceManip

• “PointOnCurveManip”: MFnPointOnCurveManip

• “PointOnSurfaceManip”: MFnPointOnSurfaceManip

• “DiscManip”: MFnDiscManip

• “CircleSweepManip”: MFnCircleSweepManip

• “ToggleManip”: MFnToggleManip

• “StateManip”: MFnStateManip

• “CurveSegmentManip”: MFnCurveSegmentManip

• “RotateManip”: MFnRotateManip

• “ScaleManip”: MFnScaleManip

FreePointTriadManip

The FreePointTriadManip provides a moveable point which can be moved 
anywhere. It has axes for constrained x, y, and z movement and obeys 
grid snapping, point snapping, and curve snapping. The 
FreePointTriadManip generates the 3D position of the point. It is useful 
for specifying the position of an object in space. 

Note The FreePointTriadManip is a subset of the moveManip in Maya.
API guide 

120



7 | Manipulators

Developer > Base manipulators
DirectionManip

The DirectionManip lets you specify a direction as defined by the vector 
from the start point to the manipulator position. It uses a 
FreePointTriadManip to specify the end point of a vector relative to a 
given start point. This manipulator generates a vector from the start point 
to the end point.

DistanceManip

The DistanceManip lets you manipulate a point that is constrained to 
move along a line. The distance value is calculated from the start point of 
the line to the manipulated point. This manipulator generates a single 
floating point value. Scaling factors can be used to determine how long 
the manipulator appears when it is drawn.

PointOnCurveManip

The PointOnCurveManip lets you manipulate a point constrained to move 
along a curve, in order to specify the “u” curve parameter value. This 
manipulator generates a single floating point value corresponding to the 
curve parameter.

PointOnSurfaceManip

The PointOnSurfaceManip lets you manipulate a point constrained to 
move along a surface, in order to specify the (u, v) surface parameter 
values. This manipulator generates two floating point values 
corresponding to the surface (u, v) parameters.

DiscManip

The DiscManip lets you rotate a disc in order to specify a rotation about 
an axis. This manipulator generates a single floating point value 
corresponding to the rotation.

CircleSweepManip

The CircleSweepManip lets you manipulate a point constrained to move 
around a circle, in order to specify a sweep angle. This manipulator 
generates a single floating point value corresponding to the sweep angle.

ToggleManip

The ToggleManip lets you switch between two modes or some on/off 
state. It is drawn as a circle with or without a dot. When the mode is on, 
the dot is drawn in the circle; when the mode is off, the circle is drawn 
without the dot. This manipulator generates a boolean value 
corresponding to whether or not the mode is on or off.
API guide

121



7 | Manipulators 
Developer > Writing a manipulator
StateManip

The StateManip lets you switch between multiple states. It is drawn as a 
circle with a notch. Each click on the circle increments the value of the 
state (modulo the maximum number of states). This manipulator 
generates an integer value corresponding to the state of the manip.

CurveSegmentManip

The CurveSegmentManip lets you manipulate two points on a curve to 
specify a curve segment. This manipulator generates two floating point 
values, which correspond to the parameters of the start and end of the 
curve segment.

RotateManip

The RotateManip allows you to manipulate a 3d rotation vector. It 
supports the 3 rotation modes of the built-in rotate manipulator (object 
space, global, gimbal) and allows constrained rotation on the x, y, z and 
viewing axes. The vector generated by the manipulator is an Euler 
rotation that is suitable for input to a rotation plug.

ScaleManip

The ScaleManip lets you manipulate relative x, y, and z scaling values. 
The scale manipulator provides a central handle for proportional scaling, 
as well as x, y, and z axis handles for non-proportional scaling on each 
axis. The vector generated by the manipulator is a relative scaling vector 
that is suitable for input to a scale plug.

Writing a manipulator

Writing a manipulator involves defining a subclass of the 
MPxManipContainer class, adding base manipulators to the container 
manipulator, and defining associations between the manipulator and the 
attributes on the nodes they affect. Even if your manipulator consists of 
only one base manipulator, it is necessary to create a container 
manipulator and add the base manipulator to it.

Container manipulators are composed of one or more base manipulators. 
When base manipulators are added to a container manipulator, they are 
referred to as children of the container manipulator, and are added using 
the createChildren method. 

The association between the manipulator and the corresponding plugs on 
a node must be defined. The nature of the association between the 
manipulator and the plugs may be simple or complex. For simple 
associations, there is a direct correspondence between a manipulator value 
and the corresponding plug. For more complex associations, conversion 
functions are used. These are described below.
API guide 

122



7 | Manipulators

Developer > Manipulator containers
Manipulator containers

MPxManipContainer is the parent class of user-defined container 
manipulators. User-defined container manipulators are comprised of one 
or more base manipulators. There are a number of methods on 
MPxManipContainer that allow you to add a variety of base manipulators 
to the container. There are also a number of methods you need to 
implement on your user-defined manipulator derived from 
MPxManipContainer. 

The necessary methods are: 

• “creator method”

• “initialize method”

• “createChildren method”

• “connectToDependNode method”. 

You can also override the draw method to customize the way your 
container manipulator is drawn.

creator method

The creator method needs to return a new instance of the manipulator, 
and it is registered in the initializePlugin function with a call to the 
MFnPlugin::registerNode method. 

initialize method

The initialize method performs any necessary initializations for the 
manipulator as well as calling the method in the parent class 
MPxManipContainer::initialize. Like the creator method, the initialize 
method is static and registered rather than derived.

createChildren method

The createChildren method is where calls to add base manipulators 
should be called.

For example, in the moveManip::createChildren method:

MStatus moveManip::createChildren()
{
    ...
    fDistanceManip = addDistanceManip(manipName,
                                      distanceName);    

Note Since this method is static and registered and not derived, the 
name of the method does not need to be “creator” although by 
convention the name “creator” is typically used.
API guide

123



7 | Manipulators 
Developer > Manipulator containers
    fFreePointManip = addFreePointTriadManip(pointManipName,
                                             pointName);
    ...
}

connectToDependNode method

The connectToDependNode method is where the association is made 
between the manipulator and the plug(s) with which it will communicate. 
This method requires two additional methods to be called after the calls to 
associate manipulators with plugs have been made. The methods are 
MPxManipContainer::finishAddingManips and 
MPxManipContainer::connectToDependNode and must be called in that 
order. It is important to note that 
MPxManipContainer::finishAddingManips must be called after all calls to 
connect to plugs have been made. Furthermore, finishAddingManips 
must be called only once. 

For example, in the moveManip::connectToDependNode method:

MStatus moveManip::connectToDependNode(const MObject &node)
{
    ...
    distanceManipFn.connectToDistancePlug(syPlug);
    ...
    freePointTriadManipFn.connectToPointPlug(tPlug);
    ...
    finishAddingManips();
    ...
    MPxManipContainer::connectToDependNode(node);
    ...
}

draw method

The draw method is an optional method which can be used to customize 
the drawing of a container manipulator. If you are overriding the draw 
method, you should first call MPxManipContainer::draw to draw all the 
children. 

For example, the moveManip::draw method draws a label in addition to 
the base manipulators.

void moveManip::draw(M3dView &view,

Note Although connectToDependNode is a virtual method, you will 
usually be responsible for calling this method yourself when you 
are using the manipulator within a custom context. For more 
information, see ”Connect manipulators to the Show 
Manipulator Tool” on page 131.
API guide 

124



7 | Manipulators

Developer > Communication between manipulators and nodes
                     const MDagPath &path,
                     M3dView::DisplayStyle style,
                     M3dView::DispalyStatus status)
{
    MPxManipContainer::draw(view, path, style, status);
    view.beginGL();
    MPoint textPos(0, 0, 0);
    char str[100];
    sprintf(str, "Stretch Me!");
    MString distanceText(str);
    view.drawText(distanceText, textPos, M3dView::kLeft);
    view.endGL();
}

Registration/Deregistration

Because manipulator containers are derived from nodes, user-defined 
manipulators can be registered and deregistered like any other node, with 
the exception that the MPxNode::Type argument in 
MFnPlugin::registerNode is set to MPxNode::kManipContainer instead of 
the default MPxNode::kDependNode.

For example, in moveToolManip.cpp:

MStatus initializePlugin(MObject obj)
{
    ...
    plugin.registerNode("moveManip", 
                        moveManip::id,
                        &moveManip::creator,
                        &moveManip::initialize,
                        MPxNode::kManipContainer);
    ...
}

MStatus uninitializePlugin(MObject obj)
{
    ...
    plugin.deregisterNode(moveManip::id);
    ...
}

Communication between manipulators and 
nodes

Manipulators communicate with plugs on nodes to set the values of those 
plugs and also to set manipulator values appropriately with respect to the 
values of the plugs.
API guide

125



7 | Manipulators 
Developer > Communication between manipulators and nodes
The communication between manipulators and nodes can be done in one 
of two ways: simple one-to-one associations, or through the use of more 
complex conversion functions. The following diagram illustrates how the 
communication between nodes and manipulators takes place.

The converter in the diagram is the mechanism that manages the 
communication between the plugs on the nodes and manipulator values. 
The arrows indicate the direction the information flows. Each container 
manipulator has one converter which is the interface between the 
container’s children manipulators and the plugs they affect. 

There are a number of data items identified by square boxes on the 
converter and the base manipulators. The items on the converter that are 
related to children manipulator values are called converterManipValue 
items, and the items on the converter that are related to the node plug 
values are called converterPlugValue items. 

The items on the base manipulators are called manipValue items. Some of 
these manipValue items relate directly to an affordance of the 
manipulator. For example, the MFnDiscManip::angleIndex relates directly 
to the rotation affordance of the DiscManip. 

converter

 converterManipValue items

conversion function

conversion function

conversion function

container manipulator

node

node

node

(plugToManip)

(manipToPlug)

(plugToManip)

converterPlugValue items

one-to-one association

one-to-one association

base
manip

base
manip

 manipValue items

plug
API guide 

126



7 | Manipulators

Developer > Communication between manipulators and nodes
Other manipValue items do not relate to an affordance of the manipulator, 
but provide important information on the position or orientation of the 
manipulator such as MFnDiscManip::centerIndex and 
MFnDiscManip::axisIndex.

Each converterManipValue item and each converterPlugValue item has an 
integer index that uniquely identifies that item. Each manipValue item on 
a base manipulator also has an integer index that uniquely identifies that 
item.

As seen in the diagram, the one-to-one associations are directly between a 
converterManipValue item and a converterPlugValue item.

More complex conversions between converterManipValue items and 
converterPlugValue items are performed through conversion functions. 
These functions can use any number of converterPlugValue or 
converterManipValue items to calculate the value of the corresponding 
converterManipValue or converterPlugValue item. 

One-to-one associations

One-to-one assocations between a converterManipValue item and a 
converterPlugValue item are established through methods on the 
manipulator classes derived from MFnManip3D. These methods and the 
data types corresponding to the plugs they connect to are:

• MFnFreePointTriadManip::connectToPointPlug (3 doubles)

• MFnDirectionManip::connectToDirectionPlug (3 doubles) 

• MFnDistanceManip::connectToDistancePlug (double)

• MFnPointOnCurveManip::connectToCurvePlug (curve)

• MFnPointOnCurveManip::connectToParamPlug (double)

• MFnPointOnSurfaceManip::connectToSurfacePlug (surface)

• MFnPointOnSurfaceManip::connectToParamPlug (2 doubles)

• MFnDiscManip::connectToAnglePlug (double)

• MFnCircleSweepManip::connectToAnglePlug (double)

• MFnToggleManip::connectToTogglePlug (boolean)

Note There is a one-to-one correspondence between a 
converterManipValue item and a base manipulator’s 
manipValue item, and these corresponding items share the same 
integer index. There is also a one-to-one correspondence 
between a converterPlugValue item and a plug on a node 
affected by the manipulator. 
API guide

127



7 | Manipulators 
Developer > Communication between manipulators and nodes
• MFnStateManip::connectToStatePlug (long)

• MFnCurveSegmentManip::connectToCurvePlug (curve)

• MFnCurveSegmentManip::connectToStartParamPlug (double)

• MFnCurveSegmentManip::connectToEndParamPlug (double)

• MFnRotateManip::connectToRotatePlug (3 doubles)

• MFnRotateManip::connectToRotateCenterPlug (3 doubles)

• MFnScaleManip::connectToScalePlug (3 doubles)

• MFnScaleManip::connectToScaleCenterPlug (3 doubles)

These methods should be called from the connectToDependNode method 
described above. For example, in the footPrintManip:

MStatus footPrintLocatorManip::connectToDependNode
                               (const MObject &node)
{
    ...
    MFnDistanceManip distanceManipFn(fDistanceManip);
    MFnDependencyNode nodeFn(node);
    MPlug sizePlug = nodeFn.findPlug("size", &stat);
    if (MStatus::kFailure != stat) {
        distanceManipFn.connectToDistancePlug(sizePlug);
        ...
        finishAddingManips();
        MPxManipContainer::connectToDependNode(node);
    }
    return stat;
}    

Conversion functions

Conversion functions are used to convert between manipulator values and 
plug values. They are implemented as callback methods. A simple 
example of a manipulator that uses conversion functions is a container 
manipulator with a DiscManip connected to a plug (that is associated with 
an attribute of type MFnUnitAttribute::kAngle) that takes the rotation of 
the disc manip and multiplies that rotation by 10. The conversion function 
uses MPxManipContainer:: getConverterManipValue on the 
MFnDiscManip::angleIndex and then multiplies that angle by 10.

Conversion functions are very useful when the position of a manipulator 
has to be affected by the position of an object, or to move a group of 
manipulators together in a specific way. Without conversion functions, 
manipulators would not be able to move together as a unit, and certain 
components of the manipulator would remain either at the origin or a 
fixed position in space.
API guide 

128



7 | Manipulators

Developer > Communication between manipulators and nodes
There are two kinds of conversion callback methods: manipToPlug and 
plugToManip. 

plugToManip

A plugToManip conversion callback is used to get the value of a 
converterManipValue item from various converterPlugValue items. This 
callback has access to all the converterPlugValue items and returns the 
value of a converterManipValue item. 

manipToPlug

A manipToPlug conversion callback is used to get the value of a 
converterPlugValue item from various converterManipValue items. This 
callback has access to all the converterManipValue items and returns the 
value of a converterPlugValue item. 

In general, manipToPlug conversions are less commonly used. In addition 
to using converterPlugValues and converterManipValues, it is sometimes 
useful to use class data, such as a DAG path. (See the footPrintManip for 
an example of how fNodePath is used to calculate the node translation.) 
For manipulators that operate on components, it may also be useful to 
store initial component positions (see the componentScaleManip for an 
example of how this is done).

MManipData

The conversion callback methods return a data type called MManipData. 
MManipData encapsulates manipulator data which is returned from the 
manipulator conversion functions. It represents data that is either simple 
or complex. The simple data methods on MManipData are used to 
represent bool, short, long, unsigned, float, and double types. 

Note Conversion functions are not required in situations where a 
FreePointTriadManip specifies a position or a 
PointOnCurveManip specifies a parameter along a curve. 
However, if you have a DiscManip that you want to move along 
with the PointOnCurveManip, you need a conversion function to 
give the DiscManip information about its position and normal.

Note Sometimes attributes associated with the simple data types have 
higher level meanings such as distance, angle, and time (for 
example, MFnUnitAttribute::kAngle, 
MFnUnitAttribute::kDistance, and MFnUnitAttribute::kTime). 
API guide

129



7 | Manipulators 
Developer > Communication between manipulators and nodes
MManipData is also used to represent complex data types created by 
MFnData or classes derived from MFnData, such as matrices, curves, and 
arrays of data.

The footPrintManip example plug-in has an example of a plugToManip 
conversion callback called startPointCallback. The startPointCallback 
returns an MManipData which is set to be an MObject created by 
MFnNumericData.

class footPrintLocatorManip : public MPxManipContainer
{
public:
    ...
    MManipData startPointCallback(unsigned index) const;
    MVector nodeTranslation() const;
    MDagPath fDistanceManip;
    ...
};

MManipData footPrintLocatorManip::startPointCallback
    (unsigned index) const
{
    // The index is the startPointIndex that is
    // specified in addPlugToManipConversionCallback,
    // but it is not necessary to use this in the callback.
    MFnNumericData numData;
    MObject numDataObj =
        numData.create(MFnNumericData::k3Double);
    MVector vec = nodeTranslation();
    numData.setData(vec.x, vec.y, vec.z);
    return MManipData(numDataObj);
}

MStatus footPrintLocatorManip::connectToDependNode
                               (const MObject &node)
{
    ...
    unsigned startPointIndex =
        distanceManipFn.startPointIndex();
    addPlugToManipConversionCallback(
        startPointIndex, 
        (plugToManipConversionCallback) startPointCallback);
    ...
}

API guide 

130



7 | Manipulators

Developer > Connect manipulators to the Show Manipulator Tool
Connect manipulators to the Show 
Manipulator Tool

The Show Manipulator Tool uses Maya manipulators to modify plug 
values or provide access to the construction history of a node. If you select 
several objects while in the Show Manipulator Tool, the corresponding 
manipulator displays for each of the objects selected.

The object that the manipulator is attached to does not have to be a DAG 
node. Some manipulators, such as the Revolve manipulator, are attached 
to a dependency node upstream of the final shape. For example, for a 
sphere called nurbsSphereShape1, the revolve manipulator must be 
attached to the makeNurbsSphere1 node which is upstream relative to 
nurbsSphereShape1. 

Other manipulators, such as the camera manipulator and the light 
manipulator, can be attached to either the transform or the shape of the 
light or camera.

The Show Manipulator Tool is explained in detail in the Basics guide.

Writing a manipulator to work with the Show 
Manipulator Tool

The first step when creating a manipulator that works with the Show 
Manipulator Tool for a given node is to pick a name for the manipulator 
that corresponds to the node type name. To determine the name of the 
manipulator, take the name of the node and append “Manip” to the end 
of the node name. For example, the “Show Manip” for footPrintLocator is 
footPrintLocatorManip.

plugin.registerNode("footPrintLocator", // name of node
                    footPrintLocator::id,
                    &footPrintLocator::creator,
                    &footPrintLocator::initialize,
                    MPxNode::kLocatorNode);

plugin.registerNode("footPrintLocatorManip", // name of manip
                    footPrintLocatorManip::id,
                    &footPrintLocatorManip::creator,
                    &footPrintLocatorManip::initialize,
                    MPxNode::kManipContainer);

Note makeNurbsSphere1 is not a DAG node, and can be selected 
either in the Hypergraph or the Channel Box.
API guide

131



7 | Manipulators 
Developer > Connect manipulators to the Show Manipulator Tool
The second step is to have the initialize method of the node call 
MPxManipContainer::addToManipConnectTable. For example, in the 
footPrintLocator::initialize method:

MStatus footPrintLocator::initialize()
{
    ...
    MPxManipContainer::addToManipConnectTable(id);
    ...
}

Where id is defined and declared as:

class footPrintLocator : public MPxLocatorNode
{
    ...
public:
    static MTypeId id;
};
MTypeId footPrintLocator::id(0x81101);

Adding the manipulator to a Context

An alternative to invoking a manipulator by the Show Manipulator Tool is 
to invoke the manipulator from a user-defined context.

The class MPxSelectionContext has two methods to support the 
management of manipulators: addManipulator and deleteManipulator.

In addition to using these two methods, 
MPxSelectionContext::toolOnSetup and MPxContext::toolOffCleanup 
should be overridden so that toolOnSetup adds a callback for 
manipulators, and toolOffCleanup removes the callback when the active 
list is modified. 

The callback would be an updateManipulators function which actually adds 
and deletes the manipulators.

For example:

MCallbackId id1;
void moveContext::toolOnSetup(MEvent &)
{
    ...
    id1 = ModelMessage::addCallback(
          MModelMessage::kActiveListModified,
          updateManipulators, this, &status);
    ....    
}

void moveContext::toolOffCleanup()
{
    ...
API guide 

132



7 | Manipulators

Developer > Connect manipulators to the Show Manipulator Tool
    status = MModelMessage::removeCallback(id1);
    ...
}

void updateManipulators(void * data)
{
    ...
    moveContext * ctxPtr = (moveContext *) data;
    ctxPtr->deleteManipulators();
    ...
    // for each object selected
    MString manipName("moveManip");
    MObject manipObject;
    ctxPtr->moveM = (moveManip *) 
                    moveManip::newManipulator(manipName,
                                              manipObject);
    ...
    ctxPtr->addManipulator(manipObject);
    ...
    ctxPtr->moveM->connectToDependNode(dependNode);
    ...
}

Example Manipulators

moveManip

The moveManip.cpp plug-in shows how to create a manipulator from a 
context. The user-defined manipulator in moveToolManip.cpp is called 
moveManip and consists of two base manipulators: a 
FreePointTriadManip and a DistanceManip. 

footPrintManip

This plug-in example demonstrates how to use the Show Manipulator 
Tool with a user-defined node and a user-defined manipulator. The user-
defined manipulator consists of a DistanceManip. 

Note This manipulator uses a conversion function to place the 
DistanceManip at the location of the foot. Otherwise, the 
DistanceManip would appear at the origin.
API guide

133



7 | Manipulators 
Developer > Connect manipulators to the Show Manipulator Tool
rotateManip

This plug-in demonstrates the different modes of the rotate base 
manipulator. The user-defined manipulator in rotateManip.cpp consists of 
a rotate base manipulator and a state base manipulator. The state 
manipulator is used to control the mode of the rotate manipulator: object 
mode, world space mode, gimbal mode, and object mode with snapping. 

componentScaleManip

This plug-in demonstrates how to use the scale base manipulator and also 
demonstrates a method for manipulating components. The plug-in 
componentScaleManip.cpp consists of a scale base manipulator. The 
manipulator works by attaching manipToPlug conversion callbacks for 
every selected vertex. The conversion function computes the new vertex 
positions using stored initial vertex positions and the scale manipValue. 

surfaceBumpManip

The surfaceBumpManip plug-in example demonstrates how the 
pointOnSurface base manipulator can be used to modify vertices close to 
the param manipValue. The plug-in uses a manipToPlug conversion 
function as a callback to update vertex positions on the NURBS surface.

Note Since this plug-in uses the manipToPlug conversion function as a 
callback that computes a dummy plug, with the vertex positions 
updated independently, this plug-in will not support undo.
API guide 

134



8 Shapes
Developer Plug-in API

Define a shape

Shapes in Maya

Shapes in Maya are selectable DAG objects that display in 3D views. 
Meshes, NURBS surfaces and curves, and locators are just some examples 
of shapes. Shapes are also dependency graph (DG) nodes that have 
attributes which can be connected to other nodes.

Shapes can be thought of as a container for geometry. The role of this 
container is to present the geometry for interactive display and 
manipulation.

Shapes which are formed and manipulated by the position of control 
vertices (or CVs) are called control point shapes. The control points are 
attributes on the shape which are usually arrays of points. Control points 
become interactive, i.e. they can be selected and manipulated, by 
associating the control point attributes with a component.

Components are objects (MObject’s) which contain two pieces of 
information, the type of component and the index values or range. For 
example, a mesh vertex component. This component represents the vertex 
(or “pnts”) attribute of a mesh shape where “vtx[0]” represents vertex 0 of 
the mesh and “vtx[0:7]” represents the first eight vertices of the mesh.

Shapes which define a surface such as NURBS surfaces and meshes 
support hardware display of materials and hardware lighting in 
interactive views as well as the hardware render buffer. 

User-defined shapes

The purpose of a user-defined shape and all the classes associated with 
shapes is to “wrap” an arbitrary geometry type that you defined as a DAG 
node (and a DG node), or as data passed through the DG.

The class MPxSurfaceShape lets you write shapes using the Maya API. 
Writing a shape node is similar to writing a dependency node, in fact, the 
base class for user defined shapes (MPxSurfaceShape) derives from 
MPxNode.
API guide

135



8 | Shapes 
Developer > Shape classes
The major difference between MPxSurfaceShape and MPxNode is the 
addition of component handling, drawing, and selection functions. The 
overridable functions have been split into two classes, the DG node 
functionality is in MPxSurfaceShape and the drawing and select functions 
are in MPxSurfaceShapeUI.

User-defined shapes are best suited for control point based shapes such as 
polygonal meshes or spline-based objects. This does not mean that you 
cannot write other kinds of shapes, it just means that MPxSurfaceShape is 
already set up to handle control point based shapes.

Shapes are registered using the MFnPlugin::registersShape function. This 
function is similar to registerNode but contains an additional argument 
specifying the creator function for the MPxSurfaceShapeUI class. 
Unregistering shapes is done using MFnPlugin::deregisterNode in the 
same way that MPxNode classes are unregistered.

Shape classes

The following lists the proxy classes you will be deriving from:

• “MPxSurfaceShape (required)”: the DG node class

• “MPxSurfaceShapeUI (required)”: drawing and selection

• “MPxGeometryIterator (optional)”: iterator for components (optional)

• “MPxGeometryData (optional)”: used to pass geometry through the 
DG (optional)

MPxSurfaceShape and MPxSurfaceShapeUI are mandatory. The main 
functionality for shapes is split between these two classes to separate the 
drawing and selection code from the evaluation code.

MPxSurfaceShape (required)

This class defines the non UI part of a shape. The goal of this class is to 
represent some user-defined geometry in Maya’s DAG.

MPxSurfaceShapeUI (required)

This class defines the drawing and selection part of a shape.

MPxGeometryIterator (optional)

This class provides Maya with a control point iterator for your geometry. 
The iterator queries and sets points in your geometry generically. Iterators 
are used when your shape has components associated with its attributes.
API guide 

136



8 | Shapes

Developer > Writing a shape
MPxGeometryData (optional)

This class is used to provide Maya with a container for your geometry that 
can be passed through DG connections. It is often more efficient to pass all 
of the information about your geometry as data then as separate 
attributes. If you want your shape to work with Maya’s deformers then 
you must provide a data class as input and output attributes to your 
shape.

Writing a shape

The goal of writing a shape is to take a geometry class you defined and 
integrate that geometry into Maya in the form of a DAG object. 

It is a good idea to keep geometry-specific information in your geometry 
class. This way it will be easier to represent the geometry as dependency 
graph data. Keeping geometry specific information in your geometry class 
will also make it easier to handle drawing as you will have to pass 
geometry-specific drawing information onto Maya’s draw request queue 
as draw data.

Where to start

User-defined shapes are more complex than DG nodes because of the 
additional drawing, selection, and component functionality. It is a good 
idea to start by designing the shape node before writing any code. This 
involves defining your input and output attributes and determining the 
relationships (or affects) between those attributes.

The simplest shape is one without components or geometry data—for 
example, a sphere shape that takes an input radius and perhaps x and y 
divisions and from this computes the geometry for a sphere to draw in 
openGL.

It is also a good idea to write your shape in stages. The first step is to 
derive from MPxSurfaceShape and MPxSurfaceShapeUI. Writing the 
MPxSurfaceShape class is the same as writing any MPxNode class. The 
additional virtual functions can be overridden as the functionality is 
needed.

Registering and deregistering shapes

Registering shapes with Maya is similar to registering DG nodes. The only 
difference is that shapes have a separate UI class that must be registered 
with the shape node. The MFnPlugin::resgisterShape function is used for 
shape registration. Deregistering a shape is exactly the same as 
deregistering a node. Here is an example of shape registration:

MStatus initializePlugin( MObject obj )
{

API guide

137



8 | Shapes 
Developer > Drawing and refresh
    MFnPlugin plugin( obj,"Alias","2.0", "Any");
    return plugin.registerShape( "yourShape", yourShape::id,
                                 &yourShape::creator,
                                 &yourShape::initialize,
                                 &yourShapeUI::creator );
}

MStatus uninitializePlugin( MObject obj )
{
    return plugin.deregisterNode( yourShape::id );
}

Drawing and refresh

Drawing is a two step process—first the geometry and materials are 
evaluated and all of the information necessary for drawing is placed onto 
a queue, and secondly, the actual OpenGL drawing.This two step process 
allows your shapes to take advantage of the multi-threaded drawing 
capabilities of future versions of Maya.

Drawing occurs whenever the camera changes or the view has to be 
refreshed. When this happens, the MPxSurfaceShapeUI::getDrawRequest 
function is called. This is Maya’s way of asking the shape what it needs to 
draw. Inside this function you should query the drawing state, using 
MDrawInfo, and then construct a draw request (MDrawRequest) to place 
on the queue. You will often want to place multiple requests on the queue 
(MDrawRequestQueue) in this function. For instance, in shaded mode if 
your shape is selected you may want to add a request to draw the shaded 
object and another request to draw wireframe on top of the shaded object.

The draw data (MDrawData) holds information specific to your shape 
which Maya does not intrinsically know about. The draw data acts as a 
container to pass your geometry through the draw request queue. For 
each draw request you must create and add a draw data object which 
contains geometry-specific information that you will need in the 
subsequent call to MPxSurfaceShapeUI::draw.

To create draw data, use the function MPxSurfaceShapeUI::getDrawData 
and to add the data to a request use MDrawRequest::setDrawData. The 
following example shows how to create a draw request and draw data for 
your geometry.

void yourShapeUI::getDrawRequests( const MDrawInfo & info,
                     bool objectAndActiveOnly,
                     MDrawRequestQueue & queue )
{
    MDrawData data;
    MDrawRequest request = info.getPrototype( *this );
    yourShape* shapeNode = (yourShape*)surfaceShape();
    yourGeom* geom = shapeNode->geometry();
API guide 

138



8 | Shapes

Developer > Drawing and refresh
    getDrawData( geom, data );
    request.setDrawData( data );
...
}

The draw request (MDrawRequest) should be created in the overridden 
MPxSurfaceShapeUI::getDrawRequests method. Once the request is 
created the appropriate “set” methods of this class should be used to 
define what is being requested. Then the request should be placed on the 
draw request queue using MDrawRequestQueue::add.

The draw token is an integer value which you can use to specify what is to 
be drawn. This is object specific and so you should define an enum with 
the information you require to decide what is being drawn in your 
MPxSurfaceShapeUI::draw method. Here is an example of a draw token 
for a mesh object:

    enum {
        kDrawVertices, // component token
        kDrawWireframe,
        kDrawWireframeOnShaded,
        kDrawSmoothShaded,
        kDrawFlatShaded,
        kLastToken
    };

Maya processes the draw request queue and for each draw request, calls 
the corresponding objects draw function. In the case of user defined 
shapes, your MPxSurfaceShapeUI::draw method is called.

Drawing in shaded mode

Supporting shaded mode display is a two step process. The first step 
occurs in your getDrawRequests function. Here you must “evaluate” or 
setup the material so that it can be displayed when your object is drawn. 
The second step occurs in your draw function where you must setup the 
view to display the material.

The following code demonstrates how to setup the material in your 
getDrawRequests function if the request is for shaded mode display.

    MDagPath path = info.multiPath();
    M3dView view = info.view();
    MMaterial material = MPxSurfaceShapeUI::material( path 
);
    material.evaluateMaterial( view, path );
    if ( material.materialIsTextured() ) {
        material.evaluateTexture( data );
    }
    request.setMaterial( material );
API guide

139



8 | Shapes 
Developer > Selection
In your draw function you will need to setup the viewport so that it can 
display the material. This is done using MMaterial::setMaterial. To set up 
the viewport to display textures, use MMaterial::applyTexture. The 
following code demonstrates this.

void yourShapeUI::draw( const MDrawRequest& request,
                        M3dView & view ) const
{
    ...
    MMaterial material = request.material();
    material.setMaterial( request.isTransparent() );
    drawTexture = material.materialIsTextured();
    if ( drawTexture ) glEnable(GL_TEXTURE_2D);
    if ( drawTexture ) {
        material.applyTexture( view, data );
    }
    ...
}

Selection

When an object is selected in Maya, a selection ray is generated based on 
the orientation of the camera and the mouse position. Selection happens in 
two steps—first, all of the object bounding boxes are tested for ray 
intersection, then the select functions are called for all objects whose 
bounding boxes were hit.

The shape selection function is defined by overriding the select function of 
MPxSurfaceShapeUI. You must override this function to add items to the 
given selection list based on the selection state information provided by 
MSelectInfo.

See the method apiMeshShapeUI::select and 
apiMeshShapeUI::selectVertices in the apiMeshShape example plug-in for 
an example of object and component selection.

Components

Shapes which require visual feedback and manipulation of attributes, such 
as control point based shapes, must have components associated with 
those attributes. Shapes such as polygonal meshes or spline surfaces have 
control vertices which can be selected and manipulated. These control 
vertices exist as attributes on the shape which are exposed interactively in 
Maya by representing them as components.

Note All OpenGL calls should be enclosed by calls to 
M3dView::beginGL() and M3dView::endGL().
API guide 

140



8 | Shapes

Developer > Components
Components are objects (MObject’s) which contain two pieces of 
information, the type of component and the index values or range. An 
example is a vertex component for a mesh shape where “vtx[0]” 
represents vertex 0 of the mesh and “vtx[0:7]” represents the first 8 
vertices of the mesh.

The classes used for creating, editing, and querying components are:

• MFnComponent

• MFnDoubleIndexedComponent

• MFnSingleIndexedComponent

• MFnTripleIndexedComponent

Components fall into three categories based upon the dimensions of the 
index. The types are single, double, and triple indexed. Examples of these 
types are mesh vertices (single indexed), NURBS surface CVs (double 
indexed), and lattice points (triple indexed).

Components can be marked as complete, meaning the component 
represents a complete set of indices from 0 to numElements-1.

Mapping attributes to components

In Maya, components are specified as strings. Each type of component has 
a different string name. In the API components are MObjects 
distinguished by their API type (see MFn.h). For example, a mesh vertex 
component can be specified in Maya as “vtx[0]” and in a plug-in it 
represented as an MObject with apiType “MFn::kMeshVertComponent”. 
The index information can be extracted using an MFnComponent derived 
class.

To associate (or map) a component with one of your shapes attributes you 
must choose one of Maya’s existing component types and override 
MPxSurfaceShape::componentToPlugs to convert component types to 
plugs.

The following is an example of associating a mesh vertex component with 
the “mControlPoints” attribute of a shape:

void yourShape::componentToPlugs( MObject& component,
                    MSelectionList& list )const
{
    if ( component.hasFn(MFn::kMeshVertComponent) ) {
        MFnSingleIndexedComponent fnVtxComp( component );
        MObject thisNode = thisMObject();
        MPlug plug( thisNode, mControlPoints );
        int len = fnVtxComp.elementCount();
        for ( int i = 0; i < len; i++ ) {
            MPlug vtxPlug = plug.elementByLogicalIndex(
                                 fnVtxComp.element(i) );
API guide

141



8 | Shapes 
Developer > Components
            list.add( vtxPlug );
        }
    }
}

Component matching

Attributes can be specified as strings in MEL. Your shape must be able to 
validate these strings to ensure that proper names, indices etc. have been 
given. The method MPxSurfaceShape::matchComponent is used for this 
purpose.

virtual MatchResult matchComponent( const MSelectionList& 
item,
                       const MAttributeSpecArray& spec,
                       MSelectionList& list );

This method validates component names and indices which are specified 
as a string and adds the corresponding component to the passed in 
selection list. Select commands such as “select shape1.vtx[0:7]” are 
validated with this method and the corresponding component is added to 
the selection list.

The attribute specification (MAttributeSpec) is a class that provides 
convenient access to all of the information about how attributes are 
specified. This includes attribute names, indices, and ranges.

Component iteration 

For Maya to get and set the position of components you must define an 
iterator for your geometry by deriving from the class 
MPxGeometryIterator.

A geometry iterator is used by the translate/rotate/scale manipulators to 
determine where to place the manipulator when components are selected.

Deformers also require a geometry iterator with overridden setPoint and 
point methods in order to deform the points your shape.

In general, you will want to override the following methods from 
MPxGeometryIterator:

    MPxGeometryIterator( void * userGeometry,
                         MObjectArray & components );
    MPxGeometryIterator( void * userGeometry,
                         MObject & components );
    virtual void   reset();
    virtual MPoint point() const;
    virtual void   setPoint( const MPoint & ) const;

You must override the following functions of MPxSurfaceShape to 
associated an iterator with your shape:
API guide 

142



8 | Shapes

Developer > Tweaks and internal attributes
    virtual MPxGeometryIterator*                         
     geometryIteratorSetup( MObjectArray&, MObject&, bool );
    virtual bool acceptsGeometryIterator( bool writeable );
    virtual bool acceptsGeometryIterator( MObject&,
                                          bool, bool );

Translate, scale, and rotate tools for components

To support the translate, rotate and scale tools, you must override the 
method MPxSurfaceShape::transformUsing. The function takes a matrix 
and array of components as arguments. The matrix specifies the 
transformation that is being applied and the components specify the 
attribute indices that are being transformed.

For shapes with large numbers of control vertices, it can be prohibitively 
slow relying on Maya’s compute mechanism for setting attribute values. 
The method MPxNode::forceCache can be used in these situations to gain 
direct access to a node’s datablock and to get/set attribute values directly 
without going through compute. Special care must be taken to ensure that 
all attributes that depend on the ones you are changing also get updated. 
For instance, if the vertices of a mesh are changed, then the normals 
should also be updated as well as the bounding box. The method, 
vertexOffsetDirection, must be overridden if the Move tool is to work in 
move normal mode.

Tweaks and internal attributes

Shapes that have input history, for instance, another node feeding in input 
geometry, need some way of storing any offsets (or tweaks) applied to 
vertex positions. Each time the input geometry changes, the shape has to 
recompute. By storing any tweaks in a separate attribute, the tweaks can 
be added to the input vertex positions forming the output geometry.

If there is no input history, you do not have to store the tweaks in a 
separate attribute. Instead, vertex movements can be applied directly to 
the output surface.

Marking attributes as internal, using MFnAttribute::setInternal, allows 
you to override the behavior of setAttr and getAttr so you can deal with 
tweaks in a different manner depending on whether there is input history.

Note Using internal attributes is entirely up to you. This is a design issue 
and using internal attributes is not necessarily the only way to 
handle tweaks.
API guide

143



8 | Shapes 
Developer > Geometry data
Input history implies that some other node is supplying your shape with 
input data. Creator nodes are dependency nodes which are responsible for 
creating specific types of shape data. Typically, a shape will have one or 
more creator nodes. For instance, a polygonal shape may have creator 
nodes for generating sphere data and cube data. See apiMeshCreator in 
the apiMeshShape sample plug-in for an example of a creator node.

Geometry data

To support sets and deformations, user-defined shapes must be able to 
pass their own data type through attribute connections. To define some 
data for your shape, you must derive a new class from 
MPxGeometryData. This class is similar to MPxData but includes methods 
to support sets (or groups) and component iteration.

The purpose of MPxGeometryData is to provide a wrapper or container 
for your geometry so that it can be passed through DG connections just 
like any other Maya data.

If your geometry has an iterator associated with it, then you can associate 
this iterator with your data to support Maya’s deformers. 

The following methods must be overridden to accomplish this:

    virtual MPxGeometryIterator* iterator( MObjectArray&
                                           MObject&, bool 
);
    virtual MPxGeometryIterator* iterator( MObjectArray&,
                                           MObject&,
                                           bool, bool );

File IO

Shapes which do not define their own data type do not need to add any 
additional code to support file IO. By default, attributes on your node are 
saved if they are marked storable (which is default) and if there is no 
input connection to that attribute. If you want to selectively decide which 
attributes get written and which are not then override the “shouldSave” 
method of MPxNode.

If you define a new type of data then you must override the writeASCII 
and writeBinary methods of MPxData to support file IO. 

For shapes which support tweaking of attribute values (like applying 
offsets to input history), you may need to do some extra work to specify 
what should be saved. 
API guide 

144



8 | Shapes

Developer > Deformers
Deformers

Deformers in Maya operate on control point based shapes with 
components defined for the control points attribute. 

To support Maya’s deformations, you must provide the following:

• An “MPxGeometryData” derived class encapsulating your geometry

• A “localShapeInAttr” function

• A “localShapeOutAttr” function

• A “worldShapeOutAttr”function

• An “MPxGeometryIterator” for your geometry

• A “match” function

• A “createFullVertexGroup” function

• A “geometryData” function

MPxGeometryData

You must provide a geometry data class that encapsulates your geometry 
in order to for deformers to work.

localShapeInAttr

This function must be overridden to return the attribute corresponding to 
the input history for your shape. This attribute must be the same type as 
your geometry data. 

localShapeOutAttr

This function must be overridden to return the attribute representing the 
output geometry for your shape. This attribute must be the same type as 
your geometry data. 

worldShapeOutAttr

This function must be overridden to return the output array attribute 
representing instances of the output geometry for your shape. This 
attribute must be the same type as your geometry data. Each element in 
the array will represent a particular instance of your shape.

MPxGeometryIterator

Points are manipulated by deformers through an iterator which you 
define and implement. 
API guide

145



8 | Shapes 
Developer > Example Shapes
match

This function must be overridden to check for matches between a selection 
type / component list, and the type of this shape / or it’s components. 
This is used by sets and deformers to make sure that the selected 
components fall into the “vertex only” category.

createFullVertexGroup

This method is used by Maya when it needs to create a component 
containing every vertex (or control point) in the shape. This will get called 
if you apply some deformer to the whole shape, i.e. select the shape in 
object mode and add a deformer to it.

geometryData

This function should return the input data object for the surface. This gets 
called internally by Maya to get at the shapes grouping (set) information.

Example Shapes

quadricShape

The quadricShape plug-in demonstrates how to create a simple shape 
based around the OpenGL gluQuadric functions. This plug-in registers a 
new type of shape with Maya called “quadricShape” which can display 
spheres, cylinders, and disks. This shape supports hardware display of 
materials including 2d textures.

apiMeshShape

The apiMeshShape plug-in demonstrates how to create a polygonal mesh 
shape which has selectable, movable, animatable, and deformable vertices. 
This shape also supports hardware display of materials. This plug-in also 
creates geometry data and demonstrates how to pass this data between 
nodes.

The files associate with this plug-in are:

• apiMeshGeom.{h,cpp}

• apiMeshShape.{h,cpp}

• apiMeshShapeUI.{h,cpp}

• apiMeshIterator.{h,cpp}

• apiMeshData.{h,cpp}

• api_macros.h
API guide 

146



9 Polygon API
Developer Polygon API

Overview of Polygon API

The Poly API is the subset of the Maya API that deals with handling 
polygonal geometry in Maya. This chapter introduces you to the 
following:

• ”How polygons are handled internally” on page 147

• ”The five basic polygonal API classes” on page 156

• ”Construction History and Tweaks” on page 161

• ”polyModifierCmd example” on page 164

• ”splitUVCmd example” on page 186

• ”Poly exporter plug-ins” on page 208

How polygons are handled internally

Basic data structures are used to contain the components that represent 
the polygon (faces, edges, vertices). These structures are then further 
encapsulated in polygonal shape nodes to provide structure within the 
core of the Maya architecture—the dependency graph. Each of these 
concepts is crucial for manipulating and interfacing with polygons in 
Maya.

Polygon components

Polygonal meshes are composed of three basic components:

• ”Vertices” on page 148

• ”Edges” on page 148

• ”Faces” on page 148

Beyond the three basic polygon components there are two additional 
components, which are just as important in understanding how to work 
with polygons in Maya:

• ”Face-Vertices” on page 149

• ”UVs” on page 150
API guide

147



9 | Polygon API 
Developer > How polygons are handled internally
Vertices

The vertices of a polygonal mesh are stored in a simple array of 3D float 
points, each point having a vertex id based on the given index in the 
array. Both edges and faces are based on this array. 

Edges

The edges of a polygonal mesh are stored in an edge array. Each edge in 
the edge array consists of two integers that make up each vertex id. The 
first integer represents the start vertex of the edge while the second 
integer represents the end vertex of the edge. This provides edges with 
vertex composition, direction, and an edge id (represented by the indices 
of the edge array). 

Faces

The faces of a polygonal mesh are stored in an integer array. Each face is 
described by a number of sequences of integers—each integer 
representing an edge id. The first sequence of edges represents the 
boundary of the face. Any subsequent sequences represent holes in the 
face. Internal flags mark the start and end of each sequence as well as the 
end of the face description are marked by internal flags. 

A face offset or index array compliments the face array. This array holds 
the starting positions of each face description in the face array. Since each 
face can be composed of a series of a number of edges as well as multiple 
sequences, it can be redundant to traverse the array looking for the 

Vertex array

Edge array and edge structure
API guide 

148



9 | Polygon API

Developer > How polygons are handled internally
beginning of each face. This face index array provides a quick access to 
information about each face. The index of each face position is referred to 
as the face id of the given face. In addition to the elements marking the 
start of each face, an element is appended to the end of the face index 
array to mark the final index in the face list. This final index figure lets 
you quickly access the order of each face (number of edges/vertices in the 
face). 

Face-Vertices

In cases where faces are adjacent to each other, the faces share common 
vertices. You often need to associate data to a specific vertex of a specific 
face, while distinguishing that specific vertex from any faces that share it. 
These are known as face-vertices. 

Face-vertices are conceptual components used by polygonal features such 
as color per vertex and UVs. Face-vertices are represented by an existing 
data structure—the face array and face index array. Each face vertex is 
associated with a given face id and vertex id. You can use the face id to 
find the offset into the face array and subsequently search for the given 
vertex id in the edge loops by using the start vertices of each edge. Notice 
that each vertex id in each face is a unique index for the given vertex of a 
face—a face-vertex index. A shared vertex id appears multiple times 
across the face array, appearing once in each face description that shares 
the vertex. 

In the following illustration, (a) depicts the topology of a four face 
polygonal plane while (b) shows the face-vertex view of that four face 
polygonal plane. In the face-vertex view, each face is separated, holding 
its own individual vertices. Each individual vertex is labeled using a 

Face array and face index array structure
API guide

149



9 | Polygon API 
Developer > How polygons are handled internally
vertex index local to each face (that is, 0 to 3). Each face-vertex is 
associated with a UV. However this does not guarantee a unique UV per 
face-vertex. By default, for face-vertices that represent a shared vertex, 
such as vertex 4 in (a), each face-vertex is associated with the same UV, 
thus sharing a UV. “Splitting” a UV provides each face vertex of a shared 
vertex a unique UV.

The following figure illustrates how the view of the face array can be 
changed to interpret it as a representation of face-vertices.

UVs

UVs rely heavily on the concept of face-vertices. UVs correspond to a 2D 
plane used to map a texture onto a polygonal surface. Texture mapping is 
done on a face- by-face basis. As a result, UVs are mapped on a face-
vertex basis to allow each face its own set of map coordinates, if desired. 
The structure that holds UVs in Maya consists of two arrays:

Concept of face-vertices

Storage and association of face-vertices
API guide 

150



9 | Polygon API

Developer > How polygons are handled internally
• A UV index array that uses the exact same indices of the face array 
(visualized as a face vertex array). 

• A UV array that holds a list of UV points indexed by UVIds. 

The first array associates each face vertex with a given UVId or none at all 
if the face that the face-vertex belongs to is not mapped. Each UVId then 
corresponds to an index in the UV list that holds the 2D point (U and V 
float values) where the UV is situated on the UV space. 

The polygonal shape node

Alone, the components are capable of representing the geometry of a 
mesh. However to coincide with the flexibility of the Maya architecture, 
these structures are integrated into the dependency graph architecture in 
the form of a polygonal shape node. The polygonal shape node holds four 
fundamental attributes: an inMesh, an outMesh, a cachedInMesh, and 
pnts (tweaks), as shown in the following illustration.

UV array and UV index array
API guide

151



9 | Polygon API 
Developer > How polygons are handled internally
The basic attributes

The four basic attributes of the polyShape node are explained below. Each 
of the first three attributes cache their own copy of the mesh for the 
polyShape node. The differences between each represent the different 
stage of evaluation during a DG evaluation.

inMesh

The standard input attribute of the polyShape node. This attribute accepts 
input mesh data from other DG nodes and forwards the data through the 
node to the outMesh. It stores its own internal copy of the geometry being 
passed into the node. inMesh is only valid if there is an input connection. 
Otherwise it is ignored.

outMesh 

The standard output attribute of the polyShape node. This attribute 
receives input mesh data from either the inMesh or cachedInMesh 
(depending on the node state) and stores it as its own internal copy of the 
mesh. The outMesh geometry represents the final geometry of the shape 
and is always valid.

cachedInMesh

The simulated input attribute of the polyShape node. This attribute is only 
ever initialized and used in the case where the inMesh attribute is invalid 
(that is, no input connection) and tweaks exist on the mesh. It also stores 
its own internal copy of the geometry.

pnts

The tweaks attribute. This is an array attribute that stores the position 
offsets for each vertex in the geometry, representing manual “tweaks” or 
modifications to these basic components. The presence of tweaks is 
determined by looking for a non-zero value in the array attribute.

polyShape data flow

The data flow of the polyShape node is dependent on two factors:

Polygonal shape node
API guide 

152



9 | Polygon API

Developer > How polygons are handled internally
• Construction history

• Tweaks

A node with construction history and tweaks implies that there is an input 
connection present on the node and a non-zero value present in the pnts 
attribute. In this case the inMesh is valid and upon receiving the mesh 
data from the upstream history, the pnts attribute is applied to the inMesh 
data and the resultant mesh stored in the outMesh. 

For a node with construction history and no tweaks, the inMesh is 
redirected to the outMesh. The following illustration shows the data flow 
for the case where construction history is present as well as tweaks.

A node without construction history and without tweaks implies that 
there is no input connection present on the node and an all-zero pnts 
attribute array. In this case the inMesh is invalid. However since there is 
no need to redirect any data, nor apply any tweaks, the geometry of the 
polyShape node is the outMesh itself. 

A node without construction history and with tweaks implies that there is 
no input connection present on the node and a non-zero value present in 
the pnts attribute. In this case you cannot use the outMesh since you need 
to apply tweaks. Applying tweaks directly on the outMesh will result in 
losing the former values without the ability to undo. As a result, you need 
a simulated input—the cachedInMesh—which will store the current state 
of the outMesh before tweaks are applied and re-evaluate the node. The 
outMesh geometry is copied to cachedInMesh as soon as tweaks are 
applied to the node. From there the cachedInMesh behaves just like the 
inMesh with construction history and tweaks. The pnts attribute is 
applied to the cachedInMesh and subsequently forwarded to the outMesh.

Data flow with history and tweaks
API guide

153



9 | Polygon API 
Developer > How polygons are handled internally
Interfacing with the node

Interfacing with a polyShape node involves two basic actions: 

• accessing data

• modifying/creating data

Most of the Poly API provides accessor and mutator methods that 
understand the anatomy of a polyShape node. As a result, you can use 
these methods to properly interface with the geometry of the polyShape 
node. However, you may need to interface with the node directly, for 
example, when backing up the mesh data of a node. These operations 
involve mostly DG operations such as retrieving plugs, setting plugs and 
retrieving plug data, etc.

Accessing data

The outMesh always has the most up to date information as it represents 
the final resultant mesh in the polyShape node. Consequently, the 
outMesh is where all accessors retrieve their information. In the example 
of backing up a mesh, it is the outMesh that you would backup as it 
represents the current state of the node.

Modifying/creating data

The same two factors that affect the data flow of the node also affect how 
the node should be modified—construction history and tweaks. 

In the case where construction history is present (an input connection 
exists), there is an upstream node from the polyShape node. During a DG 
evaluation the data that is passed to the polyShape node will overwrite 
the inMesh of the polyShape node, which in turn updates the outMesh. As 
a result, setting an attribute on the polyShape node or any other “direct 
modification” to the node should be avoided if history exists, as the 
change will be overwritten by the next DG evaluation. To modify the 
mesh, a modifier node containing the modification needs to be inserted 
ahead of the polyShape node. This applies regardless of the presence of 
tweaks, so long as history exists. For more details see ”Construction 

Data flow without history but with tweaks
API guide 

154



9 | Polygon API

Developer > How polygons are handled internally
History” on page 161. This case requires less direct interaction with the 
node itself since the DG requires that a modifier node be inserted ahead to 
avoid overwriting the changes made. 

In the case where construction history is not present, you can create 
history or modify the node directly. This depends on the “Record 
History” preference in Maya. If the user chooses to create history, then the 
case is similar to the above case with some minor tweaks and involves 
little interaction with the node itself other than setting up connections.

Attempting to write to the node directly where you do not want to create 
history involves more interaction and understanding of the purpose of the 
shape’s attribute composition. For a node without history and tweaks, the 
outMesh represents the only geometry of the shape node with all other 
mesh attributes ignored. Under such a case you can operate directly on 
the outMesh. So if you obtain a backup mesh, you can reapply the backup 
mesh to the outMesh and the node will be reverted to its original state.

When the node is without history but has tweaks, a cachedInMesh is 
generated as a copy of the outMesh and used to apply the tweaks to 
obtain the final mesh. During the outMesh copy to the cachedInMesh the 
node performs some synchronization among its attributes which is 
internal to the node and inaccessible from the API. This means you need 
to update the outMesh before the cachedInMesh is initialized. (In the 
example of backing up a mesh, you risk destabilizing the node if you 
simply copy the backup mesh to the cachedInMesh.) The recommended 
approach is to do the following:

1 Duplicate the shape node.

2 Copy the backup mesh into the outMesh attribute of the duplicate 
shape.

3 Connect the backup mesh’s outMesh to the shape node’s inMesh.

4 Force a DG evaluation.

5 Disconnect and delete the duplicate node.

(You could use the polyDuplicateAndConnect MEL command to perform 
the first three steps.)

This updates the outMesh, through the inMesh so that once the inMesh is 
invalidated by the disconnected node, the cachedInMesh will hold the 
original mesh backup before it applies the tweaks. This is shown in the 
”polyModifierCmd example” on page 164. The following illustration 
describes the data flow used to restore the backup of a mesh.
API guide

155



9 | Polygon API 
Developer > The five basic polygonal API classes
The five basic polygonal API classes

The Poly API consists of five main classes:

• MItMeshPolygon

• MItMeshEdge

• MItMeshVertex and MItMeshFaceVertex

• MFnMesh

The first four classes are iterators while the last class is a function set. The 
polygon iterators are primarily used to navigate or parse a mesh 
component by component and retrieve component specific information. 
The polygon function set, MFnMesh, is used to create, modify, and 
retrieve mesh specific data. 

MItMeshPolygon

MItMeshPolygon is a polygonal face iterator. Initializing this class to a 
specific mesh object lets you iterate over all faces in a mesh, in order of 
face ids. Alternatively, the iterator can be restricted to the faces adjacent to 
a given component (for example, edge or vertex) by initializing the class to 
both a DAG path referring to the mesh and an MObject reference to 
certain components.

Note Although the iterators contain a few methods that can be used to 
modify the mesh, it is good practice to rely on the iterators solely 
for navigating the mesh and accessing component specific data. 
MFnMesh provides all the necessary methods to perform any other 
desired operation on the mesh.

Restoring a backup mesh
API guide 

156



9 | Polygon API

Developer > The five basic polygonal API classes
This iterator is useful for parsing a mesh as it can traverse the mesh more 
quickly—there are fewer faces than edges and vertices and less overlap in 
data retrieval. As a face iterator, MItMeshPolygon provides methods to 
retrieve face-specific data mostly comprised of:

• Face composition (a number of edges greater than 2)

• Face-vertex data

• Face-edge data

• Adjacent component data

• UV data

• Color per vertex data

• And other miscellaneous data, such as blind data and smoothing 
information…

MItMeshPolygon is ideal for cases where you would like to quickly search 
a mesh on a face-by-face basis or when you require face specific data from 
the mesh. To see how this class is used, refer to the ”splitUVCmd 
example” on page 186. The following example also illustrates the use of 
the MItMeshPolygon class. In this sample code, MItMeshPolygon is used 
to traverse the mesh for a specific face and then retrieve the edges making 
up the face.

MStatus getFaceEdges( MObject mesh,
                      int faceId,
                      MIntArray faceEdges )
{
   MStatus status;

   // Reset the faceEdges array
   //
   faceEdges.clear();

   // Initialize a face iterator and function set
   //
   MItMeshPolygon faceIter( mesh, &status );
   MCheckStatus( status, “MItMeshPolygon constructor failed” 
);
   MFnMesh meshFn( mesh, &status );
   MCheckStatus( status, “MFnMesh constructor failed” );

   // Check to make sure that the faceId passed in is valid
   //
   if( faceId >= meshFn.numPolygons() || faceId < 0 )
   {
      cerr << “Invalid faceId.\n”;
      status = MS::kFailure;
   }
API guide

157



9 | Polygon API 
Developer > The five basic polygonal API classes
   else
   {
      // Now parse the mesh for the given face and
      // return the edges
      //
      for( ; !faceIter.isDone(); faceIter.next() )
      {
         // If we find the matching face, retrieve the
         // edge indices
         //
         if( faceIter.index() == faceId )
         {
            faceIter.getEdges( faceEdges );
            break;
         }
      }
   }

   return status;
}

MItMeshEdge

MItMeshEdge iterates over the mesh on an edge-by-edge basis and 
retrieves edge specific data. This edge iterator iterates over the edges in 
order of edge ids or it iterates over the edges adjacent to a passed in 
component. MltMeshEdge can retrieve the following types of data:

• Edge composition (two vertices)

• Edge-face data

• Edge-vertex data

• Edge smoothing

• Adjacent component data

MItMeshEdge is best suited for an edge-by-edge traversal of the mesh and 
for fetching edge specific data. The following sample code illustrates the 
use of the edge iterator. This example traverses each edge in the mesh and 
collects their start vertices, storing them inside an array indexed by edge 
id.

MStatus getEdgeStartVertices( MObject mesh,
                              MPointArray& pointArray )
{
   MStatus status;

   // Clear the output array
   //
API guide 

158



9 | Polygon API

Developer > The five basic polygonal API classes
   pointArray.clear();

   // Initialize our iterator
   //
   MItMeshEdge edgeIter( mesh, &status );
   MCheckStatus( status, “MItMeshEdge constructor failed” );

   // Now parse the mesh
   //
   for( ; !edgeIter.isDone(); edgeIter.next() )
   {
      // Retrieve the start vertex of each edge and append 
it to
      // our point array. Use the default object coordinate
      // system for our space
      //
      pointArray.append( edgeIter.point(0, MSpace::kObject) 
);
   }

   return status;
}

MItMeshVertex and MItMeshFaceVertex

MItMeshVertex iterates over the mesh on a vertex-by-vertex basis in order 
of vertex ids, retrieving vertex specific data. The vertex iterator is best 
suited for those two cases and can retrieve vertex specific data such as:

• Vertex composition (a 3D position)

• Vertex-face data

• Vertex-edge data

• Vertex normals

• UV data (specific to a vertex)

• Color data (specific to a vertex)

• Adjacent component data

MItMeshFaceVertex iterates over the mesh on a face vertex-by-face vertex 
basis in order of face ids, retrieving face-vertex specific data. The face 
vertex iterator can retrieve data such as:

• Normal data

• UV data

• Color data
API guide

159



9 | Polygon API 
Developer > The five basic polygonal API classes
MFnMesh

MFnMesh contains several methods for retrieving mesh specific data and 
modifying a mesh. You could use an iterator to find a particular 
component and use MFnMesh to perform an operation on that 
component. This is shown in the ”splitUVCmd example” on page 186 
which searches the mesh for a given UV and uses MFnMesh to “split” the 
UVs.

Although there is some overlap between the methods provided by 
MFnMesh and the MItMesh* iterators, MFnMesh represents more of a 
global library of operations for the mesh, while the iterators remain centric 
around their respective components. The following sample code 
demonstrates some things you might use MFnMesh for. The example 
retrieves various data and modifies it. Note that this code cannot be 
compiled.

// The argument list contains a “...” to represent a “Fill 
in
// the data you would like here”
//
MStatus getRandomPolyData( MObject mesh, ... )
{
   MStatus status;

   // Initialize a function set to a polygonal mesh
   //
   MFnMesh meshFn( mesh, &status );
   MCheckStatus( status, “MFnMesh constructor failed” );

   // Retrieve topological information
   //
   int faceCount = meshFn.numPolygons();
   int edgeCount = meshFn.numEdges();
   int vertexCount = meshFn.numVertices();
   int faceVertexCount = meshFn.polygonVertexCount();
   int UVCount = meshFn.numUVs();

   MPointArray vertexList;
   meshFn.getPoints( vertexList );

   MFloatArray UArray;
   MFloatArray VArray;
   meshFn.getUVs( UArray, VArray );

   // Modify topological information
   //
API guide 

160



9 | Polygon API

Developer > Construction History and Tweaks
   // Add a UV to the UV list – setUV will automatically 
grow
   // the UV list, based on the given index
   //
   meshFn.setUV( numUVs, 0.0, 0.0 );

   // Move vertex 0 to the origin of the world
   //
   MPoint origin( 0.0, 0.0. 0.0 );
   meshFn.setPoint( 0, origin, MSpace::kWorld );

   // Can also work with:
   //
   // - Vertex Colors
   // - Blind data
   // - etc.
   //
}

Construction History and Tweaks

This section assumes basic knowledge of the dependency graph. For 
details, see ”Dependency Graph (DG) nodes” on page 84.

All the operations that can be performed on a polygonal mesh can be 
generalized into three basic types: create, edit and query. While both the 
creating and querying a mesh are straightforward, editing involves 
complications resulting from construction history and tweaks and how 
they work within the confines of the dependency graph. 

Construction History

Construction history provides a backlog of actions performed on a mesh. 
The implementation of construction history in the DG makes it unique. 
For all objects in Maya, a single linear chain of DG nodes can exist 
upstream from the object’s node. This chain is known as the construction 
history of an object. The final node of a history chain always represents 
the object that the history is recording actions for. At the beginning of the 
chain lies a hidden intermediate node representing the initial state of the 
node when the history first began to record actions performed on the 
mesh.
API guide

161



9 | Polygon API 
Developer > Construction History and Tweaks
The manipulation of the mesh can be complicated by the following 
factors, which affect the state of a node: 

• Whether or not the mesh has construction history

• Whether or not the user has construction history recording turned on

The presence of construction history indicates that there is a chain of 
modifier nodes upstream from the mesh node—the history chain. Each 
modifier node in the history chain is connected via their inMesh/outMesh 
attributes through which the mesh data flows down the chain. During a 
DG evaluation, the outMesh at the top of the history chain passes the 
mesh down to each modifier node, each applying their modification in 
turn. Once the mesh reaches the actual mesh node and end of the chain, 
the modified mesh is stored on the node, overwriting any previous data 
on the node.

Attempting to modify a mesh node via API mutator methods writes the 
information directly onto the inMesh attribute of the given mesh node. 
Although some methods are history sensitive, there are many that are not. 
This, combined with the DG evaluation process presents the problem if 
history exists. Since a DG evaluation will overwrite the inMesh of the 
mesh node due to the connection from the outMesh of the modifier node 
directly upstream from the mesh, any modifications made to the mesh 
will be discarded. 

The solution to this problem is to create a node that performs the 
modification want and if history exists, to insert your node directly ahead 
of your mesh node in the history chain as shown below. The node directly 
upstream from the mesh node always represents the last change made to 
the mesh.

Construction history chain
API guide 

162



9 | Polygon API

Developer > Construction History and Tweaks
Whether the user has construction history turned on or off does not 
restrict the modification of a node as rigidly as whether the mesh has 
construction history. However it is a good practice to adhere to the user’s 
construction history preferences and behave similarly to the rest of Maya. 
This preference will change how the node should be modified as well as 
what the node will look like in the DG following the operation.

With history turned on, the user has selected to keep a history chain. 
Following the operation, the resulting mesh would look like the previous 
diagram (Inserting a modifier node). 

With history turned off, the user has selected not to see a history chain. 
From here there are two possible ways to modify the mesh:

• Operate on the mesh directly.

• Use a modifier node as shown in the previous diagram (Inserting a 
modifier node), and then collapse the node down into the mesh.

Tweaks

Tweaks are manual transformations applied to polygonal components (for 
example, manually repositioning a vertex through a translate 
transformation). The presence of tweaks on a shape complicates the 

Inserting a modifier node

Note If history already exists on the mesh and history is turned off, the 
preference is ignored and regarded as though history was turned 
on. This leaves it at the user’s discretion to collapse all history 
down into the mesh node.
API guide

163



9 | Polygon API 
Developer > polyModifierCmd example
interface of a polyShape node because they change the data flow through 
the node. Although the change isn’t drastic it affects how you modify the 
node. The challenge with tweaks is maintaining the order of operations. 

Tweaks are stored locally on the node and applied to the input mesh of 
the node (inMesh or cachedInMesh). If a node is inserted ahead of the 
polyShape node (common for a node with history), the order of operations 
is not kept. This can change the resulting mesh if a modifier node was 
altering the topology of the mesh. For example, if the modifier node 
rotated the edge containing a tweaked vertex, the resulting position of the 
edge would vary based on the order of operations. 

The polyTweak node resolves this problem. This node stores tweaks 
inside a local tweak attribute. Upon receiving a mesh input 
(inputPolymesh attribute), the node applies its tweaks to the mesh and 
returns the output through its output attribute. To address the problem 
with this node, you extract the tweaks into the polyTweak node and insert 
the polyTweak node ahead of the modifier node. This maintains the order 
of operations.

polyModifierCmd example

The source code for polyModifierCmd is located in the devkit\plug-ins 
directory.

polyModifierCmd encapsulates the generic process and interface with the 
Maya architecture for creating a command that can modify a polygonal 
mesh. Although it deals entirely with polygons, it can be extended to 
other object types in Maya as the DG concepts are closely knit.

This process is as follows:

1 Modify the data.

This part of the process deals only with the geometry 
or mesh data.

2 Apply it to the polyShape node.

Common to all poly modifier commands, this part of 
the process contains all the interaction with the Maya 
architecture regarding construction history, tweaks, 
and the polyShape node. 

Because this is a single action, to apply a modifier to a polyShape node 
you can make use of the doIt(), undoIt() and redoIt() class structure to 
implement the class. However, since polyModifierCmd is a subset of 
MPxCommand, it can derive itself off of MPxCommand so that any 
derived polyModifierCmd classes will inherit the full command 
architecture. The only consequence of this is that you cannot override the 
doIt(), undoIt() and redoIt() methods as they are required by the actual 
API guide 

164



9 | Polygon API

Developer > polyModifierCmd example
command class to perform the operation. Instead you define our own 
group of similar methods: doModifyPoly(), undoModifyPoly() and 
redoModifyPoly().

A derived class can initialize the polyModifierCmd and proceed to call 
doModifyPoly() inside the doIt() and can then extend the respective 
capabilities to the undo and redo. The ”splitUVCmd example” on 
page 186 shows the implementation of a derived polyModifierCmd 
command. Below is the class interface for the polyModifierCmd.

class polyModifierCmd : MPxCommand
{
public:
            polyModifierCmd();
   virtual  ~polyModifierCmd();

// Restrict access to derived classes only
//
protected:

   ////////////////////////////////////
   // polyModifierCmd Initialization //
   ////////////////////////////////////

   // Target polyMesh to modify
   //
   void         setMeshNode( MDagPath mesh );
   MDagPath     getMeshNode() const;

   // Modifier node type
   //
   void         setModifierNodeType( MTypeId type );
   void         setModifierNodeName( MString name );
   MTypeId      getModifierNodeType() const;
   MString      getModifierNodeName() const;

   ///////////////////////////////
   // polyModifierCmd Execution //
   ///////////////////////////////

   virtual MStatus   initModifierNode( MObject modifierNode 
);
   virtual MStatus   directModifier( MObject mesh );

   MStatus           doModifyPoly();
   MStatus           redoModifyPoly();
   MStatus           undoModifyPoly();

private:
API guide

165



9 | Polygon API 
Developer > polyModifierCmd example
   //////////////////////////////////////////////
   // polyModifierCmd Internal Processing Data //
   //////////////////////////////////////////////

   struct modifyPolyData
   {
      MObject meshNodeTransform;
      MObject meshNodeShape;
      MPlug   meshNodeDestPlug;
      MObject meshNodeDestAttr;

      MObject upstreamNodeTransform;
      MObject upstreamNodeShape;
      MPlug   upstreamNodeSrcPlug;
      MObject upstreamNodeSrcAttr;

      MObject modifierNodeSrcAttr;
      MObject modifierNodeDestAttr;

      MObject tweakNode;
      MObject tweakNodeSrcAttr;
      MObject tweakNodeDestAttr;
   };

   //////////////////////////////////////
   // polyModifierCmd Internal Methods //
   //////////////////////////////////////

   // Preprocessing methods
   //
   bool      isCommandDataValid();
   void      collectNodeState();

   // Modifier node methods
   //
   MStatus   createModifierNode( MObject& modifierNode );

   // Node processing methods (need to be executed in this 
order)
   //
   MStatus   processMeshNode( modifyPolyData& data );
   MStatus   processUpstreamNode( modifyPolyData& data );
   MStatus   processModifierNode( MObject modifierNode,
                                  modifyPolyData& data );
   MStatus   processTweaks( modifyPolyData& data );

   // Node connection methods
   //
   MStatus   connectNodes( MObject modifierNode );
API guide 

166



9 | Polygon API

Developer > polyModifierCmd example
   // Mesh caching methods
   //
   MStatus   cacheMeshData();
   MStatus   cacheMeshTweaks();

   // Undo methods
   //
   MStatus   undoCachedMesh();
   MStatus   undoTweakProcessing();
   MStatus   undoDirectModifier();

   /////////////////////////////////////
   // polyModifierCmd Utility Methods //
   /////////////////////////////////////

   MStatus   getFloat3PlugValue( MPlug plug,
                                 MFloatVector& value );
   MStatus   getFloat3asMObject( MFloatVector value,
                                 MObject& object );

   //////////////////////////
   // polyModifierCmd Data //
   //////////////////////////

   // polyMesh
   //
   bool      fDagPathInitialized;
   MDagPath  fDagPath;
   MDagPath  fDuplicateDagPath;

   // Modifier node type
   //
   bool      fModifierNodeTypeInitialized;
   bool      fModifierNodeNameInitialized;
   MTypeId   fModifierNodeType;
   MString   fModifierNodeName;

   // Node State Information
   //
   bool      fHasHistory;
   bool      fHasTweaks;
   bool      fHasRecordHistory;

   // Cached Tweak Data
   //
   MIntArray           fTweakIndexArray;
   MFloatVectorArray   fTweakVectorArray;

   // Cached Mesh Data
   //
API guide

167



9 | Polygon API 
Developer > polyModifierCmd example
   MObject   fMeshData;

   // DG and DAG Modifier
   //
   MDGModifier   fDGModifier;
   MDagModifier  fDagModifier;
};

In section of the class interface labeled // polyModifierCmd Execution //
, notice the corresponding doModifyPoly(), undoModifyPoly() and 
redoModifyPoly() method definitions. These three methods represent the 
core of the interface that derived commands will interface with.

polyModifierCmd has three basic stages:

• polyModifierCmd initialization

• polyModifierCmd preprocessing

• polyModifierCmd processing

Of the most importance however is to understand the basic class interface 
of polyModifierCmd (doModifyPoly(), undoModifyPoly(), 
redoModifyPoly()).

polyModifierCmd initialization

Before any modifier can be applied to a polyShape node, the 
polyModifierCmd requires some initialization data to guide the process. 
This data is distinctive from preprocessing data, since this is the required 
input to get the ball rolling, while preprocessing data is data extracted 
from our initial data. There are only two pieces of initialization data 
necessary to perform the operation, through which all other data can be 
extracted:

• A polyShape node—you need a mesh to apply the modifier to.

• A modifier—you need a modifier to apply to the mesh.

(“A modifier”, means the actual modification made to the mesh data, 
exclusive of the manner through which it is applied. For example, the 
modifier in the case where construction history exists would be applied as 
a modifier node.)

The polyShape node can be stored in the form of a DAG path. It is 
recommended that you use a DAG path rather than an MObject since the 
DAG path is absolute and guaranteed to be pointing to the proper object, 
whereas the MObject is a handle to an object owned by Maya which could 
change between calls to a plug-in. The polyShape input is represented in 
the class interface as:
API guide 

168



9 | Polygon API

Developer > polyModifierCmd example
// Prototypes
//
void      setMeshNode( MDagPath mesh );
MDagPath  getMeshNode() const;

MDagPath  fDagPath;

// Implementations
//
void polyModifierCmd::setMeshNode( MDagPath mesh )
{
   fDagPath = mesh;
}

MDagPath  polyModifierCmd::getMeshNode() const
{
   return fDagPath;
}

The modifier can be applied in two forms:

• Through a modifier node

• Directly on the mesh

Applying the modifier through a modifier node requires a DG node type 
that you can create and connect to the polyShape. Since it provides 
something tangible to work with, we provide an interface for you to 
initialize polyModifierCmd with a node type or node name:

// Prototypes
//
void      setModifierNodeType( MTypeId type );
void      setModifierNodeName( MString name );
MTypeId   getModifierNodeType() const;
MString   getModifierNodeName() const;

virtual MStatus   initModifierNode( MObject modifierNode );

bool      fModifierNodeTypeInitialized;
bool      fModifierNodeNameInitialized;
MTypeId   fModifierNodeType;
MString   fModifierNodeName;

// Implementations
//
void polyModifierCmd::setModifierNodeType( MTypeId type )
{
   fModifierNodeType = type;
   fModifierNodeTypeInitialized = true;
API guide

169



9 | Polygon API 
Developer > polyModifierCmd example
}

void polyModifierCmd::setModifierNodeName( MString name )
{
   fModifierNodeName = name;
   fModifierNodeNameInitialized = true;
}

MTypeId polyModifierCmd::getModifierNodeType() const
{
   return fModifierNodeType;
}

MString polyModifierCmd::getModifierNodeName() const
{
   return fModifierNodeName;
}

MStatus polyModifierCmd::initModifierNode( MObject 
modifierNode )
{
   return MS::kSuccess;
}

The initModifierNode() method does not have any role in the node type 
that is created but rather the node creation. Often modifier nodes require 
an absolute input to tell the node how to modify the data. The 
splitUVNode, for example, requires a list of UVs to split. The problem that 
arises here is that if polyModifierCmd creates the node, how does the 
derived command initialize other data on the node? polyModifierCmd 
cannot do this because it is indifferent to the modifier—it just knows how 
to connect it. To get past this problem, we provide a callback in the form 
of a virtual method for derived commands to override and expect to be 
executed prior to the use of a modifier node.

In contrast to the modifier node, applying the modifier by direct means 
provides nothing tangible to store and apply. That is, while a modifier 
node contains the modification inside an object thereby separating the 
modification from the polyShape node, a direct modifier does not. Since a 
direct modifier works directly on the polyShape node and 
polyModifierCmd needs to be independent of the modification process, 
we provide a callback to derived commands. This callback would be 
executed when there is a need for a direct modifier (that is, in the case 
with no construction history and construction history is turned off). 
Below, the code for the directModifier callback is present in the form of a 
virtual method that is called when the polyModifierCmd deems it 
appropriate.
API guide 

170



9 | Polygon API

Developer > polyModifierCmd example
// Prototypes
//
virtual MStatus   directModifier( MObject mesh );

// Implementations
//
MStatus polyModifierCmd::directModifier( MObject /* mesh */ )
{
   return MS::kSuccess;
}

polyModifierCmd preprocessing

Once you have our initialization data you can extract the rest of the data 
necessary to apply the modifier. In addition to our initialization data you 
need to know if:

• Initialization data is valid

• Construction history is present

• Tweaks are present

• Construction history is turned on

The first piece of information is a check to ensure that you can continue on 
with the given data. It consists of a check of the initialization of a 
polyShape node and modifier node information. If the data is invalid, 
polyModifierCmd cannot continue to execute and returns a failure:

// Prototypes
//
bool   isCommandDataValid()

// Implementations
//
bool polyModifierCmd::isCommandDataValid()
{
   bool valid = true;

   // Check the validity of the DAG path
   //
   if( fDagPathInitialized )
   {
      // Ensure we are pointing to a shape node
      //
      fDagPath.extendToShape();
      if( !fDagPath.isValid() || fDagPath.apiType != 
MFn::kMesh )
      {
         valid = false;
API guide

171



9 | Polygon API 
Developer > polyModifierCmd example
      }
   }
   else
   {
      valid = false;
   }

   // Check the validity of the modifier node type/name.
   // Can only check that it has been set.
   //
   if( !fModifierNodeTypeInitialized &&
       !fModifierNodeNameInitialized )
   {
      valid = false;
   }
}

The next three pieces of information relate to the node state of the 
polyShape node. Since these three pieces of data require the polyShape 
node in order to extract out their data, the validity of the polyShape node 
is required. The data extraction is straightforward and compiled into a 
single method, collectNodeState:

// Prototypes
//
void   collectNodeState();

// Implementations
//
void polyModifierCmd::collectNodeState()
{
   MStatus status;

   // Collect the node state information on the given mesh
   //
   // -HasHistory
   // -HasTweaks
   // -HasRecordHistory
   //
   fDagPath.extendToShape();
   MObject meshNodeShape = fDagPath.node();

   MFnDependencyNode depNodeFn( meshNodeShape );

   // If the inMesh is connected, we have history
   //
   MPlug inMeshPlug = depNodeFn.findPlug( “inMesh” );
   fHasHistory = inMeshPlug.isConnected();
API guide 

172



9 | Polygon API

Developer > polyModifierCmd example
   // Tweaks exist only if the multi “pnts” attribute 
contains
   // plugs that contain non-zero tweak values. Use false,
   // until proven true search pattern.
   //
   fHasTweaks = false;
   MPlug tweakPlug = depNodeFn.findPlug( “pnts” );
   if( !tweakPlug.isNull() )
   {
      // ASSERT : tweakPlug should be an array plug
      //
      MAssert( tweakPlug.isArray(), “tweakPlug.isArray()” );

      MPlug tweak;
      MFloatVector tweakData;
      int i;
      int numElements = tweakPlug.numElements;

      for( i = 0; i < numElements; i++ )
      {
         tweak = tweakPlug.elementByPhysicalIndex( i, 
&status );
         if( status == MS::kSuccess && !tweak.isNull() )
         {
            // Retrieve the float vector from the plug
            //
            getFloat3PlugValue( tweak, tweakData );
            if( 0 != tweakData.x ||
                0 != tweakData.y ||
                0 != tweakData.z )
            {
               fHasTweaks = true;
               break;
            }
         }
      }
   }

   // Query the constructionHistory command for the 
preference
   // of recording history
   //
   int result;
   MGlobal::executeCommand( “constructionHistory –q –tgl”,
                            result );
   fHasRecordHistory = (0 != result );
}

API guide

173



9 | Polygon API 
Developer > polyModifierCmd example
polyModifierCmd processing

The points of entry are:

• doModifyPoly()

• redoModifyPoly()

• undoModifyPoly()

doModifyPoly()

doModifyPoly() is the most complex piece and the core of the 
polyModifierCmd. In here all the data is parsed and the appropriate 
action given. Rather than implementing the entire process in a single 
method, doModifyPoly() only focuses on quickly scanning the node states 
and passes control over the appropriate method based on the state:

MStatus polyModifierCmd::doModifyPoly()
{
   MStatus status = MS::kFailure;

   if( isCommandDataValid() )
   {
      // Get the state of the polyMesh
      //
      collectNodeState();

      if( !fHasHistory && !fHasRecordHistory )
      {
         MObject meshNode = fDagPath.node();

         // Pre-process the mesh – Cache the old mesh
         //
         cacheMeshData();
         cacheMeshTweaks();

         // Call the directModifier
         //
         status = directModifier( meshNode );
      }
      else
      {
         MObject modifierNode;
         createModifierNode( modifierNode );
         initModifierNode( modifierNode );
         connectNodes( modifierNode );
      }
   }
}

API guide 

174



9 | Polygon API

Developer > polyModifierCmd example
The skeleton of doModifyPoly() shows the concepts of how to interface 
with a polyShape node given its state. If you have no history and 
recording history is turned off, you cache the mesh data for undo 
purposes (explained with undoModifyPoly()) and proceed to call the 
directModifier callback. Otherwise the modifierNode approach is taken. 
Calls are made to create the modifier node, initialize it (through the 
callback) and subsequently passed on to attempt to connect the nodes.

Note that doModifyPoly() processes only the construction history states. 
Though tweaks do play a role in the process, they are considered further 
on in the process separately since they are independent from construction 
history. The following table shows the code path that is followed based on 
the node’s construction history state:

The directModifier line of code is implemented by the derived command 
and as such has nothing complex to worry about. It passes the derived 
command the mesh node to operate on directly—all the control rests with 
the derived command.

In contrast, the three other cases regarding history are more involved. 
Beginning with the creation of the modifierNode:

MStatus polyModifierCmd::createModifierNode( MObject& 
modifier )
{
   MStatus status = MS::kFailure;

   if( fModifierNodeTypeInitialized ||
       fModifierNodeNameInitialized )
   {
      if( fModifierNodeTypeInitialized )
      {
         modifier = 
fDGModifier.createNode(fModifierNodeType,
                                           &status);
      }
      else if( fModifierNodeNameInitialized )
      {
         modifier = 
fDGModifier.createNode(fModifierNodeName,

Record History – On Record History – 
Off

History – Exists connectNodes() connectNodes()

History – Does Not Exist connectNodes() directModifier()
API guide

175



9 | Polygon API 
Developer > polyModifierCmd example
                                           &status);
      }

      // Check to make sure that we have a modifier node of 
the
      // appropriate type. Requires an inMesh and outMesh
      // attribute.
      //
      MFnDependencyNode depNodeFn( modifier );
      MObject inMeshAttr;
      MObject outMeshAttr;
      inMeshAttr = depNodeFn.attribute( “inMesh” );
      outMeshAttr = depNodeFn.attribute( “outMesh” );

      if( inMeshAttr.isNull() || outMeshAttr.isNull() )
      {
         displayError(“Invalid Modifier: inMesh/outMesh 
needed”);
         status = MS::kFailure;
      }
   }

   return status;
}

createModifierNode() uses the initialized data for the modifier node type 
or modifier node name to create the modifier node via the local DG 
modifier. Use of the DG modifier is essential to keep the undo/redo 
relatively simple. Though the DG modifier has not created the node yet, it 
allows you to queue up actions for that node such as connections, so that 
once the DG modifier’s doIt() is called everything is executed in order. 
This helps alleviate rollback issues in case of errors. createModifierNode() 
also does a few checks to ensure that you have an inMesh and outMesh 
attribute on the node. Though the names may seem restrictive they keep a 
standard in the chains of modifier nodes. A helper class named 
polyModifierNode (discussed in a later section) automatically generates 
these two key attributes.

Following the createModifierNode() the callback to the initModifierNode() 
is made through which a derived class can initialize node data. This also 
lies under the control of the derived command. From there you enter the 
final stage of the process—connectNodes().

connectNodes()

connectNodes() is a larger method which processes all the variables of the 
polyShape and modifier nodes and connects them. Look at the 
connectNodes() implementation for a higher level view of what it controls:
API guide 

176



9 | Polygon API

Developer > polyModifierCmd example
MStatus polyModifierCmd::connectNodes( MObject& modifierNode 
)
{
   MStatus status;

   // Declare our internal processing data structure
   //
   modifyPolyData data;

   // Get the mesh node attrs and plugs
   //
   status = processMeshNode( data );
   MCheckStatus( status, “processMeshNode” );

   // Get the upstream node attrs and plugs
   //
   status = processUpstreamNode( data );
   MCheckStatus( status, “processUpstreamNode” );

   // Get the modifierNode attributes
   //
   status = processModifierNode( modifierNode, data );
   MCheckStatus( status, “processModifierNode” );

   // Process the tweaks on the meshNode
   //
   status = processTweaks( data );
   MCheckStatus( status, “processTweaks” );

   // Connect the nodes
   //
   if( fHasTweaks )
   {
      status = fDGModifier.connect( data.upstreamNodeShape,
                                    
data.upstreamNodeSrcAttr,
                                    data.tweakNode,
                                    data.tweakNodeDestAttr 
);
      MCheckStatus( status, “upstream-tweak connect” );

      status = fDGModifier.connect( data.tweakNode,
                                    data.tweakNodeSrcAttr,
                                    modifierNode,
                                    
data.modifierNodeDestAttr );
      MCheckStatus( status, “tweak-modifier connect” );
   }
   else
   {
API guide

177



9 | Polygon API 
Developer > polyModifierCmd example
      status = fDGModifier.connect( data.upstreamNodeShape,
                                    
data.upstreamNodeSrcAttr,
                                    modifierNode,
                                    
data.modifierNodeDestAttr );
      MCheckStatus( status, “upstream-modifier connect” );
   }

   status = fDGModifier.connect( modifierNode,
                                 data.modifierNodeSrcAttr,
                                 data.meshNodeShape,
                                 data.meshNodeDestAttr );
   MCheckStatus( status, “modifier-mesh connect” );

   status = fDGModifier.doIt();
   return status;
}

connectNodes() is broken down into several subsections. First a general 
processing data structure is constructed. This contains all of the 
processing variables required between each of the processing methods. 
The structure was created to reduce the amount of argument passing 
between processing methods. From there a set of processing methods are 
called to collect the necessary data to connect the nodes and also to 
process node state specific intricacies. Following that it uses the collected 
data to connect the nodes.

For details on each of the processing methods that follow, refer to the 
source code in polyModifierCmd.cpp, which is documented thoroughly.

processMeshNode()

The first process method that the connectNodes() runs through is 
processMeshNode(). It processes all that’s necessary of the polyShape 
node, which is comprised of the node shape, node transform and 
connection data (the inMesh plug and attribute). This data is stored inside 
the passed in modifyPolyData data structure to be used further on in the 
other process methods. The order that these process methods are run is 
important.

processUpstreamNode()

For the second process method, processUpstreamNode(), there is a 
differance between the history exists case and the history does not exist 
case. ConnectNodes() is only called in the case where history exists or the 
case where history does not exist but history recording is turned on. The 
reason for this is that in each of those cases, the addition of history is 
permissible and more stable and flexible so we process it that way.
API guide 

178



9 | Polygon API

Developer > polyModifierCmd example
If history already exists, processUpstreamNode() uses the inMesh plug 
obtained in processMeshNode() to retrieve the node directly upstream 
from the polyShape node. Once you’ve obtained the node, you disconnect 
the node from the polyShape node so that you’re prepared to insert the 
modifier node further on. Since all DG connections take place between the 
mesh node and the upstream node you only retrieve the outMesh plug 
and attribute for connections further on.

If history does not exist, you need to create the history chain. At the start 
of each history chain there is a hidden intermediate node that represents 
the initial state of the polyShape node at the time history was created. 
processUpstreamNode() does this by calling an MFnDagNode::duplicate() 
on the polyShape node. Since the duplicate() method also creates a new 
transform for the duplicate shape, you reparent the shape node under the 
same transform as the original shape and delete the transform through the 
DAG modifier. To the DG, this duplicate shape node behaves the same as 
the upstream node processed in the case where history exists. That is, all 
connections take place between this duplicate shape node and the original 
shape node. Thus you set the upstream node information to the duplicate 
shape and retrieve the outMesh plug and attribute for connections further 
on.

processModifierNode()

Like processMeshNode() the third process method, 
processModifierNode(), retrieves the inMesh and outMesh attributes of 
the modifier node for the connection of the nodes at the base of 
connectNodes(). 

processTweaks()

Because of history, tweaks need to be extracted prior to the addition of the 
modifier node to maintain the order of operations. So if tweaks exist, you 
go through two stages:

• Tweak extraction

• Tweak application

Begin by creating a tweak node (polyTweak) to store the tweaks and begin 
to parse the pnts attribute for tweaks. The tweaks are individually cached 
into a class array member for undo purposes as well as in a local MObject 
array for the purposes of transferring over to the tweak node. Although 
tweaks are composed of the vector arrays that you just extracted, that is 
not all that you must account for during the extraction. Tweaks are stored 
on a pnts attribute. As an attribute in the DG, it can also contain 
connections. These connections must be preserved and transferred over to 
the tweak node to maintain the DG structure.
API guide

179



9 | Polygon API 
Developer > polyModifierCmd example
In addition to each vector array, you extract a plug array of each node that 
is connected to the pnts attribute as well as each plug in the pnts attribute 
that is connected. Note that each attribute in the pnts array attribute is a 
compound attribute. Each attribute in the compound attribute is 
associated with a single axial translation for the given vertex tweak vector 
(that is, x, y, z).

Once you’ve extracted the data, you apply the tweak vectors on the 
polyTweak node and reconnect any connections on each tweak vector. 
Now you have a tweak node that is ready to be connected to the history 
stream. But if you connect it as is, you would expect the resulting mesh to 
have double the tweaks. This is because the tweaks have not been 
removed from the mesh node. So the tweaks would be applied twice, once 
from the tweak node and once from the mesh node. However, recall that 
you used an MObject array to retrieve the plugs. These retrieved an 
MObject reference to the compound plug that was contained in the array 
attribute. Setting these back onto the tweak node moved them over to the 
tweak node. There is a large segment of code that is commented out in 
processTweaks() that removes the tweaks from the mesh node. Executing 
this code gives the same result, however it slows down the performance 
with no apparent benefit.

Like the other process methods, processTweaks() also retrieves connection 
data for the tweak node to allow connectNodes() to connect all the nodes.

connectNodes() revisited

All the necessary nodes have been set up and the connection data 
extracted. The node connections are set up via MDGModifier::connect 
calls(). And all the operations are executed via a final 
MDGModifier::doIt() call. From there you can implement undo support by 
calling the undoIt() in the opposite order that the DG modifiers were 
executed in, and implement redo support as the doIt() calls in the same 
order as before. This is accomplished since the DG modifier caches all the 
executions that it made. Likewise, polyModifierCmd caches all the 
necessary data through the doModifyPoly() call. This leaves the 
undoModifyPoly() and redoModifyPoly() relatively simple.

undoModifyPoly()

undoModifyPoly is very similar to the doModifyPoly() method in 
structure and level of abstraction. It looks at the scenario from which it is 
being called (that is, node states) and caters the control over to the 
appropriate methods:

MStatus polyModifierCmd::undoModifyPoly()
{
   MStatus status;
API guide 

180



9 | Polygon API

Developer > polyModifierCmd example
   if( !fHasHistory && !fHasRecordHistory )
   {
      status = undoDirectModifier();
   }
   else
   {
      fDGModifier.undoIt();

      // undoCachedMesh() must be called prior to
      // undoTweakProcessing() because undoCachedMesh()
      // copies the original mesh without tweaks back
      // onto the existing mesh. Any changes made before
      // the copy will be lost.
      //
      if( !fHasHistory )
      {
         status = undoCachedMesh();
         fDagModifier.undoIt();
      }

      status = undoTweakProcessing();
   }

   return status;
}

undoDirectModifier()

The undoDirectModifier is not as simple as directModifier. Since 
polyModifierCmd is not aware of what the directModifier does, it must 
revert the entire mesh back into its original state. It does this through a 
unique use of MObject handles, making use of the knowledge of how 
MObjects work.

MObjects are said to be handles to internal objects owned by Maya. That 
is partly true. MObjects are handles, but Maya does not always own them. 
There are certain objects in Maya that are reference counted. That is, for 
each reference to the object a count is incremented. Once each reference is 
deleted the count is decremented until it reaches zero where the object is 
deleted. It’s like an object that lives only if it is being used. MObjects may 
refer to such reference counted objects that increment the reference count. 
Thus even though Maya owns these objects, you can have some control 
over the lifetime of that object by holding onto the MObject handle to such 
an object. For other types of objects the general tip for not hanging onto an 
MObject is valid and still highly recommended as the data can change 
between calls to a plug-in (for example, a deleted node).
API guide

181



9 | Polygon API 
Developer > polyModifierCmd example
The types of data that are reference counted are objects classified under 
the MFnData and MFnComponent class hierarchy. Fortunately the 
MFnData object type includes the entire contents of a mesh. Using this 
concept as a foundation for backing up a mesh we can properly undo the 
direct modifier.

cacheMeshData()

cacheMeshData() caches the data on the use of the mesh prior to the 
directModifier(). Caching the mesh data makes use of the MObject 
concept (see undoDirectModifier()). To make a backup of the data you 
must be careful not to retrieve the reference to the current object, as you 
will then be holding onto a reference of possibly dirtied data. To get 
around this duplicate the current mesh and retrieve an MFnData object by 
extracting an MObject off the outMesh attribute of the duplicate mesh. 
The MObject that you retrieved is a reference to the original mesh data 
and thus it increases the reference count. To make this transparent to the 
user finish up by deleting the nodes created by the duplicate. Note that 
this does not delete the mesh data since you now have a reference to it. 

cacheMeshTweaks()

This method is similar to the processTweaks() method except it does not 
deal with tweak nodes. Instead it parses the pnts attribute and extracts the 
tweak vectors into the tweak cache data members.

undoDirectModifier() revisited

You can put the caching of data required to backup our mesh to use in 
undoDirectModifier(). There is a distinct difference in the data flow of a 
polyShape node with tweaks and without. This directly affects the way 
the backup mesh is reapplied.

Tweaks affect the point of reapplication of the backup mesh for reasons of 
the data flow inside the node. For a node without tweaks you can set the 
value of the outMesh to the backup mesh. 

For a node with tweaks you have to use a trick to force the copy of the 
backup mesh to the cachedInMesh to keep the node in sync. In this case 
you duplicate the polyShape node, set the outMesh of the duplicate shape 
to the backup mesh, and then connect the duplicate shape node to the 
original node. After forcing an evaluation, disconnect the duplicate shape 
node and delete it. This implicitly forces the outMesh to hold the backup 
mesh. Then reapply the initial tweaks to the node via 
undoTweaksProcessing, forcing the node to copy the backup mesh to the 
cachedInMesh and perform the internal node synchronization.
API guide 

182



9 | Polygon API

Developer > polyModifierCmd example
undoModifyPoly() revisited

For the case where connectNodes() needs to be undone, the 
MDGModifier::undoIt() method recalls all the connections and nodes 
created by connectNodes(). Recall that processUpstreamNode() also made 
use of a DAG modifier in the case where there was no history initially. In 
this case you need to perform some extra operations prior to calling the 
MDagModifier::undoIt().

The reason for this is that since you created history and you’re undoing 
the operation you need to remove history. Removing is straightforward, 
however the node’s outMesh attribute still holds the last known 
evaluation of the node—it still contains the modifier. As a result you need 
to undo the “cached” mesh on the node. To do this, call the method 
undoCachedMesh(). Following the restoration of the mesh data, restore 
the tweaks leaving ~ with the original mesh.

undoCachedMesh()

Similar to the undoDirectModifier() case, the operations contained in 
undoCachedMesh() are dependent on the presence of tweaks due to the 
change in data flow through the node. This is because you are reverting to 
a node without history and you need to restore the mesh by directly 
interfacing with the node.

For the case where tweaks do not exist, you only need to restore the 
outMesh since it becomes the geometry that represents the node. To do 
this, use the duplicate shape node that was created to start a history chain 
(recall that this is only done if history was not initially present). Retrieve 
the outMesh of the duplicate shape node and copy that mesh data over to 
the outMesh of the shape node, restoring the node to its initial state.

For the case where tweaks do exist, you need to access the node in a 
similar manner to the way undoDirectModifier handles the tweaks case, 
however this time you don’t need to duplicate the shape node since you 
already have one. Similarly reconnect the outMesh of the duplicate shape 
to the inMesh of the original shape through a local DG modifier and force 
a DG evaluation. Then undo the connection via the same DG modifier. 
The original mesh data is subsequently forced into the outMesh prior to 
the reapplication of tweaks whereupon the outMesh will be copied to the 
cachedInMesh.

redoModifyPoly()

redoModifyPoly() is straightforward because doModifyPoly() initialized 
and set up all that was necessary for the operation. redoModifyPoly() 
holds a similar structure to its counterparts. For the directModifier() case, 
the doModifyPoly() recalls that method without caching any of the mesh 
API guide

183



9 | Polygon API 
Developer > polyModifierCmd example
data again, since the class already has it. Otherwise, in the connectNodes() 
case, it recalls the MDGModifier::doIt() to redo the operations previously 
set up by doModifyPoly():

MStatus polyModifierCmd::redoModifyPoly()
{
   MStatus status = MS::kSuccess;

   if( !fHasHistory && !fHasRecordHistory )
   {
      MObject meshNode = fDagPath.node();

      // Call the directModifier – No need to pre-process 
the
      //                           mesh data again.
      //
      status = directModifier( meshNode );
   }
   else
   {
      // Call the redo on the DG and DAG modifiers
      //
      if( !fHasHistory )
      {
         status = fDagModifier.doIt();
      }
      status = fDGModifier.doIt();
   }

   return status;
}

Implementing a polyModifierCmd command

With a general understanding of what polyModifierCmd is capable of, we 
are faced with the issue of how to implement a command based on it. The 
rules are fairly straightforward. polyModifierCmd structures its process in 
a similar manner as Maya treats its nodes. It is here where the concept of a 
factory is introduced. The following sections introduce the 
polyModifierFty and polyModifierNode in the context of implementing a 
command based on polyModifierCmd. For further details on how these 
work, please see the respective source file.

polyModifierFty

From the inner workings of polyModifierCmd, you see that there are two 
spots where we could potentially have redundant code: directModifier() 
and inside the modifier node. Effectively they do the same thing, except 
API guide 

184



9 | Polygon API

Developer > polyModifierCmd example
have a different means of retrieving their inputs. To reduce code 
duplication, the concept of a factory is introduced. The factory exists 
solely as a class structure which implements a modification to a mesh. It 
possesses a basic interface through which the modifier can be called.

To help guide you, a base factory class named polyModiferFty is provided 
from which a factory can be derived. Though it serves no functional 
purpose, it provides an outline through which you can implement your 
modification:

class polyModifierFty
{
public:
            polyModifierFty();
   virtual  ~polyModifierFty();

   // Pure virtual doIt()
   //
   virtual MStatus   doIt() = 0;
};

polyModifierNode

Similar to polyModifierFty, another guidance class is provided to give a 
framework for all modifier nodes to be used in association with 
polyModifierCmd. This class suggests things such as, the modifier node 
requires an inMesh and outMesh attribute to work:

class polyModifierNode
{
public:
            polyModifierNode();
   virtual  ~polyModifierNode();

   // There needs to be an MObject handle declared for
   // each attribute that the node will have. These handles
   // are needed for getting and setting the attribute
   // values later.
   //
   static MObject inMesh;
   static MObject outMesh;
};

For further details on implementing a polyModifierCmd command, refer 
to both the splitUVCmd example (next) and the source code. Inside the 
source code a general set of guidelines for each class is provided.
API guide

185



9 | Polygon API 
Developer > splitUVCmd example
splitUVCmd example

(Source code is located in the devkit plugins directory.)

The splitUV command is a MEL command used to unshare or “split” the 
selected UVs of a polygonal mesh. A UV is a point on a 2D texture plane 
that is used to map textures onto a mesh. To properly associate these UVs 
with a mesh, each face can either be mapped or unmapped. If a face is 
mapped, each vertex belonging to that face is associated with a UV. This 
relationship is known as a face-vertex relationship. (For more information, 
see ”Face-Vertices” on page 149.)

For a better understanding of what splitting a UV means, try the following 
steps in Maya:

1 Create a square 3x3 face polygonal plane.

2 With the plane selected, open the UV Texture Editor (Windows > UV 
Texture Editor).

3 Change the selection mode to UVs.

4 Select a UV inside the plane (not along the border).

5 Select the Move tool.

6 Drag the UV around and notice that there is only a single UV.

7 Change the selection mode to Edges.

8 Select all four edges surrounding the UV you moved.

9 Select Edit Polygons > Texture menu > Map Cut.

10 Change the selection mode back to UVs.

11 Click once on the selected UV. (Make sure you do not drag over the 
UV or you will select them all.)

12 Drag the UV around and notice that it is no longer shared among the 
faces but is a single UV with its own face.

13 [Optional] Turn on texture borders in the Custom Polygon Display 
window (Display > Custom Polygon Display ) to reveal the new 
borders introduced by the map cut operation.

The Map Cut command operates on edges of a mesh while splitUV 
operates on a UV.

UVs are stored in a single linear array, indexed by face vertices. Each face 
vertex indexes a specific UVId, and in turn each UVId represents a single 
UV point on a texture map. Thus the same number of faces that share the 
UV would index a shared UVId. (For more information, see ”UVs” on 
page 150.)
API guide 

186



9 | Polygon API

Developer > splitUVCmd example
You need to add a number of UVs (at the same 2D coordinates) equal to 
the total number of faces that share the UV minus one. Subtract one 
knowing you already have at least one UV already associated to a shared 
face, which leaves one less face and UV to create and associate. Now 
associate each of the new UVs to one of the faces that shared the original 
UV, leaving one of the faces indexing the original UV itself. This leaves 
each face with an unshared UV at their respective face-vertex location.

Initial implementation

First gather your input—in this case the selected UVs. Obtain the selection 
list and filter it for the first object you find with selected UVs. For 
simplicity, only the first object encountered with selected UVs is taken. 
You can easily extend this to operate on multiple objects.

// Get the active selection list and filter for poly 
objects.
// Also create a selection list iterator to parse the list
//
MSelectionList selList;
MGlobal::getActiveSelectionList( selList );
MItSelectionList selListIter( selList );
selListIter.setFilter( MFn::kMesh );

// Declare a dagPath and component to store a reference to 
the
// mesh object and selected components
//
MDagPath dagPath;
MObject component;

// Now parse the selection list for poly objects with 
selected
// UVs
//
for( ; !selListIter.isDone(); selListIter.next() )
{
   selListIter.getDagPath( dagPath, component );

   // Check for selected UVs
   //
   if( component.apiType() == MFn::kMeshMapComponent )
   {
      break;
   }
}

// Now we break down the component object into an int array
// of UVIds
API guide

187



9 | Polygon API 
Developer > splitUVCmd example
//
MFnSingleIndexedComponent compFn( component );
MIntArray selUVs;
compFn.getElements( selUVs );

Now you have the object to operate on and the selected UVs. Before you 
can perform the operation, you need to collect some preprocessing data—
which faces share each selected UV and the UV vertex associations. 
Finally, you must cover for the possible appearance of multiple UV sets. 
Since UVs from only one UV set can be selected at any particular time, 
you only need to access the current active UV set and operate on that set. 

// Declare our processing variables
//
MObject mesh;
MString selUVSet;
MIntArray selUVFaceIdMap;
MIntArray selUVFaceOffsetMap;
MIntArray selUVLocalVertIdMap;

// Make sure our dagPath points to a shape node. That is 
where
// the topological/geometry data is stored (not on the 
transform)
//
dagPath.extendToShape();
mesh = dagPath.node();

// Initialize a mesh function set to our mesh
//
MFnMesh meshFn( mesh );

// Get the current UV set name
//
meshFn.getCurrentUVSetName( selUVSet);

// Now parse the mesh for face and vertex UV associations
//
MItMeshPolygon polyIter( mesh );
int i;
int j;
int offset = 0;
int selUVsCount = selUVs.length();

for( i = 0; i < selUVsCount; i++ )
{
   // Append the current offset in the faceId map to the
   // faceOffset map so we have an index reference into the
   // faceId map for each selected UV. In other words,
API guide 

188



9 | Polygon API

Developer > splitUVCmd example
   // for each offset value, we have a number of faces equal
   // to (faceOffsetMap[i+1] – faceOffsetMap[i]) that share
   // the UV that that offset value represents.
   //
   selUVFaceOffsetMap.append( offset );

   // Parse the mesh for faces which share the current UV
   //
   for( ; !polyIter.isDone(); polyIter.next() )
   {
      // Only continue if the face is mapped
      //
      if( polyIter.hasUVs() )
      {
         // Now parse the vertices of each face and check 
for
         // the current UV
         //
         int polyVertCount = polyIter.polygonVertexCount();

         for( j = 0; j < polyVertCount; j++ )
         {
            int UVIndex = 0;
            polyIter.getUVIndex( j, UVIndex );

            // If we find the UV on this face, append the 
faceId,
            // append the local vertex (relative to the 
current
            // face) and increment our offset.
            //
            if( UVIndex == selUVs[i] )
            {
               selUVFaceIdMap.append( polyIter.index() );
               selUVLocalVertIdMap.append(j);
               offset++;
               break;
            }
         }
      }
   }
}

// Finally append the last offset value so we can obtain the
// number of faces that share the last UV in the list.
//
selUVFaceOffsetMap.append( offset );
API guide

189



9 | Polygon API 
Developer > splitUVCmd example
The face and face-vertex associations are stored using a similar technique 
used by Maya to store topological data for polygons. This technique is 
apparent in the code where the list of faces shared by each selected UV is 
accumulated. Rather than creating a multi dimensional array to store the 
list of faces shared by each selected UV, store it all in a single dimensional 
array (a data array). To do this you create another single dimensional array 
(an index array) to store the index values of the data array where each 
selected UV begins its list of faces.

For each UV, parse the mesh for any faces sharing that particular UV. This 
is accomplished by parsing the face-vertices of each face in the mesh, 
looking at the associated UVId and comparing the UVId with the current 
UV. Now store the face Id and the local vertex Id (relative to the current 
face, enumerating from 0 to (faceVertexCount – 1)). Make note of the local 
vertex Id rather than the global or mesh vertex Id because UVs are 
assigned on a face-vertex basis.

// Declare UV count variables so we can keep create and
// keep track of the indices of the new UVs
//
int currentUVCount = meshFn.numUVs( selUVSet );

// For each UV in our list of selected UVs, split the UV.
//
for( i = 0; i < selUVsCount; i++ )
{
   // Get the current faceId map offset
   //
   offset = selUVFaceOffsetMap[i];

   // Get the U and V values of the current UV
   //
   float u;
   float v;
   int UVId = selUVs[i];

   meshFn.getUV( uvId, u, v, &selUVSet );

   // Get the number of faces sharing the current UV
   //
   int faceCount = selUVFaceOffsetMap[i+1]–
selUVFaceOffsetMap[i];

   // Arbitrarily choose that the last faceId in the list
   // of faces sharing this UV will keep the original UV
   //
   for( j = 0; j < faceCount – 1; j++ )
   {
API guide 

190



9 | Polygon API

Developer > splitUVCmd example
      // Create a new UV (setUV dynamically sizes the UV 
array
      // if the index value passed in exceeds the length of 
the
      // UV array) with the same 2D coordinates as our UV.
      //
      meshFn.setUV( currentUVCount, u, v, &selUVSet );

      // Get the face and face-vertex info so we can assign
      // our newly created UV to one of the faces in the 
list
      // of faces sharing this UV
      //
      int localVertId = selUVLocalVertIdMap[offset];
      int faceId = selUVFaceIdMap[offset];

      // Associate the UV with the particular face vertex
      //
      meshFn.assignUV( faceId,
                       localVertId,
                       currentUVCount,
                       &selUVSet );

      // Increment our counters so we can create another new 
UV
      // at the currentUVCount index. Increment the offset, 
so we
      // can associate the next new UV with the next face in 
the
      // the list of faces sharing this UV
      //
      currentUVCount++;
      offset++;
   }
}

There are two primary methods which are called to perform the actual 
split:

• MFnMesh::setUV(…)

• MFnMesh::assignUV(…)

Call the first method, setUV(), to create a new UVId. The method 
automatically grows the UV array to accommodate the index passed into 
the method. Thus in the code you can see a variable named 
currentUVCount which is continuously incremented after each new UV. 
currentUVCount keeps track of the index that is one element greater than 
the highest element in the UV array. Incrementing it after each iteration 
through the loop allows you to create a new UV, one at a time. 
API guide

191



9 | Polygon API 
Developer > splitUVCmd example
Call the second and last method, assignUV(), to associate a given UVId 
with a face and face-vertex.

Integrating into the Maya architecture

There are many intricacies involving modifying a polygonal mesh, 
including construction history and tweaks. If the mesh does not have 
hisory, you could attempt to unshare the UVs directly on the mesh itself. 
If the mesh has history, any DG evaluation from a node upstream in the 
construction history overwrites the mesh on the mesh node and the 
modifications made directly to the mesh would be lost. Even if that were 
the case, the existence of tweaks would change the appropriate place to 
write the modifications on the mesh.

You need to look at the mesh node, analyze its state, and apply your 
operation accordingly. The MPxCommand class polyModifierCmd (see 
polyModifierCmd example) was developed with the splitUV command to 
aid in abstracting the handling of construction history and tweaks. 
polyModifierCmd is a mid level command class designed for commands 
which intend to modify a polygonal mesh. It provides an outlet through 
which a poly command can take its code to modify a mesh directly and 
seamlessly integrate it into the Maya framework, accounting for both 
construction history and tweaks. 

polyModifierCmd is a good example of using the API and demonstrates 
how construction history and tweaks work.

polyModifierCmd enhanced splitUV

Before you proceed with this section, read the ”polyModifierCmd 
example” on page 164. This section steps through the implementation of a 
command based on polyModifierCmd.

There are three main pieces of the polyModifierCmd that must be 
handled:

• A splitUV command

• A splitUV node

• A splitUV factory

splitUV factory

The factory is the lowest level of the splitUVCmd, which performs the 
operation given a set of inputs. The inputs are an integer array of UV Ids 
and a reference to the mesh you are about to modify. The rest fits inside 
the factory. The splitUVFty factory class interface is shown below. 

class splitUVFty : polyModifierFty
{

API guide 

192



9 | Polygon API

Developer > splitUVCmd example
public:
            splitUVFty();
   virtual  ~splitUVFty();

   void     setMesh( MObject mesh );
   void     setUVIds( MIntArray uvIds );

   // polyModifierFty inherited methods
   //
   MStatus  doIt();

private:
   // Mesh Node
   //
   MObject fMesh;

   // Selected UVs
   //
   MIntArray fSelUVs;
};

splitUV node

There are two methods of deploying the factory. One is through the 
splitUV node and the other is directly through the command for certain 
exception cases where the node is not applicable. The splitUV node is 
used for cases where you want to build or add to an existing history chain 
in the DG.

When a DG evaluation is propagated via a dirtied node, the DG evaluates 
from the top of the history chain where a copy of the original mesh 
(original referring to the node’s state denoting the start of this history) is 
located. It then takes a copy of that mesh and passes it in through each 
node in order, where the mesh is altered through each node evaluation. 
Once it reaches the final shape, you have a mesh placed onto the shape 
which holds all the modifications stored in the history chain. The splitUV 
node needs to take in a mesh input as well as an input of which UVs to 
modify, and pass that data down to an instance of the factory. The 
resulting mesh is then passed out through a mesh output attribute. 

class splitUVNode : polyModifierNode
{
public:
                   splitUVNode();
   virtual         ~splitUVNode();

   virtual MStatus compute(const MPlug& plug, MDataBlock& 
data);
API guide

193



9 | Polygon API 
Developer > splitUVCmd example
   static void*    creator();
   static MStatus  initialize();

private:
   // Note: There needs to be an MObject handle for each
   // attribute on the node. These handles are needed for
   // setting and getting values later. The standard inMesh
   // and outMesh attributes are already inherited from
   // polyModifierNode, thus we only need to declare 
splitUVNode
   // specific attributes
   //
   static MObject  uvList;

   // Node type identifier
   //
   static MTypeId  id;

   // We instantiate a copy of our splitUV factory on the 
node
   // for it to perform the splitUV operation
   //
   splitUVFty      fSplitUVFactory
};

The standard node interface is in the above class declaration. The only 
differences to note reside in the private members. From the class 
hierarchy, splitUVNode inherits an inMesh and outMesh attribute from 
polyModifierNode. We add yet another attribute to the node, specific to 
the splitUVNode, which consists of our only other input—the list of UVs 
to operate on. 

Notice that the node class has an instance of a splitUV factory. You create 
a distinct factory for each node so that the splitUVFty implementation 
would require no foreknowledge of which node is calling the operation. 
Continuing with the basic node setup, implement the basic methods in the 
above interface, creating and associating attributes, assigning a type id, 
etc.:

MTypeId splitUVNode::id( 0x34567 );

MStatus splitUVNode::creator()
{
   return new splitUVNode();
}

MStatus splitUVNode::initialize()
{
   MStatus status;
API guide 

194



9 | Polygon API

Developer > splitUVCmd example
   MFnTypedAttribute attrFn;

   uvList = attrFn.create(“inputComponents”,
                          “ics”,
                          
MFnComponentListData::kComponentList);
   // To be stored during file-save
   attrFn.setStorable(true);

   inMesh = attrFn.create(“inMesh”,
                          “im”,
                          MFnMeshData::kMesh);
   // To be stored during file-save
   attrFn.setStorable(true);

   // outMesh is read-only because it is an output attribute
   //
   outMesh = attrFn.create(“outMesh”,
                             “om”,
                             MFnMeshData::kMesh);
   attrFn.setStorable(false);
   attrFn.setWritable(false);

   // Add the attributes we have created for the node
   //
   status = addAttribute( uvList );
   if( !status )
   {
      status.perror(“addAttribute”);
      return status;
   }
   status = addAttribute( inMesh );
   if( !status )
   {
      status.perror(“addAttribute”);
      return status;
   }
   status = addAttribute( outMesh );
   if( !status )
   {
      status.perror(“addAttribute”);
      return status;
   }

   // Set up a dependency between the inputs and the output.
   // This will cause the output to be marked dirty when the
   // input changes. The output will then be recomputed the
   // next time it is requested.
   //
API guide

195



9 | Polygon API 
Developer > splitUVCmd example
   status = attributeAffects( inMesh, outMesh );
   if( !status )
   {
      status.perror(“attributeAffects”);
      return status;
   }
   status = attributeAffects( uvList, outMesh );
   if( !status )
   {
      status.perror(“attributeAffects”);
      return status;
   }

   return MS::kSuccess;
}

Finally, we turn towards the implementation of our compute() method. 
The compute method is not overly complex. Since we have the factory to 
perform the operation, all the compute method needs to do is provide the 
factory with the references to the proper mesh to modify. 

Start as all plug-in nodes should and look to handle the ‘state’ attribute, 
inherited from MPxNode, on the node. The ‘state’ attribute holds a short 
integer representing how the DG treats the node. In a sense it is an 
override mechanism to alter how the node is treated during a DG 
evaluation. With respect to plug-in nodes, the only state of concern is the 
‘HasNoEffect’ or ‘PassThrough’ state, where the node is ignored entirely. 
For the node to behave as though it were transparent, you need to redirect 
the inMesh to the outMesh without altering the mesh passing through. 
Otherwise the node behaves normally.

Following the node state check, grab the UVs from the component list and 
the input mesh, assign the input mesh to the output mesh, and pass in 
these references to the factory. Assigning the input mesh to the output 
mesh allows you to operate directly on the output mesh, so that the 
output mesh will hold the modified mesh. From there, let the factory take 
care of the rest of the operation. 

MStatus splitUVNode::compute(const MPlug& plug, MDataBlock& 
data)
{
   MStatus status = MS::kSuccess;

   // Retrieve our state attribute value
   //
   MDataHandle stateData = data.outputValue(state,&status);
   MCheckStatus( status, “ERROR getting state” );

   // Check for the HasNoEffect/PassThrough state
   //
API guide 

196



9 | Polygon API

Developer > splitUVCmd example
   // (stateData is stored as a short)
   //
   // (0 = Normal)
   // (1 = HasNoEffect/PassThrough)
   // (2 = Blocking)
   // ..
   //
   if( stateData.asShort() == 1 )
   {
      MDataHandle inputData = 
data.inputValue(inMesh,&status);
      MCheckStatus(status, “ERROR getting inMesh”);
      MDataHandle outputData = 
data.outputValue(outMesh,&status);
      MCheckStatus(status, “ERROR getting outMesh”);

      // Simply redirect the inMesh to the outMesh
      //
      outputData.set(inputData.asMesh());
   }
   else
   {
      // Check which output value we have been asked to 
compute.
      // If the node doesn’t know how to compute it, return
      // MS::kUnknownParameter.
      //
      if( plug == outMesh )
      {
         MDataHandle inputData = data.inputValue( inMesh,
                                                  &status 
);
         MCheckStatus(status, “ERROR getting inMesh”);

         MDataHandle outputData = data.outputValue( outMesh,
                                                    
&status );
         MCheckStatus(status, “ERROR getting outMesh”);

         // Now, we retrieve the input UV list
         //
         MDataHandle inputUVs = data.inputValue( uvList,
                                                 &status 
);
         MCheckStatus(status, “ERROR getting uvList”);

         // Copy the inMesh to the outMesh so we can operate
         // directly on the outMesh
         //
         outputData.set(inputData.asMesh());
API guide

197



9 | Polygon API 
Developer > splitUVCmd example
         MObject mesh = outputData.asMesh();

         // Retrieve the UV list from the component list
         //
         // Note, we use a component list to store the 
components
         // because it is more compact memory wise. (ie.
         // comp[81:85] is smaller than 
comp[81],...,comp[85])
         //
         MObject compList = inputUVs.data();
         MFnComponentListData compListFn( compList );

         unsigned i;
         int j;
         MIntArray uvIds;

         for( i = 0; i < compListFn.length(); i++ )
         {
            MObject comp = compListFn[i];
            if( comp.apiType() == MFn::kMeshMapComponent )
            {
               MFnSingleIndexedComponent uvComp(comp);
               for( j = 0; j < uvComp.elementCount(); j++ )
               {
                  int uvId = uvComp.element(j);
                  uvIds.append(uvId);
               }
            }
         }

         // Set the mesh object and uvList on the factory
         //
         fSplitUVFactory.setMesh( mesh );
         fSplitUVFactory.setUVIds( uvIds );

         // Now, call the factory to perform the splitUV
         //
         status = fSplitUVFactory.doIt();

         // Mark the outputMesh as clean
         //
         outputData.setClean();
      }
      else
      {
         status = MS::kUnknownParameter;
      }
   }
API guide 

198



9 | Polygon API

Developer > splitUVCmd example
   return status;
}

splitUV command

Now that we have a splitUVNode, the last thing left on the list to do is the 
splitUV command. This is the piece that ties everything together. It is from 
here that the method for modifying the mesh is chosen (although 
implicitly through polyModifierCmd). The command manages the 
operation and is the highest level of interfacing with the user.

As a child class of polyModifierCmd, the splitUVCmd does not have 
much work to do other than override some specific polyModifierCmd 
methods and retrieve the input.

class splitUV : polyModifierCmd
{
public:
                  splitUV();
   virtual        ~splitUV();

   static void*   creator();

   bool           isUndoable();

   // MPxCommand inherited methods
   //
   MStatus        doIt( const MArgList& );
   MStatus        redoIt();
   MStatus        undoIt();

   // polyModifierCmd inherited methods
   //
   MStatus        initModifierNode( MObject modifierNode );
   MStatus        directModifier( MObject mesh );

private:
   // Private methods
   //
   bool           validateUVs();
   MStatus        pruneUVs();

   // Private members
   //
   
   // Selected UVs
   //
   // We store two copies of the UVs, one that is passed 
down to
API guide

199



9 | Polygon API 
Developer > splitUVCmd example
   // the node and another kept locally for the 
directModifier.
   // Note, the MObject member, fComponentList, is only ever
   // accessed during a single call of a plugin, never 
between
   // calls where its validity is not guaranteed.
   //
   MObject        fComponentList;
   MIntArray      fSelUVs;

   // splitUV Factory
   //
   // This factory is for the directModifier to have access 
to
   // operate directly on the mesh.
   //
   splitUVFty     fSplitUVFactory;
};

This looks much like the standard MPxCommand class interface. 
However there are a few differences due to the polyModifierCmd 
inheritance as well as some performance enhancing methods. Two 
methods need to be overridden:

• initModifierNode()

• directModifier()

initModifierNode() is the chance for a command to initialize any inputs 
aside from the inMesh on the modifier node, which in our case is the 
splitUVNode. This is not restricted to input initialization, but can be 
catered towards custom node initialization if desired. This method is 
called before the modifier node is placed in the history chain, if the 
creation of history is permissible. For example, in our case we’d like to 
initialize the uvList input on our splitUVNode:

MStatus splitUV::initModifierNode( MObject modifierNode )
{
   MStatus status;

   // Tell the splitUVNode which UVs to operate on.
   // 
   MFnDependencyNode depNodeFn( modifierNode );
   MObject uvListAttr;
   uvListAttr = depNodeFn.attribute( “inputComponents” );

   // Pass the component list down to the node.
   // To do so, we create/retrieve the current plug
   // from the uvList attribute on the node and simply
   // set the value to our component list.
API guide 

200



9 | Polygon API

Developer > splitUVCmd example
   //
   MPlug uvListPlug( modifierNode, uvListAttr );
   status = uvListPlug.setValue( fComponentList );

   return status;
}

directModifier() is a method called only in a specific exception case where 
the mesh node has no history and the preference to record history is 
turned off. The consequence of this state is that the user does not wish to 
have any history chain at all. So in effect, the polyModifierCmd is 
forbidden to use the DG. As a result we modify the mesh directly. The 
polyModifierCmd description discusses the implications of this state in 
more detail as well as alternative approaches. However all we need to 
know is that we need to provide a method to operate on the mesh directly, 
which if you recall, we completed in the concepts section. It is for this 
reason that the command also holds an instance of the factory as well as a 
copy of the UVs to modify in an integer array format (as opposed to a 
component list for the splitUVNode). 

You might wonder why we store two copies of the selected UVs in 
different formats. The reason for this is that an MObject is never 
guaranteed to be valid between plug-in calls (including redoIt() calls). 
Since the directModifier() would be called in a redoIt() case, it would rely 
on the validity of the MObject component list between calls. As such 
we’ve stored two copies on the command. Alternatively, one could choose 
to modify the node so that it receives an integer array as a node input 
rather than a component list to streamline the operation, however it’s a 
balancing issue of performance vs. storage.

Using these inputs we have the following simple directModifier() method:

MStatus splitUV::directModifier( MObject mesh )
{
   MStatus status;

   fSplitUVFactory.setMesh( mesh );
   fSplitUVFactory.setUVIds( fSelUVs );

   // Now, call the factory to perform the splitUV
   //
   status = fSplitUVFactory.doIt();

   return status;
}

API guide

201



9 | Polygon API 
Developer > splitUVCmd example
Before we look at the performance enhancing methods, let’s take a peek at 
the MPxCommand inherited methods. These methods will give us a better 
appreciation of how the performance of the command can be slightly 
tweaked:

• doIt()

• undoIt()

• redoIt()

The doIt() method is our main method which retrieves the input and 
caters the rest of the operation to the various parts, overseeing the entire 
operation. The doIt() method is the method used to initialize the 
command and perform the operation as the name would suggest. And 
much to that effect, the splitUV’s doIt() method does exactly that.

We begin by parsing the selection list for any objects where UVs are 
selected, just the same as we did in our original implementation. 
Following that we initialize the polyModifierCmd settings, call our 
performance enhancing methods and issue the doModifyPoly() method, 
which can be viewed as the polyModifierCmd’s version of doIt(). 
Additionally we scatter the appropriate error messages in the code to 
inform the user of improper use of the command.

MStatus splitUV::doIt( const MArgList& )
{
   MStatus status;

   MSelectionList selList;
   MGlobal::getActiveSelectionList( selList );
   MItSelectionList selListIter( selList );
   selListIter.setFilter( MFn::kMesh );

   // Initialize our component list
   //
   MFnComponentListData compListFn;
   compListFn.create();

   // Parse the selection list
   //
   bool found = false;
   bool foundMultiple = false;
   for( ; !selListIter.isDone(); selListIter.next() )
   {
      MDagPath dagPath;
      MObject component;
      selListIter.getDagPath( dagPath, component );

      if( component.apiType() == MFn::kMeshMapComponent )
      {
API guide 

202



9 | Polygon API

Developer > splitUVCmd example
         if( !found )
         {
            // Add the components to our component list.
            // ‘component’ holds all selected components
            // on the given object, so only a single call
            // to add is needed.
            //
            compListFn.add( component );
            fComponentList = compListFn.object();

            // Locally store the selected UVIds in the 
command
            // int array member, fSelUVs
            //
            MFnSingleIndexedComponent compFn( component );
            compFn.getElements( fSelUVs );

            // Ensure that our DAG path is pointing to a
            // shape node. Set the DAG path for 
polyModifierCmd.
            //
            dagPath.extendToShape();
            setMeshNode( dagPath );
            found = true;
         }
         else
         {
            // Since we are only looking for whether or not 
there
            // are multiple objects with selected UVs, break 
out
            // once we have found one other object.
            //
            foundMultiple = true;
            break;
         }
      }
   }

   if( foundMultiple )
   {
      displayWarning( “Only operates on first found mesh” );
   }

   // Set the modifier node type for polyModifierCmd
   //
   setModifierNodeType( splitUVNode::id );

   if( found )
   {
API guide

203



9 | Polygon API 
Developer > splitUVCmd example
      if( validateUVs() )
      {
         // Now, pass control over to polyModifierCmd
         //
         status = doModifyPoly();
         if( status == MS::kSuccess )
         {
            setResult( “splitUV command succeeded!” );
         }
         else
         {
            setResult( “splitUV command failed!” );
         }
      }
      else
      {
         displayError( “Selected UVs are not splittable” );
         status = MS::kFailure;
      }
   }
   else
   {
      displayError( “Unable to find selected UVs” );
      status = MS::kFailure;
   }

   return status;
}

The undo/redo mechanism is supported by the undoIt() and redoIt() 
methods inherited from MPxCommand. These methods often use cached 
data from the first doIt() to execute. This is what splitUV does as well as 
polyModifierCmd, which supports its own undo/redo in the form of 
undoModifyPoly() and redoModifyPoly(). Since splitUV relies on 
polyModifierCmd to perform the operation, the undo/redo redirects the 
undo/redo to polyModifierCmd. As a result, the splitUV’s undoIt() and 
redoIt() methods are very straightforward:

MStatus splitUV::redoIt()
{
   MStatus status;

   status = redoModifyPoly();
   if( status == MS::kSuccess )
   {
      setResult( “splitUV command succeeded!” );
   }
   else
   {
API guide 

204



9 | Polygon API

Developer > splitUVCmd example
      setResult( “splitUV command failed!” );
   }

   return status;
}

MStatus splitUV::undoIt()
{
   MStatus status;

   status = undoModifyPoly();
   if( status == MS::kSuccess )
   {
      setResult( “splitUV undo succeeded!” );
   }
   else
   {
      setResult( “splitUV undo failed!” );
   }

   return status;
}

The call to validateUVs() in the doIt() method is a performance enhancing 
method. Though this method is primarily a pre-condition check on the 
selected UVs, it increases the optimal performance of the command by 
pruning the selected UV list of UVs that cannot be split. This potentially 
saves the operation unnecessary loops. However, an extra pass of the 
mesh is required to check for UVs that cannot be split, but only on the 
very first call to the command. Any successive redoIt() calls or node 
evaluations are faster.

To define when a UV is invalid and unable to be split, look at the 
definition of the operation. splitUV provides each face which shares a 
particular UV with it’s own unique and unshared UV. Thus a UV can only 
be split if it is shared by more than one face. Subsequently, the 
validateUVs method parses the mesh and retrieves the face sharing 
information for each UV, marking valid UVs. The valid UV list is sent to 
the pruneUVs() method which replaces the component list and locally 
stored integer array of selected UVs.

bool splitUV::validateUVs()
{
   // Get the mesh that we are operating on
   //
   MDagPath dagPath = getMeshNode();
   MObject mesh = dagPath.node();
API guide

205



9 | Polygon API 
Developer > splitUVCmd example
   // Get the number of faces sharing each UV
   //
   MFnMesh meshFn( mesh );
   MItMeshPolygon polyIter( mesh );
   MIntArray selUVFaceCountArray;

   int i;
   int j;
   int count = 0;
   selUVsCount = fSelUVs.length();

   for( i = 0; i < selUVsCount; i++ )
   {
      for( ; !polyIter.isDone(); polyIter.next() )
      {
         if( polyIter.hasUVs() )
         {
            int UVIndex = 0;
            polyIter.getUVIndex( j, UVIndex );

            // If we have a matching UVId, then we have a
            // face which shares this UV, so increment the
            // count.
            //
            if( UVIndex == fSelUVs[i] )
            {
               count++;
               break;
            }
         }
      }
      selUVFaceCountArray.append( count );
   }

   // Now, check to make sure that at least one UV has more 
than
   // one face sharing it. So long as we have at least one 
valid
   // UV, we should proceed with the operation by returning 
true
   //
   bool isValid = false;
   MIntArray validUVIndices;

   for( i = 0; i < selUVsCount; i++ )
   {
      if( selUVFaceCountArray > 1 )
      {
         isValid = true;
         validUVIndices.append(i);
API guide 

206



9 | Polygon API

Developer > splitUVCmd example
      }
   }

   if( isValid )
   {
      pruneUVs( validUVIndices );
   }

   return isValid;
}

MStatus splitUV::pruneUVs( MIntArray& validUVIndices )
{
   MStatus status = MS::kSuccess;

   unsigned i;
   MIntArray validUVIds;

   for( i = 0; i < validUVIndices.length(); i++ )
   {
      int uvIndex = validUVIndices[i];
      validUVIds.append( fSelUVs[uvIndex] );
   }

   // Replace our local int array of UVIds
   //
   fSelUVs.clear();
   fSelUVs = validUVIds;

   // Build our list of valid components
   //
   MFnSingleIndexedComponent compFn;
   compFn.create( MFn::kMeshMapComponent );
   compFn.addElements( validUVIds );
   MObject component = compFn.object();

   // Replace the component list
   //
   MFnComponentListData compListFn;
   compListFn.create();
   compListFn.add( component );
   fComponentList = compListFn.object();

   return status;
}

For further details on the implementation of the splitUV command, look 
at the source code provided in the plug-ins directory of the developer’s 
kit.
API guide

207



9 | Polygon API 
Developer > Poly exporter plug-ins
Poly exporter plug-ins

These are two new example exporter plugins that demonstrate how to 
extract polygonal data from Maya using the Poly API. The two exporters 
write out data in raw text and Extensible 3D (X3D) formats respectively. 
The functionality is split into two components, one that extracts the data 
from Maya and stores it in intermediate data structures, and the second 
that writes the data to a file in the required format. These two components 
are implemented as pure virtual base classes from which the user derives 
to implement export to a specific format. More detailed comments are in 
the source code.

Classes

• polyExporter – base class for code that extracts poly information from 
Maya.

• polyWriter – base class for code that writes data to a disk file.

• polyRawExporter, polyRawWriter – Derived classes implementing 
raw text output.

• polyX3DExporter, polyRawWriter – Derived classes implementing 
X3D output.

polyX3DExporter

Adds the ability to export polygonal meshes from a Maya scene to the 
Extensible 3D (X3D) file format.  Once this plug-in is loaded, the new file 
format is listed as an output format for export.

Polygonal meshes are exported by using the File > Export All menu item 
(or by selected specific meshes and using the File > Export Selection 
option), choosing X3D as the file type, and providing a filename.  The 
resulting file will be in X3D compliant format.

This plugin example demonstrates how to utilize the Maya Poly API for 
extracting polygonal geometry data, in conjunction with the Maya 
MPxFileTranslator class to create a file exporter plug-in.  Currently, data 
that is extracted includes:

• faces and their vertex components

• vertex coordinates

• colors per vertex

• normals per vertex

• current uv set and coordinates (X3D did not support multiple UV sets 
when this plugin was written.)

• component sets

• file textures (for the current UV set)
API guide 

208



9 | Polygon API

Developer > Poly exporter plug-ins
polyRawExporter

This exporter is the same as polyX3DExporter except that the output data 
is in raw text format rather than X3D. Also this plugin exports all UV sets 
and coordinates.
API guide

209



9 | Polygon API 
Developer > Poly exporter plug-ins
API guide 

210



10 Setting up your plug-
in build environment
Developer Plug-in API

Setting up a build area

IRIX and Linux environments

Maya plug-ins

The Maya Development Kit product contains a number of example plug-
ins located in /usr/aw/maya/devkit/plug-ins. 

Before you can use these plug-ins, you need to build them. You first have 
to create a working directory somewhere, recursively copy the directory 
and run make. For example,

mkdir -p $HOME/devkit/
cd $HOME/devkit/
cp -r /usr/aw/maya/devkit/plug-ins .
make Clean
make

Also, to attach your plug-in development area to the rest of Maya, you 
need to set a number of variables. These are: 

• MAYA_LOCATION 

• MAYA_SCRIPT_PATH 

• MAYA_PLUG_IN_PATH 

• XBMLANGPATH 

These variables can be defined in a file called Maya.env. Maya lets you 
define these variables in a file so that you can easily set up the same 
runtime environment on another system by simply copying the file. You 
can still use variables in the environment and they will either override the 
corresponding variable in the Maya.env file or be prepended to the 
variable for variables which represent search paths. 

The environment variable, MAYA_APP_DIR, can be used to help find the 
Maya.env file. If this variable is not set, Maya looks in your $HOME/maya 
directory. In addition, if you have multiple versions of Maya installed on 
your system, you can put your Maya.env file in a subdirectory of either 
the directory pointed to by the MAYA_APP_DIR environment variable or 
$HOME/maya.
API guide

211



10 | Setting up your plug-in build environment 
Developer > IRIX and Linux environments
The subdirectory must be named to be the version number of the Maya 
application that will be executed. For example, if you have set 
MAYA_APP_DIR to be /usr/mydir, you can create a version specific 
Maya.env file in the directory /usr/mydir/6.0. that will be used when 
the 6.0 version of Maya is run. If you do not set MAYA_APP_DIR, you can 
put your version 6.0 tailored Maya.env file in $HOME/maya/6.0.

The following assumes that Maya is installed in /usr/aw/maya and that 
you have set up your plug-in development area in $HOME/devkit/plug-
ins. If your installation is different, you will have to modify the lines that 
set MAYA_LOCATION in the examples below.

Your Maya.env file should contain the following:

MAYA_SCRIPT_PATH    = $HOME/devkit/plug-ins
MAYA_PLUG_IN_PATH   = $HOME/devkit/plug-ins
XBMLANGPATH         = $HOME/devkit/plug-ins/%B

Users of /bin/sh or /bin/ksh need to add the following lines to $HOME/
.profile. 

# Location of installed maya.
MAYA_LOCATION=/usr/aw/maya
export MAYA_LOCATION

Users of /bin/csh or /bin/tcsh need to add the following lines to 
$HOME/.cshrc. 

# Location of installed maya
setenv MAYA_LOCATION /usr/aw/maya

If you now start Maya and open the Plug-in Manager window, you 
should see a list of all the pre-compiled plug-ins you copied to your 
$HOME/devkit/plug-ins directory. 

Maya API applications

To build the supplied stand-alone application examples, you need to do 
the following:

mkdir $HOME/devkit/applications
cd $HOME/devkit/applications
cp /usr/aw/maya/devkit/applications/* .
make Clean
make

Important note

The shell script mayald is used to link these applications to isolate you 
from the exact set of Maya shared libraries necessary for the link. 
API guide 

212



10 | Setting up your plug-in build environment

Developer > Linux compiler requirement
On IRIX and Linux, you must set the LD_LIBRARYN32_PATH 
environment variable before you try to execute one of these applications 
so the runtime linker can find the Maya shared libraries. 

On Linux, the variable you must set is LD_LIBRARY_PATH.

The recommended procedure to prepare for building and running stand-
alone apps is to set the following environment variables:

IRIX:

setenv MAYA_LOCATION /usr/aw/maya
setenv LD_LIBRARYN32_PATH $MAYA_LOCATION/lib

Linux:

setenv MAYA_LOCATION /usr/aw/maya
setenv LD_LIBRARY_PATH $MAYA_LOCATION/lib

When linking your plug-in, make sure to list all of the OpenMaya libraries 
containing the API classes you have used. The reference pages for each 
class specify the particular OpenMaya library containing the class.

Linux compiler requirement

To compile plug-ins and standalone plug-ins for Maya 6 for Linux, use the 
gcc compiler 3.3.2. Maya is built with this compiler under RedHat 7.3. 
Plug-ins built with any other compiler will not work because the C++ ABI 
(Application Binary Interface) must match between Maya and plug-ins.

Note that the compiler should be renamed with the “332” extension to 
avoid conflict with the default version of gcc on the system.

Please consult the section “Additional Linux Notes” in the Installing 
Linux chapter of the Installation and Licensing guide for information on 
how to build the gcc 3.3.2 compiler.

Note Stand-alone apps can't read files with IK. Specifically, if you try 
to read a file with IK using the devkit “readAndWrite” app, you 
get an error about a failed connection and the ik fails in the 
scene. To counter this, you must force the IK subsystem to load 
before the file is loaded. After the MLibrary() call is made, add in 
some command that uses the IK subsystem before the call to 
MFileIO::open(). The following command works:

MGlobal::executeCommand( "ikSystemInfo -q qsh" ); 
API guide

213



10 | Setting up your plug-in build environment 
Developer > Using a debugger to debug your plug-ins
Using a debugger to debug your plug-ins

To start Maya under the control of a debugger, you use the “-d” flag of the 
maya shell script. The syntax for this is: 

maya -d debuggerName

or, for example: 

maya -d cvd

This launches the debugger given as an argument to the -d, and then 
starts Maya under control of this debugger. Once you have started Maya 
and loaded your plug-in, you can: 

• set breakpoints in the plug-in code 

• single step through the plug-in 

• perform any of the operations supported by the debugger 

By default, Maya catches several signals generated by programming 
faults, in particular: SIGSEGV, SIGILL, SIGBUS and SIGABRT. When 
debugging a plug-in with a debugger, it is likely that you will want to 
suppress this behavior of Maya, and instead let the debugger catch the 
signals. This can be accomplished by setting an environment variable, as 
shown below:

setenv MAYA_DEBUG_NO_SIGNAL_HANDLERS 1

This variable can be set either in the environment or the Maya.env file. If 
you use cvd as your debugger, beware of a potential conflict. The Maya 
shell script sets the values of two environment variables that tell the Maya 
binary where to find things. These variables are: 

• MAYA_LOCATION 

IRIX:

• LD_LIBRARYN32_PATH

Linux:

• LD_LIBRARY_PATH

If you have set either of these in your shell’s start-up file (.cshrc or.profile), 
you must protect them so shells started by the debugger (after the Maya 
shell script has started that debugger) do not undo these modifications. 

IRIX:

If you use csh or tcsh use the following construct:

if ( ! ${?MAYA_LOCATION} )
    setenv MAYA_LOCATION /usr/aw/maya
if ( ! ${?LD_LIBRARYN32_PATH} )
    setenv LD_LIBRARYN32_PATH whatEver
API guide 

214



10 | Setting up your plug-in build environment

Developer > Windows environment
and if you use sh or ksh use this construct:

MAYA_LOCATION=${MAYA_LOCATION:=/usr/aw/maya}
export MAYA_LOCATION
LD_LIBRARYN32_PATH=${LD_LIBRARYN32_PATH:=whatEver}
export LD_LIBRARYN32_PATH

Linux:

If you use csh or tcsh use the following construct:

if ( ! ${?MAYA_LOCATION} )
    setenv MAYA_LOCATION /usr/aw/maya
if ( ! ${?LD_LIBRARY_PATH} )
    setenv LD_LIBRARY_PATH whatEver

and if you use sh or ksh use this construct:

MAYA_LOCATION=${MAYA_LOCATION:=/usr/aw/maya}
export MAYA_LOCATION
LD_LIBRARY_PATH=${LD_LIBRARY_PATH:=whatEver}

export LD_LIBRARY_PATH

Windows environment

The Maya Development Kit product contains a number of example plug-
ins located in C:\Program Files\Alias\Maya6.0\devkit\plug-ins. 
The development kit also contains several Maya API applications, located 
in C:\Program Files\Alias\Maya6.0\devkit\applications.

Maya plug-ins

Before you can use the example plug-ins, you need to build them. You can 
choose to build the plug-ins in the directory to which they were installed 
or you can copy the plug-ins to your own working directory.

To build an individual plug-in, you need to load the corresponding 
solution file (the .sln file) into Microsoft Visual Studio .NET 2003 Visual 
C++. 

The easiest way to do this is to open Visual C++ and drag and drop the 
.sln file onto it. When the workspace is loaded, you can select Build 
Solution from the Build menu. Visual C++ will build your plug-in and 
place the resulting .mll file in the current directory.

To build all of the example plug-ins, you need to load the Plugins.sln 
workspace file into Visual C++. As above, the easiest way to do this is to 
open Visual C++ and drag and drop the Plugins.sln file onto it. When the 
workspace is loaded, you can select Rebuild Solution from the Build menu. 
API guide

215



10 | Setting up your plug-in build environment 
Developer > Windows environment
To load your plug-in into Maya, open the Plug-in Manager window and 
browse to the directory containing your plug-in. If you want the Plug-in 
Manager to automatically find your directory, you can build and put the 
plug-in into a directory defined by the MAYA_PLUG_IN_PATH variable.

Maya API Applications

You can choose to build the applications in the directory to which they 
were installed or you can copy the applications to your own working 
directory.

To build an individual application, you need to load the corresponding 
workspace file (the .sln file) into Microsoft Visual C++. The easiest way to 
do this is to open Visual C++ and drag and drop the .sln file onto it. 

When the solution is loaded, you can select Build Solution from the Build 
menu. Visual C++ will build your application and place the resulting 
executable file in the 
C:\Program Files\Alias\Maya6.0\devkit\applications directory.

To build all of the example Maya API applications, you need to load the 
AllApplications.sln workspace file into Visual C++. As above, the easiest 
way to do this is to open Visual C++ and drag and drop the 
AllApplications.sln file onto it. When the workspace is loaded, you can 
select Rebuild Solution from the Build menu.

If, during installation, you added the Maya executable directory to your 
path, you can run the application immediately. If you did not, you will 
need to copy your application to the Maya executable directory to run it.

Creating your own plug-in build file

The instructions in the previous section enable you to build and use the 
example plug-ins included with Maya, but you still need information on 
creating your own plug-ins. On Windows, the process for creating the 
source code files is the same as it is on IRIX and Linux, but in addition you 
must create Microsoft “Project” files so that Developer Studio knows how 
to build the plug-in. You can do this using the plug-in wizard, described 
in the following sections.

Using the Maya Plug-in Wizard for Developer Studio

Maya contains a “Maya Plug-in Wizard” for Microsoft Visual Studio .NET 
2003 Visual C++ that makes it very easy to create project files for your 
plug-in. It is highly recommended that you use this wizard.

To install this wizard, please follow the instructions contained in the 
$MAYA_LOCATION/devkit/pluginwizard directory.
API guide 

216



10 | Setting up your plug-in build environment

Developer > Mac OSX environment
To use the wizard, select File > New Project in NET 20003, then select 
Visual C++ Projects from Project Types and then finally select “Maya 
Plug-in Wizard” from the Templates area. The wizard will prompt you for 
the name of the plug-in, the type of plug-in (e.g. Command, Node, Tool, 
etc.) and the list of libraries the plug-in requires for linking. When you 
have answered all the questions, the wizard will create a complete project 
that contains the needed .sln and .vcproj files, and a complete template of 
the code needed to create your Command, Node, Tool, etc. This plug-in 
will compile without any changes, and will be a “do nothing” version of 
the type of plug-in you specified to the wizard. You just need to edit the .h 
and .cpp files and add the logic for your plug-in.

Mac OSX environment

The Maya Development Kit is located in the /Applications/Alias/
maya6.0/devkit/plug-ins directory in a standard install of Maya. 

Maya Plug-ins

Building with Makefiles

There are two ways of building plug-ins on Mac OS X. Your choices will 
be based on that level of Mac OS X that you are developing on. If you are 
on Mac OS X 10.2.8, we only provide a Makefile based build solution with 
our release. If you are on Mac OS X 10.3 then you can either use the 
Makefile or Xcode project files we supply to build plug-ins.

The Maya Development Kit product contains a number of example plug-
ins located in /Applications/Alias/maya6.0/devkit/plug-ins. 

Before you can use these plug-ins, you need to build them. You first have 
to create a working directory somewhere, recursively copy the directory 
and run make. For example,

mkdir -p $HOME/devkit
cd $HOME/devkit
cp -r /Applications/Alias/maya6.0/devkit/plug-ins .
cd plug-ins
make Clean
make

Also, to attach your plug-in development area to the rest of Maya, you 
need to set a number of variables. These are: 

• MAYA_LOCATION 

• MAYA_SCRIPT_PATH 

• MAYA_PLUG_IN_PATH 

• XBMLANGPATH 
API guide

217



10 | Setting up your plug-in build environment 
Developer > Mac OSX environment
These variables can be defined in a file called Maya.env. Maya lets you 
define these variables in a file so that you can easily set up the same 
runtime environment on another system by simply copying the file. You 
can still use variables in the environment and they will either override the 
corresponding variable in the Maya.env file or be prepended to the 
variable for variables which represent search paths. 

The environment variable, MAYA_APP_DIR, can be used to help find the 
Maya.env file. If this variable is not set, Maya looks in your $HOME/maya 
directory. In addition, if you have multiple versions of Maya installed on 
your system, you can put your Maya.env file in a subdirectory of either 
the directory pointed to by the MAYA_APP_DIR environment variable or 
$HOME/maya.

The subdirectory must be named to be the version number of the Maya 
application that will be executed. For example, if you have set 
MAYA_APP_DIR to be /usr/mydir, you can create a version specific 
Maya.env file in the directory /usr/mydir/6.0. that will be used when 
the 6.0 version of Maya is run. If you do not set MAYA_APP_DIR, you can 
put your version 6.0 tailored Maya.env file in $HOME/maya/6.0.

The following assumes that Maya is installed in /Applications/Alias/
maya6.0/devkit/plug-ins and that you have set up your plug-in 
development area in $HOME/devkit/plug-ins. If your installation is 
different, you will have to modify the lines that set MAYA_LOCATION in the 
examples below.

Your Maya.env file should contain the following:

MAYA_SCRIPT_PATH = $HOME/devkit/plug-ins
MAYA_PLUG_IN_PATH = $HOME/devkit/plug-ins
XBMLANGPATH = $HOME/devkit/plug-ins/%B

Either set the following on the command line or add the equivalent for the 
shell environment you are using. The following can be used placed into 
your .tcshrc if this is your default shell.

# Location of installed maya
setenv MAYA_LOCATION /Applications/Alias/maya6.0/Maya.app/
Contents

If you now start Maya and open the Plug-in Manager window, you 
should see a list of all the pre-compiled plug-ins you copied to your 

$HOME/devkit/plug-ins directory. 

Building with Xcode project files

To build one of our example plug-ins using the supplied Xcode project file 
you must be using Mac OS X 10.3 and have the Xcode application 
installed. Do the following:
API guide 

218



10 | Setting up your plug-in build environment

Developer > Mac OSX environment
1 Browse to the /Applications/Alias/maya6.0/devkit/plug-ins 
directory.

2 Double-click on an Xcode project file such as cirlceNode.xcode.

3 Select the Build option from the Build menu.

It may take a few minutes to build but once complete you will have a 
plug-in created in the same directory. The plug-in will have a .lib 
extension. This plug-in can now be loaded into Maya via the Plug-in 
Manager.

Maya API applications

For building API applications, we only provide a Makefile solution. To 
build the supplied stand-alone application examples, you need to do the 
following:

mkdir $HOME/devkit/applications

cd $HOME/devkit/applications

cp MAYA_LOCATION/Applications/Alias/maya6.0/devkit/

applications/* .

make Clean

make

On Mac OS X, you must set the DYLD_LIBRARY_PATH environment 
variable before you try to execute one of these applications so the runtime 
linker can find the Maya shared libraries. 

The recommended procedure to prepare for building and running stand-
alone apps is to set the following environment variables:

setenv MAYA_LOCATION /Applications/Alias/maya6.0/Maya.app/
Contents
setenv DYLD_LIBRARY_PATH $MAYA_LOCATION/MacOS

Note The shell script mayald is used to link these applications to 
isolate you from the exact set of Maya shared libraries necessary 
for the link. 
API guide

219



10 | Setting up your plug-in build environment 
Developer > Mac OSX environment
API guide 

220



11 Appendices
Developer Plug-in API

Appendices

Appendix A: NURBS Geometry

There are quite a few really good books on spline geometry and NURBS 
geometry. This appendix will not try to teach you everything about 
NURBS but will try to give you a general overview of the Maya 
particulars.

Of the six curves in the illustration, the first is a circle primitive with four 
spans. Notice how the circle does not touch the hull. The next five curves 
are attempts at replicating this geometry using the curve building tools in 
Maya.

The circle appears to have four CVs using the default options of the curve 
tool (Create > CV Curve Tool), with the following options set:

Multiple End Knots ON

Curve Degree 3 Cubic

Primitive Circle

Curve 1 Curve 2

Curve 3 Curve 4 Curve 5
API guide

221



11 | Appendices 
Developer > Appendix A: NURBS Geometry
If you place four CVs, you produce something that looks like “Curve 1”. 
This is an Open curve. It’s open because the curve has a gap between the 
first and last CVs. It also has only one span, where the circle has four. (A 
span connects two edit points.)

If you try to close the curve by placing another CV on top of the first CV, 
you produce something that looks like Curve 2. Curve 2 is closer to the 
primitive circle, first because it is Closed, that is, there is no gap in the 
curve between the first and last CVs, and second, because it has two 
spans. However, you will notice that the curve does not look like a circle, 
it intersects the hull at the first CV and there is a discontinuity in the 
curve’s tangent at this point. If you were to place another CV overlapping 
the second CV, you would find that the curve is now open and looks even 
less like a circle. A third and fourth CV don’t help either, all because the 
first and last CVs are always on the hull.

If you go into the curve tool’s option box and turn off Multiple End Knots 
and place four CVs, you produce a curve which looks like Curve 3. This 
looks more promising than Curve 1 since the curve does not intersect the 
hull. If you now place a fifth CV on top of the first CV you produce Curve 
4. This still looks promising. If you go further and add a sixth and seventh 
CV on top of the second and third CV, you produce Curve 5. This looks 
exactly like the circle. You’ve done it.

Well, not quite. If you were now to pull one of these additional CVs away 
from the CV under it, you would pull the curve apart, producing an open 
curve again. However, no matter how you pull the CVs on the circle you 
cannot pull it apart, it remains a closed curve. So there is still a small 
difference between these two curves. The difference is the form of the 
curve. Curves 1, 3 and 4 are all Open, that is, their form is open. Curves 2 
and 5 are closed, that is, their form is closed. The circle is neither open nor 
closed, it’s form is a third type, called periodic. Periodic implies that the 
last degree CVs of the curve overlap the first degree CVs, and all 
operations on the CVs ensure that they stay together and cannot be pulled 
apart.

A periodic curve generally has tangency continuity on the whole curve 
while a closed curve will not.

Examples

The following plug-in creates Curve 1. To ensure that the CVs interpolate 
the end points of the curve, the knots of the curve are duplicated (piled 
up) at each end.

#include <maya/MSimple.h>
#include <maya/MPointArray.h>
#include <maya/MDoubleArray.h>
#include <maya/MFnNurbsCurve.h>
API guide 

222



11 | Appendices

Developer > Appendix A: NURBS Geometry
MStatus curveTest( const MArgList& )
{
    MFnNurbsCurve    curveFn;

    const double cvs[][4] = {
        { -1, 0, -1, 1 },
        { -1, 0,  1, 1 },
        {  1, 0,  1, 1 },
        {  1, 0, -1, 1 }
    };
    const double knots[] = { 0, 0, 0, 1, 1, 1 };

    MPointArray cvArray( cvs, unsigned( sizeof(cvs) / (4*sizeof(double)) ) );
    MDoubleArray knotArray( knots, unsigned(sizeof( knots )/sizeof( double )) 
);
    MStatus status;
    MObject    curve = curveFn.create( cvArray, knotArray, 3, 
MFnNurbsCurve::kOpen,
               false, false, MObject::kNullObj, &status );
    if ( MS::kSuccess != status )
    {
              printf( “Failed to create curve\n” );
              return status;
    }

    return MS::kSuccess;
}

DeclareSingle( curveTest );

The only change necessary to produce Curve 3 from Curve 1 is simply to 
change the knot vector so that the knots are not piled up at the ends of the 
curve:

const double knots[] = { 0, 1, 2, 3, 4, 5 };

Changing Curve 1 to Curve 2 is a little more involved. A CV, a duplicate 
of the first, has to be added to the end of the CV array, and a new knot 
must be inserted into the knot array.

const double cvs[][4] = {
    { -1, 0, -1, 1 },
    { -1, 0,  1, 1 },
    {  1, 0,  1, 1 },
    {  1, 0, -1, 1 },
    { -1, 0, -1, 1 }
};
const double knots[] = { 0, 0, 0, 1, 2, 2, 2 };

Curve 4 is to Curve 3 what Curve 2 is to Curve 1, that is, just an additional 
CV (a duplicate of the first) and an additional knot.
API guide

223



11 | Appendices 
Developer > Appendix B: Dependency graph rendering nodes
const double cvs[][4] = {
    { -1, 0, -1, 1 },
    { -1, 0,  1, 1 },
    {  1, 0,  1, 1 },
    {  1, 0, -1, 1 },
    { -1, 0, -1, 1 }
};
const double knots[] = { 0, 1, 2, 3, 4, 5, 6 };

Curve 5 continues on from Curve 4 with an additional two CVs 
(duplicating the second and third) and two knots.

const double cvs[][4] = {
    { -1, 0, -1, 1 },
    { -1, 0,  1, 1 },
    {  1, 0,  1, 1 },
    {  1, 0, -1, 1 },
    { -1, 0, -1, 1 },
    { -1, 0,  1, 1 },
    {  1, 0,  1, 1 }
};
const double knots[] = { 0, 1, 2, 3, 4, 5, 6, 7, 8 };

This will produce a curve identical in shape to the circle primitive, 
however if you were to start pulling on the CVs of this curve you would 
find that you could pull the curve apart. To keep the curve from 
separating one additional change is required. When creating the curve, 
rather than specifying it be open (MFnNurbsCurve::kOpen) specify that it 
should be periodic (MFnNurbsCurve::kPeriodic).

MObject curve = curveFn.create( cvArray, knotArray, 3,
    MFnNurbsCurve::kPeriodic, false, false, MObject::kNullObj, &status );

So long as there is the proper number of overlapping CVs (one for each 
degree of the curve - these curves are degree three, so there should be 
three overlapping CVs) you can create a periodic curve. If there are 
insufficient overlapping CVs, the create() method will fail.

Appendix B: Dependency graph rendering 
nodes

 Node Name  Classification

 ambientLight light

 blendColors utility/color

 blinn shader/surface
API guide 

224



11 | Appendices

Developer > Appendix B: Dependency graph rendering nodes
 brownian texture/3d

 bulge texture/2d

 bump2d utility/general/bump

 bump3d utility/general/bump

 camera camera

 cameraView none

 checker texture/2d

 clamp utility/color

 cloth texture/2d

 cloud texture/3d

 condition utility/general

 contrast utility/color

 crater texture/3d

 defaultLightList none

defaultRenderUtilityList none

 defaultShaderList none

 defaultTextureList none

 directionalLight light

 displacementShader shader/displacement

 distanceBetween none

 envBall texture/environment

 envChrome texture/environment

 envCube texture/environment

 envFog shader/volume/fog

 Node Name  Classification
API guide

225



11 | Appendices 
Developer > Appendix B: Dependency graph rendering nodes
 envSky texture/environment

 envSphere texture/environment

 environmentFog none

 file texture/2d

 fractal texture/2d

 gammaCorrect utility/color

 geometryShape none

 granite texture/3d

 grid texture/2d

 hsvToRgb utility/color

 imagePlane imageplane

 implicitCone none

 lambert shader/surface

 layeredShader shader/surface

 leather texture/3d

 light none

 lightFog shader/volume/fog

 lightInfo utility/general

 lightList none

 luminance utility/color

 marble texture/3d

 materialInfo none

 mountain texture/2d

 multilisterLight none

 Node Name  Classification
API guide 

226



11 | Appendices

Developer > Appendix B: Dependency graph rendering nodes
 multiplyDivide utility/general

 nonAmbientLightShapeNode none

 nonExtendedLightShapeNode none

 opticalFX postprocess/opticalFX

 particleAgeMapper utility/particle/mapper

 particleCloud shader/volume/particle

 particleColorMapper utility/particle/mapper

 particleIncandMapper utility/particle/mapper

 particleTranspMapper utility/particle/mapper

 partition none

 phong shader/surface

 phongE shader/surface

 place2dTexture utility/general/placement/2d

 place3dTexture utility/general/placement/3d

 plusMinusAverage utility/general

 pointLight light

 pointMatrixMult none

 postProcessList none

 projection utility/general

 ramp texture/2d

 reflect none

 renderCone none

 renderGlobals none

 renderGlobalsList none

 Node Name  Classification
API guide

227



11 | Appendices 
Developer > Appendix B: Dependency graph rendering nodes
 renderQuality renderGlobal/quality

 renderSphere none

 resolution renderGlobal/resolution

 reverse utility/general

 rgbToHsv utility/color

 rock texture/3d

 samplerInfo utility/general

 setRange utility/general

 shaderGlow postprocess/glow

 shadingMap shader/surface

 simpleVolumeShader none

 snow texture/3d

 solidFractal texture/3d

 spotLight light

 stencil utility/general

 stucco texture/3d

 surfaceLuminance utility/color

 surfaceShader shader/surface/utility

 texture2d none

 texture3d none

 textureEnv none

 useBackground shader/surface

 vectorProduct utility/general

 volumeShader shader/volume/utility

 Node Name  Classification
API guide 

228



11 | Appendices

Developer > Appendix C: Rendering attributes
Appendix C: Rendering attributes

Output Attributes requested by Shading Groups

 water texture/2d

 wood texture/3d

 Node Name  Classification

Note The shading process uses the long names for attributes, so it 
doesn’t matter what you use for short names.

 Name Long (short) Data Type Description

displacement (d) float Output surface displacement 
distance along the surface 
normal 

outColor (oc) 

  outColorR (ocr)

  outColorG (ocg)

  outColorB (ocb)

float3

float

float

float

Output color 

outGlowColor (ogc)

  outGlowColorR (ogr)

  outGlowColorG (ogg)

  outGlowColorB (ogb)

float3

float

float

float

Output glow color 

outMatteOpacity (omo)

  outMatteOpacityR (omor)

  outMatteOpacityG (omog)

  outMatteOpacityB (omob) 

float3

float

float

float

Output matte

outTransparency (ot)

  outTransparencyR (otr)

  outTransparencyG (otg)

  outTransparencyB (otb)

float3

float

float

float

Output transparency 
API guide

229



11 | Appendices 
Developer > Appendix C: Rendering attributes
Rendering Attributes available per sample

 Name Long (short) Data Type Description

farPointCamera (fc)

  farPointCameraX (fcx)

  farPointCameraY (fcy)

  farPointCameraZ (fcz)

float3

float

float

float

used for volume, the far point 
of the visible interval in 
camera space 

farPointObj (fo)

  farPointObjX (fox)

  farPointObjY (foy)

  farPointObjZ (foz)

float3

float

float

float

used for volume, the far point 
of the visible interval in object 
space 

farPointWorld (fw)

  farPointWorldX (fwx)

  farPointWorldY (fwy)

  farPointWorldZ (fwz)

float3

float

float

float

used for volume, the far point 
of the visible interval in world 
space 

filterSize (fs)

  filterSizeX (fsx)

  filterSizeY (fsy)

  filterSizeZ (fsz)

float3

float

float

float

Filter size in (u,v, w) with 
which to filter textures 

infoBits (ib) 32 bit 
unsigned 
integer 

Passes information from one 
node that may be needed by 
another node. 

Using this field, a file texture 
node with advanced filtering 
turned on (such as Quadratic 
filtering) can be used 
simultaneously as both a color 
map and a bump map. When 
rendering, Maya computes 
the color map using advanced 
filtering, but computes the 
bump map without it since 
advanced filtering is 
incompatible with bump 
mapping.
API guide 

230



11 | Appendices

Developer > Appendix C: Rendering attributes
lightDataArray (ltd)

  lightDirection (ld)

    lightDirectionX (ldx)

    lightDirectionY (ldy)

    lightDirectionZ (ldz)

  lightIntensity (li)

    lightIntensityR (lir)

    lightIntensityG (lig)

    lightIntensityB (lib)

  lightAmbient (la)

  lightDiffuse (ldf)

  lightSpecular (ls)

lightShadowFraction (lsf)

lightData

float3

float

float

float

float3

float

float

float

boolean

boolean

boolean

float

Multi-attribute representing 
all lights linked to the shading 
group

The light direction

The light intensity

Flag for  ambient component

Flag for diffuse component

Flag for specular component

Percentage shadowing of the 
current light, provided 
shadows are enabled on the 
given light 

matrixObjectToWorld (mow) floatMatrix Transformation from object 
space into world space 

matrixWorldToObject (mwo) floatMatrix Transformation from world 
space into object space 

mediumRefractiveIndex (mrfi) float refractive index of the 
medium through which the 
incident ray was travelling 
before it hit the point being 
shaded 

normalCamera (n)

  normalCameraX (nx)

  normalCameraY (ny)

  normalCameraZ (nz)

float3

float

float

float

Surface normal in camera 
space 

numShadingSamples (ns) char Number of shading samples 
to take for this surface 

 Name Long (short) Data Type Description
API guide

231



11 | Appendices 
Developer > Appendix C: Rendering attributes
objectId (oi) int unique ID for the object being 
shaded, may not be the same 
ID across frames 

objectType (ot) char the rendering type 
(0=unknown, 1=surface, 
2=volume(not particles), 
3=blobby surface, 4=particle 
system, 5=image plane) 

particleAge (pa) float age of the particle currently 
being shaded 

particleColor (pc)

  particleColorR (pcr)

  particleColorG (pcg)

  particleColorB (pcb)

float3

float

float

float

per-particle color as provided 
by a particle color mapper 

particleId (pid) int unique identifier for the 
particle being shaded 

particleIncandescence (pi)

  particleIncandescenceR (pir)

  particleIncandescenceG (pig)

  particleIncandescenceB (pib)

float3

float

float

float

per-particle incandescence as 
provided by a particle 
incandescence mapper 

particleLifespan (pls) float life-span of the current 
particle 

particleTransparency (pt)

  particleTransparencyR (ptr)

  particleTransparencyG (ptg)

  particleTransparencyB (ptb)

float3

float

float

float

per-particle transparency as 
provided by a particle 
transparency mapper 

particleWeight (w) float weight of the current particle 

pixelCenter (pc)

  pixelCenterX (pcx)

  pixelCenterY (pcy)

float2

float

float

center of the pixel currently 
being shaded in screen space 

 Name Long (short) Data Type Description
API guide 

232



11 | Appendices

Developer > Appendix C: Rendering attributes
pointCamera (p)

  pointCameraX (px)

  pointCameraY (py)

  pointCameraZ (pz)

float3

float

float

float

xyz location of geometry in 
camera space 

pointObj (po)

  pointObjX (pox)

  pointObjY (poy)

  pointObjZ (poz)

float3

float

float

float

xyz location of geometry in 
object space 

pointWorld (pw)

  pointWorldX (pwx)

  pointWorldY (pwy)

  pointWorldZ (pwz)

float3

float

float

float

xyz location of geometry in 
world space 

rayDepth (rd) int during raytracing, the depth 
of the current ray (the 
primary ray has a depth of 0) 

rayDirection (rad)

  rayDirectionX (rdx)

  rayDirectionY (rdy)

  rayDirectionZ (rdz)

float3

float

float

float

The direction of the current 
intersection ray in camera 
space 

rayOrigin (ro)

  rayOriginX (rox)

  rayOriginY (roy)

  rayOriginZ (roz)

float3

float

float

float

The origin of the current 
intersection ray in camera 
space 

refPointCamera (rpc)

  refPointCameraX (rcx)

  refPointCameraY (rcy)

  refPointCamearZ (rcz)

float3

float

float

float

The current reference sample 
point that has to be shaded. 
Used in conjunction with 
reference objects.

refPointObject (rpo)

  refPointObjectX (rox)

  refPointObjectY (roy)

  refPointObjectZ (roz)

float3

float

float

float

The current reference sample 
point that has to be shaded. 
Used in conjunction with 
reference objects.

 Name Long (short) Data Type Description
API guide

233



11 | Appendices 
Developer > Appendix C: Rendering attributes
refPointWorld (rpw)

  refPointWorldX (rwx)

  refPointWorldY (rwy)

  refPointWorldZ (rwz)

float3

float

float

float

The current reference sample 
point that has to be shaded. 
Used in conjunction with 
reference objects.

tangentUCamera(tu)

  tangentUx (tux)

  tangentUy (tuy)

  tangentUz (tuz)

float3

float

float

float

The U tangent of the surface 
in camera space 

tangentVCamera (tv)

  tangentVx (tvx)

  tangentVy (tvy)

  tangentVz (tvz)

float3

float

float

float

The V tangent of the surface in 
camera space 

triangleNormalCamera (tnc)

  triangleNormalCameraX (tnx)

  triangleNormalCameraY (tny)

  triangleNormalCameraZ (tnz)

float3

float

float

float

Normal of the visible triangle 
in camera space. 

uvCoord (uv)

  uCoord (u)

  vCoord (v)

float2

float

float

texture UV coordinates in 
surface parametric space 

uvFilterSize (uf)

  uvFilterSizeX (ufx)

  uvFilterSizeY (ufy) 

float3

float

float

 The sample (filter) size

vertexCameraOne (vc1)

  vertexCameraOneX (c1x)

  vertexCameraOneY (c1y)

  vertexCameraOneZ (c1z)

float3

float

float

float

 vertex one of the triangle 
currently being shaded in 
camera space 

vertexCameraTwo (vc2)

  vertexCameraTwoX (c2x)

  vertexCameraTwoY (c2y)

  vertexCameraTwoZ (c2z)

float3

float

float

float

vertex two of the triangle 
currently being shaded in 
camera space 

 Name Long (short) Data Type Description
API guide 

234



11 | Appendices

Developer > Appendix C: Rendering attributes
Rendering Attributes available per frame

vertexCameraThree (vc3)

  vertexCameraThreeX (c3x)

  vertexCameraThreeY (c3y)

  vertexCameraThreeZ (c3z)

float3

float

float

float

 vertex three of the triangle 
currently being shaded in 
camera space 

vertexUvOne (vt1)

  vertexUvOneU (t1u)

  vertexUvOneV (t1v)

float2

float

float

texture coordinate of the 
triangle currently being 
shaded 

vertexUvTwo (vt2)

  vertexUvTwoU (t2u)

  vertexUvTwoV (t2v)

float2

float

float

texture coordinate of the 
triangle currently being 
shaded 

vertexUvThree (vt3)

  vertexUvThreeU (t3u)

  vertexUvThreeV (t3v)

float2

float

float

texture coordinate of the 
triangle currently being 
shaded 

 Name Long (short) Data Type Description

 Name Data Type Description

cameraFarClipPlane (fcp) float Far clipping plane distance 
for camera view 

cameraNearClipPlane (ncp) float Near clipping plane for 
camera view 

hFilmAperture (hfa) float width of the film (inches) 
from the camera being 
currently rendered 

hFilmOffset (hfo) float horizontal offsets of the film 
(inches) 

isPerspCamera (ipc) boolean If TRUE (non-zero), camera is 
perspective projection, else it 
is orthographic 

lensSqueezeRatio (lsr) float squeeze ratio of the camera 
being currently rendered 
API guide

235



11 | Appendices 
Developer > Appendix D: Frequently asked questions
Appendix D: Frequently asked questions

This list is a compilation of questions received from programmers using 
the Maya API. A set of categories has been defined (see the list below), 
and the questions have been organized into these categories to make the 
presentation more logical. 

The current list of Categories is: 

• “General Questions” 

• “Documentation Questions” 

• “Dependency Graph Questions” 

matrixEyeToNormPersp (etp) floatMatrix Transformation from camera 
(eye) space to normalized 
perspective space 

matrixEyeToWorld (e2w or etw) floatMatrix Transformation from camera 
(eye) space to world space 

matrixNormPerspToEye (pte) floatMatrix Transformation from 
normalized perspective space 
to camera (eye) space 

matrixWorldToEye (wte) floatMatrix Transformation from world 
space to camera (eye) space 

vFilmAperture (vfa) float height of the film (inches) 
from the camera being 
currently rendered 

vFilmOffset (vfo) float vertical offsets of the film 
(inches) 

xHighRenderRegion (hrx) int resolution of the image in x 

yHighRenderRegion (hry) int resolution of the image in y 

xLowRenderRegion (lrx) int always 0 

yLowRenderRegion (lry) int always 0 

xPixelAngle (xpa) float The maximum angle 
subtended in X or Y by a 
single pixel 

 Name Data Type Description
API guide 

236



11 | Appendices

Developer > Appendix D: Frequently asked questions
• “GUI Questions” 

• “Animation Questions” 

• “Windows Questions”

General Questions

Q:  

How do I know what units an API method returns?

A: 

Unless otherwise specified all API methods use Maya internal units: cm 
and radians.

Q:

Is there a stand-alone mode similar to OpenModel? Or, would a stand-
alone be similar to Softimage where the basic software package (and 
license) is required? 

 A:

Yes. Chapter 10, “Setting up your plug-in build environment,” and the 
documentation on the MLibrary class describe how to set this up and use 
it. There are also several example stand-alone applications. Descriptions of 
these can be found in Chapter , “Example Plug-ins.”

Q:

While OpenModel presents the same API interface as OpenAlias, many of 
the function calls (even the non-UI ones) work differently or not at all in 
OpenModel. The lack of render control is a prime example, where some 
parts of the same function set work and others don’t. This is extremely 
frustrating, especially since the renderer is a very likely candidate for 
being done in batch. I cannot tell if the same disparities will show up with 
Maya in batch and interactive modes, but I will be quite disappointed in 
they do. 

 A:

This problem should not exist in the Maya API. Of course, UI calls will not 
work when run in library mode, but all other calls should behave 
identically. 

 Q:

The use of angular units is inconsistent. In Maya’s attribute window, 
transform rotations are given in degrees. However, in the API, attaching 
to the rotation attributes requires writing out radians. When writing out 
values for keyframes, we want to be consistent with what we see in the 
UI. 
API guide

237



11 | Appendices 
Developer > Appendix D: Frequently asked questions
 A:

When dealing with the UI, the API uses the MAngle class. This class 
contains a method “uiUnit” that returns the unit the user has chosen in 
the UI. This value is a user preference that can be changed at any time. 
The MAngle class defaults to radians in all cases so that plug-in code does 
not have to adjust to the UI preference currently in effect. You can adjust 
to the units that have been set by the UI user with the following code: 

MAngle foo;
foo.setInternalUnit( foo.uiUnit() );

After this, all new MAngle instances will operate in the same units as the 
UI, until, of course, the UI user changes his/her preferences again. 

Additionally, the rotation functions in the transform class deal in doubles 
that represent radians for efficiency reasons, as that is what the 
underlying implementation demands. If you are acquiring angular data 
from the UI, you should access it via the asMAngle method in MArgList 
and use the asRadians method to extract the value required by the 
transform class. 

 Q:

We want to modify the blind_data example to add a multidimensional 
array as a dynamic attribute, but don’t know which MFnAttribute class is 
the most appropriate for this operation. 

 A:

However, you can make an attribute, of whatever type, and turn it into an 
array by calling the setArray method of the MFnAttribute class. If you 
need a multidimensional array, you will have to build it on top of this 
using some form of index conversion. 

If this is not sufficient, another option is to derive a whole new data type 
off MPxData that can directly store a multidimensional array. This is more 
work however, and you will need to implement the readASCII, 
writeASCII, readBinary, and writeBinary virtual methods derived from 
MPxData in order for the new data type to save and restore correctly. 
There are 3 example plugins provided that demonstrate how this is 
accomplished: blindShortDataCmd.cc, blindDoubleDataCmd.cc and 
blindComplexDataCmd.cc. 

Q:

How can we get notified when an attribute of a node changes?

A:
API guide 

238



11 | Appendices

Developer > Appendix D: Frequently asked questions
There is a hierarchy of classes rooted at the MMessage class in the API 
that provide a way for you do register callback functions that will be 
invoked when a particular Maya event occurs. There is a large set of 
message that, among other things, allow you to find out when an attribute 
changes. 

 Q:

 How to we bake data via the API? 

 A:

The “bakeResults” command can be used to bake animation data. All 
expressions, motionPaths, animCurves, etc., are replaced in the 
dependency graph with a single animCurve the will produce the same 
motion. You can access this functionality via the 
“MGlobal::executeCommand” method. 

As well, the MEL command delete (-ch option) removes construction 
history for an object. From the API, you will also have to access this via 
the MGlobal::executeCommand method. Access to this functionality is 
also available from the UI under Edit > Delete > Construction History 
menu item. 

 Q:

The MFnNurbsSurface::cv() method returns an MObject, but it is unclear 
what function set can be used to access the returned information. A 
function set that operates on a class that represents CVs or that operates 
on MPoints does not exist. 

 A:

Use the MItSurfaceCV function set. While this might be a little counter-
intuitive, the MObject returned by the CV method actually returns a 
component structure that can contain multiple CVs of an object, and so the 
CV iterator is required to unpack it and get at the CV data. 

 Q:

When a group node is selected, all objects in the group are highlighted as 
if they are selected, but the global selection list only has the group node in 
it. Is this the way it’s supposed to be? It seems to me that everything in the 
group would be in the list, since they are all selected. (I’m constructing an 
MItSelectionList from the global active selection list and using 
MFn::kInvalid as the filter...) 

 A:

This is indeed the way it works. This is not an issue with the API or 
MItSelectionList, but rather the way Maya works. You can see identical 
behavior by starting the Hypergraph (Window > Hypergraph) and then: 
API guide

239



11 | Appendices 
Developer > Appendix D: Frequently asked questions
• create two or three primitives 

• select them all 

• select Edit > Group 

Notice in the Hypergraph that only the group transform, “group1” is 
“selected”, even though all the primitives in the group are “highlighted”. 
As far as Maya is concerned, only the one node is selected, and so that 
single node is the only one returned by MItSelectionList. You certainly can 
select the individual primitives in the Hypergraph, or by name using 
MEL, but the UI only selects the group transform. 

However, you can get the list of objects that are “highlighted” when the 
transform is selected via the API call MGlobal::getHiliteList.

 Q:

This question concerns simple API array structures, like the MPointArray. 
Is the data stored in an MPointArray contiguous, or is it stored as a linked 
list? 

In other words, does the append() method just add another element on (as 
in a linked list) or is it doing the equivalent of a realloc() function 
(allocates a new contiguous block of data plus one element, and then 
copies the old data over)? 

 A:

It is not a linked list, however, neither does it do a realloc on each append 
(or insert either). Instead, it manages a logical/physical space model, and 
expands the physical space by a user-configurable number of elements 
when more is needed. 

All the “*Array” should contain the methods “sizeIncrement”, and 
“setSizeIncrement”. The former tells you by how many elements the array 
will grow when it needs to, and the later allows you to change that value.

As of Maya 2.0, the constructors for all the array classes accept an initial 
size parameter. So if you know the size of your array in advance, you can 
completely avoid any growing/copying overhead in the array.

Q:

Why is a new instance of a command created every time it is invoked 
from the command window? Is this somehow related to Maya’s undo 
capability? When do these instances of the command object get deleted? 

 A:

Maya implements its infinite undo capability as follows: 
API guide 

240



11 | Appendices

Developer > Appendix D: Frequently asked questions
When a command or tool is invoked, the creator function for that object 
will be called to create a new instance. That instance must contain local 
data members sufficient to retain state so that when its doIt method is 
called, it can save enough state to: 

• undo what it is about to do 

• redo what it is about to do 

Typically, a command’s doIt method will just save the current state of 
what it is about to change for undo, then cache the parameters of the 
“about to be performed” operation and call redoIt. 

redoIt operates off the cached parameters, and if called from the undo 
manager, can “redo” the operation without any further user interaction. 

undo also operates off the cached data, and can also work without any 
further user interaction. 

Additionally, when a tool is “finished”, its virtual method “finalize” (that 
is provided in the MPxToolCommand base class) will be called. This 
routine is responsible for constructing an MArgList containing a 
command that will “redo” the operation. This command string is written 
in to the Maya Journal to record all the operations that have taken place. 

If the virtual method MPxCommand::isUndoable is overridden and made 
to return “false” (it defaults in the base class to “true”), then right after the 
doIt method is called, Maya will call the destructor for the command 
instance. Otherwise, the instance is passed to the undo manager which 
will call its undoIt and redoIt members to implement undo and redo 
requests. When the undo queue is flushed, all the instances of the 
commands or tools are destroyed, thus freeing the local memory that is 
caching the parameters needed for undo or redo. 

 Q:

Regardless of whether a single CV or multiple CVs are selected via the UI, 
the MItSelectionList iterator will only return one selection item. If multiple 
CVs were selected, how can I find which ones? 

 A:

If you select a multiple CVs, and then use the MItSelectionList iterator 
class of the API, all the selected CVs will be returned in a single 
component. 

To access the individual CVs you must use the getDagPath method of 
MItSelectionList, which returns both an MDagPath and a MObject, then 
pass these as arguments to the constructor of an iterator. For NURBS 
surfaces, the MItSurfaceCV class would be used to extract the individual 
surface CVs. The iterators: MItCurveCV, MItMeshVertex, MItMeshEdge 
API guide

241



11 | Appendices 
Developer > Appendix D: Frequently asked questions
and MItMeshPolygon can be used to perform similar operations on 
NURBS curve, and the various components of polygonal objects. The 
lassoTool plug-in provides a good example of how this is done. 

 Q:

What is the meaning of the value that MItSurfaceCV::index() returns? 

 A:

One of the components of a NURBS surface is an array of CVs. The index 
method returns the position of the given CV in the array maintained by 
the surface. The UI represents this as a 2D array of CVs with rows and 
columns of CVs corresponding to U and V indices. Internally this is stored 
as a 1D array (row1, row2, row3, etc.) and index returns the position of the 
CV in this data structure. (Incidentally, if you created the surface via 
MFnNurbsSurface::create, this is the way you had to provide the CV 
array). You can convert this to a pair of 2D indices via: 

sizeInV = MFnNurbsSurfaceInstance.numCVsInV();
indexU = index() / sizeInV;
indexV = index() % sizeInV;

The method getIndex of the MItSurfaceCV class returns the indexU and 
indexV values using exactly this calculation

Q:

How can I compare two components of a object to see if they are the 
same? Specifically, I need to compare two CVs on a NURBS surface, but 
this problem appears to apply to all types components of both NURBS 
and polygonal objects. 

 A:

There is no simple mechanism for doing this. Components are identical if 
the are members of the same Dag path (the MDagPath class defines an == 
operator to perform this comparison), and if their indices, returned by the 
index methods of the various component iterators, are also the same. 

Q:

I created an instance of an MFnNurbsSurface function set, and got good    
data out of it, however, I then called MGlobal::viewFrame, to move the 
animation to another frame. I know the surface moved, but I got the same 
data out of the function set as I did the first time. How can I make this 
work?

A:

You will have to restructure your code a little to make this work.
API guide 

242



11 | Appendices

Developer > Appendix D: Frequently asked questions
After a call to MGlobal::viewFrame, is it necessary to rebind your function 
sets to the objects they are accessing. This can be handled by code that 
looks like the following:

    MDagPath        path;
    // initialize path somehow to refer to the object in 
question
    MFnNurbsSurface surf;

    for (int i = 1; i <= maxFrames; ++i) {
        MGlobal::viewFrame(i);
        surf.setObject(path);
        }

The MDagPath will remain valid across frames, and thus can be used to 
rebind the function set to the object in each frame.

Documentation Questions

Q:

We would like to have full documentation on all the transformations on a 
CV as it is positioned in world space. For example, CVs end up in their 
global position via a number of matrices, clusters, functions, animations 
etc. Documentation of these transforms explicitly and exactly would be 
very useful. 

 A:

We believe that the set of possible transforms is both too complex and do 
dynamic to document in the general case. Take clusters for example. 
Clusters in Maya are implemented as deformers. This means that a 
deformer is put between the original surface and the new output surface. 

It is therefore possible to get the world transformation information from 
the deformed CV up to the world through the DAG shape that holds the 
deformation result. So, it is trivial to query the world space location of a 
point. We get that for free from our current implementation. 

However, the local to world transformation of any point is arbitrarily 
complex. Nodes can easily implement procedural transformations that 
don’t involve matrices at all. Conceptually, the architecture is one in 
which a point in local space is passed through a series of “black boxes” 
each of which affect its position and we simply don’t know what is in all 
of the boxes. 

This implies that we can’t set the position of a point (or CV) exactly in 
world space either. To do so would require computing the inverse of the 
local to world space transformation, and I have just been busy telling you 
we don’t know how to define that transform in general. 
API guide

243



11 | Appendices 
Developer > Appendix D: Frequently asked questions
That being said, if you are just interested in the order in which Maya’s 
transform node applies scale, rotation, translation and other 
transformations from its attributes to an object, this is described in detail 
in the documentation for the transform node in the Commands online 
documentation in xform.html.

Dependency Graph Questions

Q:

Can we derive our own custom classes/nodes from the standard classes/
nodes such that they will be correctly processed in the DG? This capability 
has been inferred to in the past and we just want to get the most recent 
confirmation on this capability. 

 A:

Maya maintains ownership of the MObjects which it presents as opaque 
data. So it is not possible to derive from these objects. 

Additionally it isn’t possible to derive from Maya’s internal nodes. For 
example, let’s say you wanted to derive something from the internal 
revolve node. The revolve node, like all nodes, is simply a compute 
function on a set of attributes. To make modifications to this node you 
would require the source code to the compute method - which we can’t 
give you. Instead what can be done is to connect new (user-written) nodes 
(see the next paragraph) to the attributes of the Maya revolve node and 
use these new nodes to modify the input and output of that node. 
Alternatively, in this case, a new revolve node could be written and used 
in place of the system defined one. 

Maya Proxy objects are designed expressly for derivation, and allow new 
user nodes to be added to Maya.

As well, it is possible to derive from the function sets to create new 
operations on the MObjects (limited only by the fact that the MObjects are 
opaque, and the source for the implementation of the function set 
members is unavailable). 

So, in summary, you can’t derive directly from Maya nodes, but you can 
create your own nodes, insert them into the dependency graph and have 
them either replace an existing Maya node, or modify the input or output 
parameters of Maya nodes. 

 Q:

It looks like the user-defined nodes are fundamentally different from the 
already existing nodes. If you look at something like MFnNurbsCurve, 
you see that eventually, it is derived from MFnBase, but if you look in the 
circle example, you see that the “circle” is derived from MPxNode. 

 A:
API guide 

244



11 | Appendices

Developer > Appendix D: Frequently asked questions
There is a fundamental difference between “function sets” and “maya 
objects”. Maya internal objects (which include dependency nodes) are 
encapsulated in MObjects and function sets, which are indeed derived 
from MFnBase, are initialized “with” an MObject and then act upon it. 
This is sort of an “outward > in” kind of paradigm in which user written 
code is allowed to affect the internals of Maya objects. 

To create a user-defined dependency node, we have to do something 
completely different, which is why the MPxNode classes are necessary. 
Effectively, what we do is create a new internal Maya node, and “hook 
up” its methods to the ones defined in the customer generated node. For 
example, if during the evaluation of the dependency graph it is necessary 
to “recompute” a user defined node, what happens is: 

• dependency graph evaluator calls the compute method for our 
“internal node” 

• its compute function calls out to the compute function of the user 
written node, gets the result, and

• passes the result on. 

This is repeated for any of the attributes of the node that require 
recomputation. This is sort of an “inward > out” kind of paradigm in 
which internal Maya objects have to call a user written compute function. 

So, yes there are fundamental differences, but that is intentional and 
caused by the fact that the problems are fundamentally different. 

 Q:

It is also unclear if we can accomplish a “persistent” effect through the 
API. That is, if the CV gets altered, the arclen will change. So anything 
that is attached to our arclen attribute would need to be moved or sized 
accordingly. 

 A:

As long as the propagation of values is done through connections in the 
dependency graph, this is taken care of automatically. For example: 

MayaNodeA.cvSet > customerNode.input > 
CustomerNode.output(computes scale from arclen) > MayaNodeB.scale

A change in a CV in MayaNodeA automatically forces a recompute in 
CustomerNode and MayaNodeB, and the object is moved or sized 
accordingly. 

 Q:

We want to be able to drive an attribute of one object by a derivable value 
of another object. For example, we may want to drive the scale of one 
object by the arclen of a curve. Or we may want to translate an object 
according to the evaluated value of a curve at a particular parametric 
API guide

245



11 | Appendices 
Developer > Appendix D: Frequently asked questions
value. The examples show how to instantiate a dependency node that 
allows us to tie together attributes of objects, but can we take it one step 
further and have the driving value be an evaluated value, e.g. 
myNurbsCurve.arclen() or myNurbsCurve.point(0.5)? 

Additionally when creating your own node, can you create an input 
attribute that takes a node or MObject as its input, rather than a float or a 
string? This would allow us to jump back into the MFnNurbsCurve and 
use whatever derived methods we want. 

 A:

Such a construct is fairly easily handed in the Maya architecture by 
writing a node that has an MFnTypedAttribute. One parameter of the 
declaration of such an attribute is the “type” it accepts as input. It is quite 
possible to specify it as taking a nurbsCurve by using the type 
“kNurbsCurve”. Since your node will then have the actual curve, you can 
compute anything you want based upon it. 

So the node I think you want to write would have a nurbsCurve input 
attribute, and three double (scale) output parameters. All you need to do 
is connect this node to a node that produces a curve in the input, connect 
its outputs to the scale inputs of the node you want to animate, and the 
dependency graph will do the rest. Any change in the curve node will 
automatically propagate through the graph and update the scale of the 
final object. The example plug-in called arcLenNode demonstrates how to 
do this. 

Furthermore, inside your node, you will really have a nurbsCurve object, 
and thus you can attach a MFnNurbsCurve function set to that object. 
Then you can use any of its methods that compute values you need. The 
“length” function will compute the arclen of the curve, and the 
“pointAtParm” method will return a point at a particular parameter value. 

As well, a similar result can be obtained by simply hooking together 
existing dependency nodes. For example, the subCurve and curveInfo 
nodes allow you compute the arclen of a subcurve as shown below: 

global float $arclen;

// Create a curve
curve -p -5 0 8 -p -9 0 2 -p -3 0 5 -p -6 0 -2
    -p 1 0 3 -p -4 0 -5 -p 4 0 1;

    // Create a node to extract part of a curve,
    // set the parts to keep, and attach it to
     // the curve created above.
    createNode -n subCurve1 subCurve;
    setAttr subCurve1.minValue 0.4;
    setAttr subCurve1.maxValue 1.4;
    connectAttr curveShape1.local subCurve1.inputCurve;
API guide 

246



11 | Appendices

Developer > Appendix D: Frequently asked questions
     // Create a curveInfo node, and connect
    // it to the output of the subcurve.
    createNode -n curveInfo1 curveInfo;
    connectAttr subCurve1.outputCurve curveInfo1.inputCurve;

    // Get the arclen of the subcurve from the
    // curveInfo node and print it.
    $arclen =`getAttr curveInfo1.arcLength`;
    print(“curve[0.4:1.4] has arclen “ + $arclen + “\n”);

    // Change the part of the curve extracted by the
    // subCurve node  and print the new arclen
    setAttr subCurve1.minValue 0.0;
    setAttr subCurve1.maxValue 5.0;
    $arclen =`getAttr curveInfo1.arcLength`;
    print(“curve[0.0:5.0] has arclen “ + $arclen + “\n”);

 Q:

I need a better understanding of the differences between DagNodes and 
Dependency Nodes and how these relate to the API object classes. In 
particular, how do I know when to use the getDagPath method from the 
MItSelectionList iterator, and when do I use getDependNode? 

 A:

A DAG nodes describe how an instance of an object is constructed from a 
piece of geometry. For example, when you create a sphere, you create 
both a geometry node (the sphere itself) and a Transform Node that 
allows you to specify where the sphere is located, its scaling, etc. It is quite 
possible to have multiple transform nodes attached to the same piece of 
geometry. For example:

The dependency graph, however, is something new. All DAG nodes are 
also dependency nodes, but not vice-versa. For example there is a “time1” 
dependency node that can produce the frame number of the current 
animation. The “circleNode” and “sineNode” types created by the 

Transform1 Transform2
[2,2,2][1,1,1]

Transform3
scale:[1,1,1]

Sphere
API guide

247



11 | Appendices 
Developer > Appendix D: Frequently asked questions
“circle.cc” and “sine.cc” plug-in examples are dependency nodes, 
however, they are not part of the DAG. Instead dependency nodes can be 
wired together to provide a dynamic evaluation graph that can end up 
affecting DAG nodes (and thus affecting what is drawn). For example, 

In this example the x, y, and z scale parameters of Transform3 are driven 
by the frame number. Thus as the animation is run, the 2 instances of the 
sphere will grow. 

So, now from the API, how do you know when to used getDagPath and 
when to use getDependNode? 

Well, if you pick something on the screen with the mouse then you will 
always be picking an instance and thus you will always have a DAG node 
available, and you should use getDagPath. 

If you pick something by name, then you might or might not get a DAG 
node. The right thing to do in this case is ask. The MItSelectionList 
iterator’s “itemType” method will return an element of an enum that will 
differentiate between the two node types, you can then call getDagPath or 
getDependNode as appropriate. 

Yet another important thing to understand in Maya is that geometry DAG 
nodes do not have transformation matrices. They rely on the transform 
nodes above them for their transformation information. Because of this, 
selection of geometry in 3D views always causes the transform node 
above the geometry be selected rather than the actual geometry node. This 
allows all of the transformation tools to work properly. 

Transform1 Transform2
[2,2,2][1,1,1]

Transform3
scale:[x = 

Sphere

y =
z =

Time1
output
output
output
API guide 

248



11 | Appendices

Developer > Appendix D: Frequently asked questions
So, in the above diagram, clicking on Sphere1 in a 3D view will cause 
Transform2 to be selected. 

For instance, if you are iterating through the selection list looking for the 
sphere and you want to perform an operation upon the sphere’s CVs, in 
the iteration, you will eventually come to Transform2. 

If you get Transform2 as a dependency node (via getDependNode), then 
you have a transform node. From this transform node, you will not be 
able to find either the sphere or its CVs. Additionally, if your object is 
instanced (as in the first diagram), then you will have lost the information 
about which instance was selected. 

If you get Transform2 as a DAG node, you will get a DAG path object. 
The DAG path object is more intelligent. It knows where the transform 
resides in the DAG. If you give the DAG path to the NURBS surface 
function set (or the iterator), then the sphere node under the transform 
will be found automatically and the CVs will be available for 
modification. 

 Q:

I can’t figure out how to get the transform matrix of an object. I have 
played around with attaching the MFnTransform function set to 
dependency node and dag paths, but can’t quite seem to get it right. 

 A:

You were close. To accomplish this you must first get a DAG path 
structure for the object, then attach the MFnTransform function set to it. 
You can use that to get a MTransformationMatrix object, which can access 
and update the transform for the object in numerous ways, including 
returning the entire matrix. To solve your problem you would include 
code like: 

        MDagPath                mdagPath;
        MStatus                 status;
        MTransformationMatrix   transform;
        MMatrix                 matrix;

Transform1

Transform2

Sphere
API guide

249



11 | Appendices 
Developer > Appendix D: Frequently asked questions
    if ( mdagPath.hasFn(MFn::kTransform) ) {

    // Get the transform matrix via the Dag path.
    MFnTransform transformNode(mdagPath,&status);

    // Get the transform matrix via the function set
    transform = transformNode.transformation(&status);
    matrix = transform.asMatrix();
    ...
        }

 Q:

How can I create a revolve-like plug-in, and have it take a curve, create a 
surface from it, and when the curve is modified, regenerate the surface? 

 A:

In order to implement this “history” functionality, you must write your 
own “revolve” node. It will take the curve as input (using the 
MFnTypedAttribute - see the arcLenNode plug-in) and output a surface. 
The output attribute of this node should then be connected to the create 
attribute of a nurbsSurface node which will draw it. In MEL the typical 
way to hook this up would be: 

    createNode transform -n revolvedSurface1;
    createNode nurbsSurface -n revolvedSurfaceShape1 -p revolvedSurface1;
    createNode yourRevolveNode -n yourRevolveNode1;
    connectAttr yourRevolveNode1.outputSurface revolvedSurfaceShape1.create

The simpleLoftNode example plug-in and provides a good example of 
how to do this. 

 Q:

If I set up a deformation in Maya, and then traverse the DAG tree from a 
plug-in, under the transform node for the deformed surface I see two 
shape nodes, both of which can be interpreted as MFnNurbsSurface - one 
is the deformed shape, and one is the shape in some neutral position. I 
need a flag to indicate which is the neutral position, so I know that it’s not 
really there, and don’t need to operate on it. 

 A:

The 2 surfaces are differentiated by their boolean intermediateObject 
attributes. If value of the attribute is TRUE, then this node is the input 
surface for the deformation and can be ignored. 
API guide 

250



11 | Appendices

Developer > Appendix D: Frequently asked questions
You can check the value of this attribute by creating a plug for this 
attribute on for each of the two nodes, and then get the value of the 
attribute from the plug. Alternatively, the convenience routine 
isIntermediateObject in the MFnDagNode function set performs this 
operation. 

Q:

How can one used Maya multi attributes to implement an array of a user 
defined data type? 

 A:

This is not how you implement arrays of a user defined data type. When 
dealing with user defined data, Maya doesn’t know or care what the data 
looks like. As you point out, it is tempting to create one data type and 
then attempt to create multiple instances of it via multi-plugs, but multi-
plugs were designed for multiple connections in the DG rather than data 
storage, so this won’t work. 

Instead, to implement an array of data, one must create the array inside a 
user defined data type and use the method outlined in the 
blindComplexDataCmd example to access that array. For example, 

class blindComplexData : class MPxData {
    public:
    // override methods like readBinary()....
    // define any data you want, for example, an array of 
integers
    int a[12];
};

After adding the above user-defined data as a dynamic attribute, access 
the data by attaching a plug to it the usual way and do a getValue() to get 
a handle to the data. Once you have the handle, convert it to a pointer to 
an instance of your custom data type. 

 Q:

Given a NURBS surface that is implemented via a cluster, moving the CVs 
of this surface via the MFnNurbsSurface function set seems to have no 
effect. Why is this, and how can this be done? 

A:

If clusters are present, then you have a deformer network which is 
computing the shape of the surface that appears in the Dag. If you move a 
CV on that “final & visible” surface, the deformer will simply move it 
back since the deformer is creating that surface. There are two ways to 
cope with this. First, find the “intermediate object” that is the input 
API guide

251



11 | Appendices 
Developer > Appendix D: Frequently asked questions
surface to the deformer and move the CV there. The problem with this 
approach is that it is difficult to predict what effect moving an input CV 
will have on its position on the output surface. 

The other approach is via tweaks which provide the capability to move (or 
tweak) a CV after a deformer has determined its position. There is no 
specific API in MFnNurbsSurface for handling tweaks (and there won’t be 
for Maya 1.0) but you can create a tweak by directly modifying the 
attributes of the nurbsSurface dependency node. To do a tweak you must: 

• set the boolean attribute “tweak” to true. 

• Create a CV array with the same dimensions as the input surface to 
the nurbsSurface node, and

• initialize all the CVs in that array to [0,0,0]. 

• For the CVs you want to tweak, set the corresponding element in the 
CV data structure and then use setCVs to update the array. 

If the boolean attribute “relativeTweak” is true, the values in the CV array 
are used to move the corresponding CV relative to the position in which 
the deformer puts it, otherwise they are absolute positions of the CVs. 

GUI Questions

Q:

Can a plug-in open its own graphics window (via winopen(), for example) 
and do graphics without interfering with the rest of Maya? If so, should it 
use OpenGL? How does it handle events (such as mouse movements 
within its own window) and still work with the rest of Maya? Does Maya 
provide an event handling mechanism that the plug-in can use and be 
compatible with the rest of Maya? 

 A:

Yes. In fact the helixMotifCmd example plug-in (not available on 
Windows) shows how to open a Motif window. You can also use OpenGL 
in such a window.There is one restriction however, Maya must retain 
control of the event loop. This should not be a problem however as your 
window simply needs to register callbacks for its UI elements, and Maya 
will happily invoke them for you. 

A question for you however is “why do you really want to do this?” As 
there are several other ways to create windows that you might prefer. 

First of all, the MEL scripting language in Maya allows you to create new 
windows and access virtually all Maya features. If you need a window for 
a dialog box, doing this in MEL is both easy and far and away the most 
efficient method of implementing such a feature. 
API guide 

252



11 | Appendices

Developer > Appendix D: Frequently asked questions
Maya also contains a new class called MPxLocatorNode that allows you to 
create DAG objects and provide a draw routine for them implemented 
with OpenGL calls. These objects are called locators because they do not 
render. So, you can use them for screen feedback, but not to create 
renderable objects. The example plug-ins footPrintNode and cvColorNode 
provide examples of how to create and use locators.

As for input events, we currently supply an API class called MPxContext 
that allows you to handle such events. The example plug-ins 
marqueeTool, helixTool and lassoTool all demonstrate how to implement 
this. 

 Q:

How does one tell when both left and mid buttons are pressed at the same 
time? Right now only one is reported (I think). 

 A:

When you press a second button it does not generate an event but instead 
it is stuffed into the modifier for the hold event for the first button. For 
example, say the user presses the left mouse button. To see if the user has 
pressed the middle mouse button while the left is still down, check the 
modifier for the doHold event using 
MEvent::isModifierMiddleMouseButton(). 

 Q:

How can I tell which 3D window is active? I thought of using the camera 
name to do this, but this will fail if the user changes the camera name. I 
need a function returning which window the 3dview is (XY, XZ, YZ, pers). 

 A:

This is a little difficult. Because any view can be arbitrarily tumbled or 
changed into a perspective view, a general solution to this problem 
requires a bit of work. 

M3dView::active3dView will give you the active view from which you can 
get the camera. You can then use MFnCamera methods upDirection and 
rightDirection to get the respective vectors, and compare them against 
MVector::xAxis, MVector::xNegAxis, etc. in order to determine the view 
that the user is seeing. 

 Q:

The viewToWorld method in M3dView correctly maps 2D coordinates to 
3D coordinates in orthographic windows, but returns bogus value in its 
cursor argument in the perspective window. 

 A:
API guide

253



11 | Appendices 
Developer > Appendix D: Frequently asked questions
For the perspective view, you must use the version of viewToWorld 
which returns points on both the near and far clipping planes given a 
point in the 2D view. Any point on the line segment connecting those 
points is a valid solution to the mapping, and you will have to determine 
on your own which of these points you wish to use. 

Animation Questions

Q:

Animation “created” in the DG via a user-defined node does not show up 
in the animation curve graphs, i.e. there is no way to see the results of 
procedurally generated animation. 

Only animation generated via keyframe animation shows up in the 
animation curve graphs. 

 A:

Unfortunately, this is unlikely to change. For a keyframed animation, we 
need only to check whether the node connected to an attribute is an 
animCurve node, if so, it is quite simple to extract the keyframed attribute 
values for display in the graph. 

For any other type of animation, we only know if it is an animation if 
somewhere in the graph connected to a particular attribute we find a time 
node. 

For a node which performs a procedural animation, we would actually 
have to run the entire animation, and save the output attribute values at 
each frame for display. This has the potential to be extremely 
computationally intensive. As well, the resulting curves would not be 
editable as they would be displaying only output values with no access to 
the knowledge on how they are computed. 

 Q:

I need in some way to be able to query any data at any animation frame. 
In OM/OA I do this by doing a viewFrame(x) and then checking the data. 
This is very slow however, and really what I might want to know is the 
position of this particular node at time x. In OM if you do a viewframe on 
a sub node it usually returns an incorrect value depending on how the 
animation has been set up. 

 A:

This should be better in Maya as the dependency graph will make sure 
that the “subnode” kind of information is always accurate. 
API guide 

254



11 | Appendices

Developer > Appendix D: Frequently asked questions
You can query the data you are interested in a manner quite similar to 
that in OM/OA: perform a viewframe, to set the time, then query the 
attributes (like tx, ty, tz, etc.) of the node you are interested in via the 
getValue methods of the MPlug class. As you point out however, this is 
somewhat slow, since viewframe changes the global time. 

In the Maya API you have another option however. You can create an 
instance of the MDGContext class initialized to the time you are interested 
in. This can be passed to the getValue method of the MPlug class and the 
attribute you are interested in will be evaluated at the specified time. As 
much or as little of the dependencies as necessary will be reevaluated in 
order to ensure you get an accurate answer. Lots of dependencies on other 
nodes will make the evaluation slow. Otherwise it should be fast. 

You should also be aware that Maya does not maintain the state of 
animated objects at all possible keyframes so the only way to determine 
an object’s animation state at any particular time is by querying it at a 
particular time using one of the two methods described above. 

 Q:

Can time be set randomly with MGlobal::viewFrame()? Are particles and 
IK stuff properly updated in all cases? 

 A:

You can set the time randomly, and everything will always be updated 
properly. However, the underlying mechanism is highly optimized 
towards monotonically increasing time. You can incur a large 
performance penalty when jumping time around randomly. 

 Q:

The method by which MFnMotionPath does its movement is unclear. In 
particular, how it interacts with the DAG tree. Suppose you have a 
Transform parenting a child shape. You can set keyframes and animate 
the translate channels and they turn green. Or you can do MotionPath and 
it doesn’t affect translate channels.

Note that if you do have both MotionPath and translate, the MotionPath 
overrides the translate, and translate is ignored. 

What is the mechanism by which MotionPath affects the movement? 

Can you read the value at any given time? How? 

If I’m traversing a DAG tree, how can I tell an object’s position? 

 A:
API guide

255



11 | Appendices 
Developer > Appendix D: Frequently asked questions
Keyframes are provided by anim curve dependency nodes, and similarly, 
motion paths are implemented as dependency nodes. These nodes 
function because they are connected to the transformation attributes of the 
parent transform in the DAG. When the transform needs a value, it gets it 
from the anim curve or motion path node. 

So, when you connect the motion path node, the anim curve node gets 
disconnected, and so no longer affects the transform. You can only have 
one of these positional nodes connected to a transform at a time, and the 
last one connected wins. 

Regardless of whether or not the transform is connect to an anim curve or 
motion path node, you can always ask the transform node for its 
transformation information and get the right values. 

 Q:

I haven't been able to find any documentation or sample code describing 
the interpolation system used by Maya for the quaternion curves.  Could 
you tell me where I can find the details on it? 

 A:

You can find the code for the spherical linear interpolation (called "slerp") 
in the book Graphic Gems 3. For the spline interpolation, we use squad 
which is described in the first two references below.

• Shoemake, K. "Animating Rotation with Quaternion Curves." 
SIGGRAPH 85 Proceedings, pp 245-254, 1985. 

•  Shoemake, K. "Quaternion Calculus for Animation." SIGGRAPH 91 
course notes for "Math for SIGGRAPH".

• Eberly, David. "Quaternion Algebra and Calculus." (This paper 
contains a derivation for squad.)  

• Ramamoorthi, Ravi. "Fast Construction of Accurate Quaternion 
Splines." SIGGRAPH 97 Proceedings, 1997. (This paper discusses an 
alternate interpolation method). 

Windows Questions

Q:

How do I add Windows-specific code to my plug-in?

A:

Use #ifdef _WIN32 around the Windows-specific code.

Q:

How do I debug my plug-in?

A:
API guide 

256



11 | Appendices

Developer > Appendix D: Frequently asked questions
Select Project > Settings, then select the Debug tab. In the Executable for 
debug session field, type the full pathname to the Maya executable, for 
example: 

C:\Program Files\Alias\Maya6.0\bin\Maya.exe

Use the F9 function key to toggle breakpoints in your plug-in source code. 
When you are ready to begin debugging, select Build > Start Debug > Go.

Q:

How do I get the handle to the application instance (the HINSTANCE) for 
my plug-in?

A:

We have saved the HINSTANCE for the plug-in in a global variable, 
MhInstPlugin, which should be available if you have included the 
standard set of plug-in include files. Specifically, the variable is defined in 
the MfnPlugin.h include file.

Q:

What do I do if I get the following warning?

warning C4190: ’initializePlugin’ has C-linkage specified, 
but returns UDT ’MStatus’ which is incompatible with C

A:

Nothing. The compiler will complain about this, but it will do the right 
thing. The warning is harmless.

Q:

Why do I get compiler errors when I use the variables “near” and “far”?

A:

These are reserved keywords in the Microsoft compiler. You will need to 
change the variable names to, for example, nearClip and farClip.

Q:

What do I do if I get the following error?

error C2065: ’uint’ : undeclared identifier

A:

The Windows equivalent for this is UINT. We have added a define to 
MTypes.h to solve this problem.

Q:

What do I do if I get the following error?

error C2065: ’alloca’ : undeclared identifier
API guide

257



11 | Appendices 
Developer > Appendix D: Frequently asked questions
A:

Add the following to your source code.

#ifdef _WIN32
#include "malloc.h"
#endif
API guide 

258



A Example Plug-ins
Developer Plug-in API

Example plug-ins

Overview of example plug-ins

There are a large number of example plug-ins supplied with the Maya 
Development Tool Kit. These are described in this chapter to help you 
find one that demonstrates the operation you are trying to accomplish. 
The following naming convention is used by the examples so you can tell 
what kind of plug-in the example is based on its file name.

Suffix Description

Cmd Plug-ins that create new commands.

Tool Plug-ins that create new interactive tools.

Node Plug-ins that create new node types.

Translator Plug-ins that create new file translators.

Shader Plug-ins that create new shading nodes.

Device Plug-ins that create new devices. Currently only MIDI 
input devices are support, and those are only supported 
on the IRIX platform.

Manip Plug-ins that create new manipulators.

Field Plug-ins that create new dynamic fields.

Emitter Plug-ins that create new dynamic emitters.

Spring Plug-ins that create new dynamic springs.

Shape Plug-ins that create new shapes.
API guide

259



A | Example Plug-ins 
Developer > Overview of example plug-ins
MEL command plug-ins
 

blastCmd This example plug-in has been improved to 
demonstrate the use of the new off-screen rendering 
capabilities on the Linux platform.

blindComplexDataCmd command which demonstrates adding more 
complex blind data, as a user defined data type, to an 
object

blindDoubleDataCmd command which demonstrates adding blind data, as 
a user-defined data type, to an object

blindShortDataCmd command which demonstrates adding blind data to 
an object

closestPointOnCurve command that sets the weights of the CVs of a cluster 
according to a mathematical function

closestPointOnMesh both a MEL command and a DG node that computes 
the closest point on a mesh from a worldspace 
position

convertBumpCmd command that demonstrates the steps necessary to 
create a non-linear animation clip using the API

convertEdgesToContainedFacesCmd command that converts a selection of edges into a 
selection of faces that interconnect

convertVerticesToContainedEdgesCmd command that converts a selection of  vertices into a 
selection of edges that interconnect the original 
vertices

convertVerticesToContainedFacesCmd command that converts a selection of vertices into  a 
selection of faces that interconnet the original 
vertices

cvExpandCmd command that splits NURBS CV selections up into 
one string per selected CV

cvPosCmd return the world or local space position of a NURBS 
CV or a poly vertex. 

dagPoseInfoCmd command that demonstrates how to extract DAG 
pose info for a skeleton’s bind pose, or for other 
poses created using the “dagPose” command.
API guide 

260



A | Example Plug-ins

Developer > Overview of example plug-ins
deletedMsgCmd A new example that demonstrates each of the node 
deletion callbacks available.

deletedMsgCmd command that demonstrates each of the node 
deletion callbacks that are available in the API.  The 
command registers callbacks on selected nodes that 
will trigger messages in the console when the 
command is run

dynExprFieldTest A new example that demonstrates the per particle 
field attributes support that has been added to the 
class MPxFieldNode.

exportJointClusterDataCmd command that demonstrates how to find all joint 
cluster nodes and uses the 
MFnWeightGeometryFilter function set and 
MItGeometry iterator to export weights per CV for 
each geometry deformed by each joint cluster.

exportSkinClusterDataCmd command that exports smooth skin data to an 
alternate format

findFileTexturesCmd locate the file texture nodes in a scene

findTexturesPerPolygonCmd locate the file texture nodes assigned to each 
polygon

flipUVCmd demonstration the use of the 
MPxPolyTweakUVCommand class to manipulate 
UVs

helix2Cmd command which implements undo and redo

helixTool tool which uses OpenGL to draw out guidelines

helloCmd trivial command that takes arguments

helloWorldCmd first simple command

idleTest display the attribute dependencies within a node

instanceCallbackCmd A new example that demonstrates listening to 
instance add and remove messages.

listLightLinksCmd command to query light linking information
API guide

261



A | Example Plug-ins 
Developer > Overview of example plug-ins
listPolyHolesCmd command that produces a list of all the holes in each 
selected polymesh

lockEvent demonstrates the API callbacks for node and plug 
locking

marqueeTool command which implements mouse selection

meshOpCmd demonstrates the use of the high-level polygon API 
methods that have been added to MFnMesh  

motionPathCmd command to animate an object along a motion path

motionTraceCmd command that evaluates the position of a keyframed 
object over time and draws a motion path curve

moveCurveCVsCmd command that moves CVs to the origin

nodeInfoCmd command which demonstrates walking the 
dependency graph

nodeMessageCmd command that adds a callback for all the nodes on 
the active selection list

particlePathsCmd command that uses particle ID information from the 
API to derive a set of NURBS curves from the 
position of particles over time

particleSystemInfoCmd demonstrates the use of the new MFnParticleSystem 
class for retrieving particle information 

pickCmd command to pick objects by name

pointOnMeshInfo both a MEL command and a DG node that computes 
the worldspace position and normal on a poly mesh

polyMessageCmd A new example that demonstrates the use of the 
MPolyMessage class to listen to vertex, edge and 
face component id changes.

polyPrimitiveCmd command to create polygons

progressWindowCmd A new example that demonstrates the use of the 
MProgressWindow class.

referenceQueryCmd command to find useful information about the 
referenced files in a scene
API guide 

262



A | Example Plug-ins

Developer > Overview of example plug-ins
renderViewInteractiveRenderCmd A new example that demonstrates the immediate 
feedback setting that has been added to the 
startRender() methods of the MRenderView class.

scanDagCmd command which demonstrates walking the DAG

scanDagSyntax command which demonstrates walking the DAG as 
well as using syntax objects to parse the arguments 
to the command

spiralAnimCurveCmd command to move objects in a spiral

splitUVCmd command to unshare or “split” select UVs on a poly 
mesh

surfaceCreateCmd command that creates a NURBS surface from CVs 
and knots using the MFnNurbsSurface function set

surfaceTwistCmd command which modifies the CV positions of 
NURBS surfaces or the vertex positions of polygons 
in order to twist the surface around the y-axis

translateCmd command to translate objects

undoRedoMsgCmd A new example that demonstrates the use of the new 
Undo and Redo events that have been added to the 
MEventMessage class.

userMsgCmd A new example that demonstrates the use of the 
MUserEventMessage class. This example allows the 
creation, removal and posting of user-defined events 
identified by strings.

userMsgCmd command that demonstrates how user-defined 
messages can be used.  The command supports 
options to register, deregister, and post named 
events through the API.  This example uses callbacks 
that simply print a message when they are entered.

volumeLightCmd demonstrates the use of the MFnVolumeLight class

whatisCmd command that prints API type information about 
objects

zoomCameraCmd command to zoom the view through a camera
API guide

263



A | Example Plug-ins 
Developer > Overview of example plug-ins
Dependency Graph Node Plug-ins

affectsNode a new example that demonstrates the use of the 
MPxNode::setDependentsDirty() method. This new method 
allows for attributeAffects() relationships involving dynamic 
and non-dynamic (i.e. static) Maya attributes.

animCubeNode an example of a dependency node that creates a polygonal 
mesh from scratch and outputs that mesh in a dependency 
graph attribute. 

apiMeshShape an example of a shape node that registers a new kind of 
polygonal mesh, as well as geometry data specific for the shape 
and a node that can create this new shape type

arcLenNode a simple example of a node that takes geometry as input

buildRotationNode a simple node which performs an algebraic computation

circleNode a more complex procedural animation example

closestPointOnCurve command that sets the weights of the CVs of a cluster according 
to a mathematical function

closestPointOnMesh both a MEL command and a DG node that computes the closest 
point on a mesh from a worldspace position

componentScaleManip a complex example that demonstrates how to use conversion 
functions with a scale manipulator to control vertex positions.

cvColorNode an example of a locator dependency node that draws colored 
points on top of each CV of a NURBS surface.

cvColorShader allows vertex color(CPV) to be software rendered

footPrintManip an example of a locator dependency node that has a 
corresponding manipulator. The Show Manip Tool can be used 
when the footPrint locator is selected to show the footPrint 
manipulator.

footPrintNode an example of a locator dependency node. Locators are actually 
DAG nodes that have draw methods that the user may 
override. This particular locator draws a foot print. 

fullLoftNode an example of a real loft dependency node that builds a NURBS 
surface from an array of NURBS curves.
API guide 

264



A | Example Plug-ins

Developer > Overview of example plug-ins
jitterNode a simple multi-purpose procedural node

latticeNoise a complex example of geometry modification in a dependency 
node, along with a command that does low level dependency 
graph access to hook up the node

multiCurveNode an example of a dependency node that uses the 
MArrayDataBuilder class. 

NodeMonitor class that monitors a given node

offsetNode an example of a deformer dependency node that offsets 
vertices according to the CV’s weights.

pnTrianglesNode ATI Radeon specific hardware shader plug-in

pointOnMeshInfo both a MEL command and a DG node that computes the 
worldspace position and normal on a poly mesh

pointOnSubdNode an example of how to query a subdivision surface as an input 
to a dependency node

polyTrgNode an example of how to add user defined triangulation for 
meshes using the poly API class, MPxPolyTrg

quadricShape an example of a simple shape node that implements a quadric 
shape using the OpenGL gluQuadric functions.

rotateManip an example that demonstrates the different settings for the 
rotate manipulator.

shellNode a dependency graph node that procedurally generates sea 
shells and outputs them as meshes.

simpleLoftNode a node that implements a user-defined loft function on a curve 
with construction history. Also demonstrates how to pass 
geometry (a NURBS surface) to an internal dependency node.

sineNode a simple procedural animation example

surfaceBumpManip this example demonstrates how to use the pointOnSurface 
manipulator to modify vertices near the manipulator position 
on the surface

swissArmyManip a contrived example that attaches all existing user-defined 
manipulators to a node.
API guide

265



A | Example Plug-ins 
Developer > Overview of example plug-ins
User-defined dependency graph nodes—creating 
dynamics nodes

These user-defined dependency graph nodes create dynamics nodes 
derived from MPxEmitterNode, MPxSpringNode, and MPxFieldNode.

Rendering plug-ins

transCircleNode an example of a dependency node that uses the translate 
attribute as both an input and output. Demonstrates how to 
transfer all of X, Y, and Z attributes via a single dependency 
graph connections. It also contains an example attribute editor 
template.

yTwistNode an example of a deformer dependency node that twists the 
deformed vertices around the y-axis.

ownerEmitter an example particle emitter node that emits in a direction from 
multiple points defined by a particle shape.

simpleEmitter an example particle emitter node that emits in a direction from a 
single point.

simpleSpring an example spring node that defines the spring law that is used in a 
simulation.

sweptEmitter an example particle emitter node that emits in a direction from points 
on a curve or surface.

torusField an example field node that implements an attract-repel field between 
itself and a distance.

blastCmd demonstrates how to use the off screen rendering API extension.

blindDataMesh demonstrates the use of blind data to provide color information to 
a hardware shading node.

CgFx Shader a hardware shader plug-in with many advanced possibilities.

renderAccessNode demonstrates how to work with render callbacks.
API guide 

266



A | Example Plug-ins

Developer > Overview of example plug-ins
Miscellaneous plug-ins

The following lists several miscellaneous plug-ins.

renderViewRenderCmd demonstrates how to render a full image to the Render View 
window using the MRenderView class.

renderViewRenderRegion
Cmd

demonstrates how to use the MRenderView class to update the 
currently selected Render Region in Maya's Render View.

sampleCmd demonstrates how to sample shading groups or nodes using 
MRenderUtil::sampleShadingNetwork().

sampleParticles demonstrates how to sample shading groups or nodes using 
MRenderUtil::sampleShadingNetwork() to assign colors to a 
particle object.

ShadingConnection a class that stores useful information about a shader’s attribute, 
including what’s connected upstream of it.

ShapeMonitor a class that watches shape or texture nodes and keeps track of 
changes since the last export.

shiftNode demonstrate modifying uvCoord and refPointCamera from within 
a plug-in texture

conditionTest display which “conditions” are being changed inside Maya

eventTest display which “events” are being changed inside Maya

helixMotifCmd create a new Motif window containing a button that creates a helix when 
pressed. This plug-in is only available on IRIX and Linux.

idleTest using both idle messages and UI deleted messages in a plug-in

iffInfoCmd extracts information from an IFF image file.

iffPixelCmd extracts a pixel value from an IFF image file.

iffPpmCmd converts an IFF image file to a PPM image file.

jlcVcrDevice creates a user defined midi input device for the JL-Cooper midi VCR 
control box. This plug-in is only available on IRIX and Linux.

lepTranslator an example file translator that defines its own magic number and reads 
MEL commands
API guide

267



A | Example Plug-ins 
Developer > Overview of example plug-ins
Shader source code examples

Shader source code examples are provided in “Shader source code 
examples”. 

System plug-ins

The following table lists the source for several of the system plug-ins 
shipped with Maya. Unlike most of the other examples, these are complex 
samples of real production plug-ins. 

Detailed documentation for each of these can be found in the Translators 
guide as compiled versions of these are shipped as part of the Maya 
package. The following shows the current list. 

maTranslator an example of a file translator that approximates the MayaAscii file

moveNumericTool Selection-action tool that performs translations in orthographic views as 
well as allowing the user to type in precise translation values to while in 
the move tool.

moveTool Selection-action tool that performs translations in orthographic views.

moveManip A simple manipulator that demonstrates how the freePointTriad and 
distance manipulators can be used with an user-defined context.

pnTrianglesNode This node is a simple example of how to query a subdivision surface as an 
input to a dependency node.

simpleSolverNode an example of a simple user defined single-bone IK-solver in the x-y plane 
that is registered through createNode. By registering the plug-in solver 
through createNode, the registration mechanism is the same as non-
default IK solvers such as the ikMCsolver.

viewCaptureCmd uses OpenGL to capture the current 3D view and write it into a PPM file

animImportExport A translator that allows you to move animation information between 
scenes.

objExport A Wavefront OBJ export translator

ribExport A Renderman RIB export translator
API guide 

268



A | Example Plug-ins

Developer > Example stand-alone applications
Example stand-alone applications

Stand-alone applications are those that contain the main routine for the 
application and make API calls to access Maya in batch mode. They are 
compiled in a slightly different manner than plug-ins (as covered in 
”Using a debugger to debug your plug-ins” on page 214), but utilize the 
same API as plug-ins, and in the same way. 

The following sample applications are provided to demonstrate how to 
create and use stand-alone applications. 

Example plug-in descriptions

Below are brief descriptions and usage instructions for the plug-ins 
provided. 

Note (IRIX and Linux) It is important to note that in order to run one of 
these applications it is necessary to set the environment variables 
MAYA_LOCATION and LD_LIBRARY_PATH. The former should 
be set to “/usr/aw/maya” (or the alternative location into which 
Maya was installed), and the later should be set to 
“$MAYA_LOCATION/lib”.

If these variables are not set, you will get errors when you attempt 
to start a stand-alone application. 

helloWorld the required hello world example.

surfaceCreate the surfaceCreateCmd plug-in converted to a stand-alone 
application.

surfaceTwist the surfaceTwistCmd plug-in converted to a stand-alone 
application.

readAndWrite an application that reads in a Maya scene file and writes it out 
again in different file. This application is quite useful for 
upgrading Maya scene files from a previous version.

asciiToBinary an application that reads in a Maya scene file in ascii format and 
write is out again as a binary file.
API guide

269



A | Example Plug-ins 
Developer > Example plug-in descriptions
affectsNode

This plug-in creates a node called "affects". Add two dynamic attributes 
called "A" and "B". When you change the value on A, note that B will 
recompute.

The following sequence of commands will demonstrate how to use this 
plug-in:

//  Create an "affects" node by typing the MEL command:
createNode affects;
// Add two integer dynamic attributes to the newly created  affects node by 
typing the MEL command:
addAttr -ln A -at long  affects1;
addAttr -ln B -at long  affects1;
// Change the value of "A" to 10 by typing the MEL command:
setAttr affects1.A 10;
// At this point, the affectsNode::setDependentsDirty() method gets called 
which causes "B" to be marked dirty.
// Compute the value on "B" by doing a getAttr:
getAttr affects1.B;
// The affectsNode::compute() method is entered which copies the value from "A" 
(i.e. 10) to "B".

arcLenNode

Produces dependency graph node arcLen

This node is a simple example of how to take geometry as an input to a 
dependency node. This node takes a NURBS curve as an input and 
outputs its arc length, using the MFnNurbsCurve function to perform the 
calculation. 

The input for this node is a NURBS curve attribute called “inputCurve”. 
NURBS curve shapes nodes have two compatible output attributes that 
you can use as inputs for the arcLen node - “local” and “worldSpace”. 

The output attribute of the arcLen node is just called “output”. It is a 
double value that represents the total length of the curve with an epsilon 
value of 0.001. 

The following MEL code shows how to hook up the node to a curve.

createNode -n arcLen1 arcLen;
connectAttr curveShape1.local arcLen1.inputCurve;

From here, you can connect the “output” attribute to whatever you wish 
to drive, or just read it using the following command: 

getAttr arcLen1.output;

This node is provided as an example of how to take geometry as an input. 
It should be noted that there is already a node in Maya that performs the 
same service called “curveInfo”. 
API guide 

270



A | Example Plug-ins

Developer > Example plug-in descriptions
animCubeNode

Produces dependency graph node animCube

This plug-in demonstrates how to take time as an input, and create 
polygonal geometry for output. The compute method of the node 
constructs a polygonal cube whose size depends on the current frame 
number. The resulting mesh is passed to an internal Maya node which 
displays it and allows it to be positioned. 

To use this node, execute the MEL command “animCubeNode.mel” that 
contains the following commands:

createNode transform -n animCube1;
createNode mesh -n animCubeShape1 -p animCube1;
createNode animCube -n animCubeNode1;
connectAttr time1.outTime animCubeNode1.time;
connectAttr animCubeNode1.outputMesh animCubeShape1.inMesh;

This creates a mesh node under a transform node which is hooked into the 
world for display. It then creates an animCube node, and connects its input 
to the time node, and its output to the mesh node. 

A cube will now appear on the screen. If the play button on the time slider 
is pressed, the displayed cube will grow and shrink as the frame number 
changes. 

apiMeshShape

Produces shape node apiMesh, dependency graph node apiMeshCreator, and 
data type apiMeshData

This plug-in demonstrates how to create a polygonal mesh shape which 
has vertices that can be selected, moved, animated, and deformed. This 
shape also supports OpenGL display of materials.

This plug-in also registers a new kind of geometry data, apiMeshData, 
and demonstrates how to pass this data between nodes.

The apiMeshCreator node can create two types of apiMeshData, a cube 
and a sphere. The “shapeType” attribute is used to specify the type of 
shape to create. This node also takes normal mesh data as an input and 
converts it to apiMeshData. If there is no input mesh then the output is 
based on the shapeType attribute.

To create an apiMesh shape, you must first create the apiMesh node, then 
create an apiMeshCreator node and connect the two nodes as follows:

createNode apiMesh -n m1;
createNode apiMeshCreator -n c1;
connectAttr c1.outputSurface m1.inputSurface;
API guide

271



A | Example Plug-ins 
Developer > Example plug-in descriptions
blastCmd

Produces MEL command blast

This plug-in adds a “blast” command to Maya. This command exercises 
the API code to allow Maya to draw to an OpenGL off-screen buffer. This 
command will draw the refresh the current viewport either on or off 
screen and then grab a snapshot of the pixels and store them on disk.

This example plug-in only works on SGI IRIX hardware. However, it is 
possible for a plug-in to create its own off-screen OpenGL buffer on 
different hardware and have Maya draw into it. The command takes two 
flags:

blindComplexDataCmd

Produces MEL command blindComplexData and user defined data type 
blindComplexData

This plug-in demonstrates how to create blind data (dynamic attributes) 
based on user defined data types. The plug-in uses an array of structures 
in which each element contains both a double and an int as the user data 
type.

The use of the MPlug class to set and retrieve the value of the attribute is 
demonstrated, as are read and write routines that implement the storage 
and retrieval of the data in both Maya ASCII and Maya Binary file 
formats. 

To use this plug-in, select a dependency node, and then issue the 
command blindComplexData. A dynamic attribute containing a five 
element array will be attached to each selected dependency node. If the 
scene is saved in Maya ASCII format, you will be able to see the MEL 
commands that save the value of the dynamic attribute. If the scene is 
reloaded, the dynamic attribute will be reattached to the applicable nodes. 

blindDataMesh

Produces two dependency graph nodes: blindDataShader and blindDataMesh

-f filenamet Specifies the output file name. If it is not specified, then it defaults to 
blast.rgb.

-o On-screen operation. Refresh and grab the pixels from the on-screen 
buffer rather than using an off-screen buffer. If part of the on-screen 
viewport is obscured, that part may not be correct in the output file. 
The off-screen buffer is never obscured.
API guide 

272



A | Example Plug-ins

Developer > Example plug-in descriptions
This plug-in demonstrates the use of blind data to provide color 
information to a hardware shading node. It contains two parts, 
blindDataMesh and blindDataShader.  

The blindDataMesh node builds a mesh and populates its blind data with 
color information. The blindDataShader node is a hardware shader which 
picks up the color information for drawing.  The shader part of the plug-in 
picks uses the vertex IDs of the MPxHwShaderNode::geometry() method 
to acquire the blind data color  information.

To use this plug-in: Open the blindDataShader.mel file and execute its 
contents.  The results can be viewed by using the shading menu to smooth 
shade and then turn on hardware texturing.

blindDoubleDataCmd

Produces MEL command blindDoubleData and user defined data type 
blindDoubleData

This plug-in demonstrates how to create blind data (dynamic attributes) 
based on user defined data types. The plug-in uses a simple double value 
as the user data type. The use of the MPlug class to set and retrieve the 
value of the attribute is demonstrated, as are read and write routines that 
implement the storage and retrieval of the data in both Maya ASCII and 
Maya Binary file formats. 

To use this plug-in, select a dependency node, and then issue the 
command blindDoubleData. A dynamic attribute containing the double 
value, 3.2, will be attached to each selected dependency node. If the scene 
is saved in Maya ASCII format, you will be able to see the MEL 
commands that save the value of the dynamic attribute. If the scene is 
reloaded, the dynamic attribute will be reattached to the applicable nodes. 

blindShortDataCmd

Produces MEL command blindShortData

This example adds a dynamic attribute to the dependency nodes of each 
of the currently selected items. The attribute is a short and its default 
value is set to 99. To use this plug-in, select an object, bring up the 
Attribute Editor (select Window > Attributes), and then click on the 
“Extras” tab. The attribute editor should display no extra attributes. Then 
execute blindShortData in the command window. An attribute will appear 
in the editor set to the value of 99. The value can be modified in the editor, 
or with the MEL commands setAttr and getAttr. When the scene is saved 
the new attribute and value for each selected item are also saved. This 
example demonstrates how simple blind data can be attached to an object. 

buildRotationNode

Produces dependency graph node buildRotation
API guide

273



A | Example Plug-ins 
Developer > Example plug-in descriptions
This example demonstrates performing a linear algebra calculation based 
on inputs and outputting the result.

The node takes an up vector and a forward vector as inputs and outputs 
the rotation that takes the y-axis and the z-axis and rotates them to be the 
up and forward vectors respectively. 

A sample use of this node is to align an object to another surface based on 
a normal and a tangent vector. This example uses the 
pointOnSurfaceNode which is a standard node provided with Maya. 

sphere -radius 4;
cone -ax 0 1 0;
createNode pointOnSurfaceInfo;
connectAttr nurbsSphereShape1.worldSpace pointOnSurfaceInfo1.inputSurface;
connectAttr pointOnSurfaceInfo1.position nurbsCone1.translate;
setAttr pointOnSurfaceInfo1.u 0.01;
setAttr pointOnSurfaceInfo1.v 0.01;

At this point, the cone will be constrained to a point on the surface of the 
sphere. As the u and v attributes of the pointOnSurfaceNode are changed, 
the cone will move around the surface. The next step is to align the cone 
so that the tip points in the direction of the normal. The buildRotation 
node will be used to do this. 

createNode buildRotation;
connectAttr pointOnSurfaceInfo1.normal buildRotation1.up;
connectAttr pointOnSurfaceInfo1.tangentU buildRotation1.forward;
connectAttr buildRotation1.rotate nurbsCone1.rotate;

Now the cone will be constrained to the surface of the sphere and will also 
be aligned with the normal of the sphere at the point of constraint. 

CgFx Shader

Windows-only.

The plug-in is named cgfxShader.mll. It defines one node, named 
cgfxShader, and one command, also named cgfxShader. The command is 
used to manipulate the node. 

This is very similar to the expression command and node. 

The cgfxShader node is a hardware shader (derived from 
MPxHwShaderNode). This means that it has many limitations compared 
to normal shader nodes. Specifically, it only affects drawing in the main 
viewport (including playblast) and the hardware render buffer. Hardware 
shaders also only apply to polygonal objects. If you try to apply one to a 
NURBS or SubD surface, nothing interesting will happen. 

By itself, the shader or s attribute is the only thing visible on a cgfxShader 
node. You set this attribute to the name of a .fx file and all sorts of  
interesting things happen. A .fx files hold CgFX effect definitions. This 
API guide 

274



A | Example Plug-ins

Developer > Example plug-in descriptions
effect completely controls how the drawing is done. So if you  load a 
different .fx file, you get a completely different effect on the screen. In 
theory, the cgfxShader node could do anything that any other hardware 
shader node could do. 

Along with the effect, the CgFX file provides a set of parameters that can 
be  modified to change the effect in controlled ways. For example, a glow 
effect may allow you to set the color, intensity, and size of the glow. A 
bumpy, shiny effect may allow you to change the bump texture map. All 
of these parameters are exposed as dynamic attributes on the shader node. 
If the effect has a glowColor parameter, the cgfxShader node would have 
a dynamic color attribute named glowColor. Changes to the attribute 
affect the parameter. 

You specify the .fx file using the cgfxShader command. You cannot simply 
set the attribute because of all the changes that occur on the node when 
the .fx file is changed. All the dynamic attributes that no longer apply are 
removed and all the attributes that are needed by the new effect are 
added. You can see all the changes in the Attribute Editor. 

The syntax of the command is: 

cgfxShader [-e] [-fx fileName] [-n name] [nodeName]

      -e

Edit an existing shader. If -e is not specified, a new cgfxShader node is 
created.

      -fx filename

Set the .fx file for the cgfxShader node.

      -n name

Sets the name of the shader node to create. (Create only).

      nodeName

The name of the node to edit. You do not need to type this if the shader 
node is currently selected.

Tthe easiest way to use the shaders is via the Hypershade window. Load 
the plug-in before opening the HyperShade window and then simply 
invoke Create > Material > Cgfx Shader. You can then simply drag the 
material onto a shape to assign it. 

Limitations

• HW shaders show up with black swatches in the Hypershade and the 
Attribute Editor. 

• HW shaders only work on polygonal objects. 
API guide

275



A | Example Plug-ins 
Developer > Example plug-in descriptions
• The shaders do not save correctly. When they load from a file, the 
attributes are not connected back up correctly. You can save a file with 
cgfxShaders in them, you will just have to specify the .fx file name 
again when you load them. 

• You have to type .fx file names by hand using the command: 
cgfxShader -e -fx "file.fx" cgfxShader1; . You could always 
put this command on a shelf button. 

• You have to type texture file names by hand. There is no browser for 
entering this information. 

• Currently, only NVIDIA .dds textures are supported. 

• Normal maps are not yet supported. 

• There appear to be some bugs in the CgFX code. There appears to be a 
memory bug that is causing Maya to crash on exit. It may crash on 
File > New. 

circleNode

Produces dependency graph node circle

This plug-in is an example of a user-defined dependency graph node. It 
takes a number as input (such as time) and generates two output numbers 
one which describes a sine curve as the input varies and one that 
generates a cosine curve. If these two are hooked up to the x and z 
translation attributes of an object the object will describe move through a 
circle in the xz plane as time is changed. 

Executing the command “source circleNode” will create a new “Circle” 
menu with a single item. Selecting this will build a simple model (a sphere 
which follows a circular path) which can be played back, by clicking on 
the “play” icon on the time slider. 

The node has two additional attributes which can be changed to affect the 
animation, “scale” which defines the size of the circular path, and 
“frames” which defines the number of frames required for a complete 
circuit of the path. Either of these can be hooked up to other nodes, or can 
be simply set via the MEL command “setAttr” operating on the circle 
node “circleNode1” created by the MEL script. For example, “setAttr 
circleNode1.scale #” will change the size of the circle and “setAttr 
circleNode1.frames #” will cause objects to complete a circle in indicated 
number of frames. 

closestPointOnCurve

Computes closestPointOnCurve (NURBS curve) from the input position

This plug-in defines both a MEL command and a DG node which takes in 
as input, a NURBS curve and a worldspace position, then computes the 
closest point on the input curve from the input position.
API guide 

276



A | Example Plug-ins

Developer > Example plug-in descriptions
In addition to the worldspace “position” at the closest point on the curve, 
also returned are the “normal”, “tangent”, “U-parameter” and “closest 
distance from the input position”, at the closest point on the curve.

closestPointOnMesh

Computes closestPointOnMesh from the input position

This plug-in defines both a MEL command and a DG node which takes in 
as input, a mesh and a worldspace position, then computes the closest 
point on the input mesh from the input position. 

In addition to the worldspace “position” at the closest point on the mesh, 
also returned are the “normal”, “U-parameter”, “V-parameter” and the 
“closest face index” at the closest point on the mesh.

clusterWeightFunction

Produces Mel command clusterWeightFunction

This example demonstrates how to use the 
MFnWeightGeometryFilter::setWeight method to set the weights of the 
CVs of a cluster according to a mathematical function.

To use this plug-in, select the cluster and a geometry affected by the 
cluster.

For example:

select cluster1 nurbsSphereShape1;

Then execute the MEL command clusterWeightFunction with the flag to 
specify which mathematical function to use:

For example:

clusterWeightFunction -sine;

componentScaleManip

The componentScaleManip is a manipulator plug-in that demonstrates 
how components can be manipulated using a scale manipulator using the 
manipulator API.  This example produces the MEL command 
componentScaleContext to create the tool context for the component scale 
manipulator.

To create the tool button for the plug-in, create a new shelf named 
“Shelf1” and execute the following MEL commands to create the tool 
button in this shelf:

Note A call to MFnWeightGeometryFilter::setWeight cannot be made 
inside the geometry iterator as this would result in a fatal error.
API guide

277



A | Example Plug-ins 
Developer > Example plug-in descriptions
componentScaleContext;
setParent Shelf1;
toolButton -cl toolCluster -t componentScaleContext1 -i1 "moveManip.xpm";

To use the manipulator, create a nurbs surface and select some CVs.  Then 
click on the tool button created above to activate the plug-in context.  The 
tool should work much like the built-in scale tool, except that the plug-in 
will only operate on NURBS CVs.

conditionTest

Registers conditions callbacks 

The conditionTest plug-in is a simple plug-in that displays which 
“conditions” are being changed inside Maya. A condition in Maya is 
something of interest to the Maya internals or plug-ins that has a true or 
false value. For example, “SomethingSelected” and “playingBack” are two 
available conditions. These conditions can be tracked at the MEL level 
with the -conditionTrue, -conditionFalse, or -conditionChanged flags to 
the scriptJob command.

The plug-in adds a “conditionTest” command that lets you see which 
conditions are available, track specific conditions, and to see which 
conditions are being tracked. The basic command syntax is:

conditionTest [-m on|off] [conditionName ...]

The conditionName arguments should be the names of conditions. If no 
names are specified, the command will operate on all available conditions.

If you use the -m flag, you can specify whether the plug-in should track 
messages for the specified conditions or not. If you specify the -m flag 
without any condition names, it will turn on or off tracking for all 
conditions.

Example:

mel: conditionTest -m 1 SomethingSelected
Condition Name        State  Msgs On
--------------------  -----  -------
SomethingSelected     false  yes

After this example, the plug-in will display the line:

condition SomethingSelected changed to true

or

condition SomethingSelected changed to false

every time the selection list becomes empty or not empty. You can disable 
all condition tracking with the command: conditionTest -m off;
API guide 

278



A | Example Plug-ins

Developer > Example plug-in descriptions
convertBumpCmd

Produces MEL command convertBump

This plug-in command can be used to convert a bump file texture from a 
grey-scale height field format (used by Maya) to a normal map format that 
is typically used for real-time, hardware-based rendering.

This code also demonstrates how to use the MImage class to load, 
manipulate and save image files on disk. 

To test this plug-in, first compile and load it using the plug-in manager, 
then type the following in the script editor:

convertBump "C:/bump.tga" "C:/bump_norm.tga" "tga" 1.0

This would convert the input texture (c:/bump.tga) into an output normal 
map (c:/bump_norm.tga) using the default bumpScale ratio. The 
bumpScale parameter can be used to increase or decrease the bumpiness 
of the resulting normal map.

See the documentation of MImage::saveToFile() for a complete list of the 
available file formats supported.

convertEdgesToContainedFacesCmd

Produces MEL command convertEdgesToContainedFaces

This plug-in creates a MEL command that converts a selection of edges 
into a selection of faces that interconnect the original edges (that is, only 
faces whose composite edges are contained in the original edge selection).

The command's return value is a string array that contains the names of 
all of the new contained faces. This MEL command has no flags, returns a 
string array, and operates on selected edges.

Example MEL usage:

select -r pCube1.e[1:2] pCube1.e[6:7];
string $convertedFaces[] = `convertEdgesToContainedFaces`;
// Result: pCube1.f[1] //

convertVerticesToContainedEdgesCmd

Produces MEL command convertVerticesToContainedEdges

Note The MImage class is new as of Maya 4.0.1, but that the saving 
and filtering capability was only introduced in Maya 4.5.
API guide

279



A | Example Plug-ins 
Developer > Example plug-in descriptions
This plug-in creates a MEL command that converts a selection of vertices 
into a selection of edges that interconnect the original vertices (that is, 
only edges whose composite vertices are contained in the original vertex 
selection). The command’s return value is a string array that contains the 
names of all of the new contained edges.

This MEL command has no flags, returns a string array, and operates on 
selected vertices.

Example MEL usage:

select -r pCube1.vtx[2:5];
string $convertedEdges[] = `convertVerticesToContainedEdges`;
// Result: pCube1.e[1:2] pCube1.e[6:7] //

convertVerticesToContainedFacesCmd

Produces MEL command convertVerticesToContainedFaces

This plug-in creates a MEL command that converts a selection of vertices 
into a selection of faces that interconnect the original vertices (that is, only 
faces whose composite vertices are contained in the original vertex 
selection). The command’s return value is a string array that contains the 
names of all of the new contained faces.

This MEL command has no flags, returns a string array, and operates on 
selected vertices.

Example MEL usage:

select -r pCube1.vtx[0:5];
string $convertedFaces[] = `convertVerticesToContainedFaces`;
// Result: pCube1.f[0:1] //

createClipCmd

Produces MEL command createClip

This example demonstrates the steps used to create a nonlinear animation 
clip using the API. The clip will be created either on the selected items, or 
on a character set node that is supplied using the -c/-char flag. The plug-
in creates the animation curves that make up the clip, places them in a 
source clip, then instances the source clip twice.

To use this plug-in, create a sphere and select it. Then execute the 
command: 

createClip

Open the Trax Editor to see the clips in place on the timeline.

customAttrManip

This plug-in demonstrates how to create user-defined manipulators from 
a user-defined context.
API guide 

280



A | Example Plug-ins

Developer > Example plug-in descriptions
This is the script for running this plug-in:

source "customAttrManip.mel";
sphere;
move 5 0 0;
cone;
move -5 0 0;
select -cl;

Now click on the customAttrManip on Shelf1!

cvColorNode

Produces dependency graph node cvColor

This example provides an example of how to color the CVs of a NURBS 
surface by drawing OpenGL points on top of them. This node implements 
a locator that is intended to be made a sibling of a NURBS surface shape, 
and sit under the same transform. If the “local” space output attribute of 
the shape is connected to the “inputSurface” attributed of the locator 
node, then the later will draw colored points at each CV location. The 
current algorithm in the node will color the CVs in one of four different 
colors based on their XY location: 

x < 0 && y < 0: Red
x < 0 && y >= 0: Cyan
x >= 0 && y < 0: Blue
x >= 0 && y >= 0: Yellow

To use this plug-in, first load it then execute the command “source 
cvColorNode” to define the MEL command attachColorNode. This 
command iterates across selected objects, and attaches a cvColor node, as 
described above, to each NURBS surface it encounters. Moving the objects, 
or its CVs, after the node is attached will cause the colors of the CVs to 
change. The pointSize attribute of the node controls the size of the point 
that is drawn. The drawingEnabled attribute, if set to false, will disable the 
display of the colored points. 

cvColorShader

Produces dependency graph node cvColorShader 

This plug-in creates a node that allows vertex color(CPV) to be software 
rendered. Once the plug-in is loaded, the node will appear as a Color 
Utility in the Hypershade window. Connect this node to a shader's Color 
or Incandescence attribute.

cvExpandCmd

Produces MEL command cvExpand
API guide

281



A | Example Plug-ins 
Developer > Example plug-in descriptions
This example demonstrates how to handle selection lists and return the 
contents in a string form that the scripting language will understand. The 
cvExpand command goes through the current selection list and splits 
ranges of CVs that are selected into individual strings for each CV, so if 
the selection list looked like this: 

ls -selection;
// Result: curveShape1.cv[1:3] //

Then the cvExpand command will return this instead: 

cvExpand;
// Result: curveShape1.cv[1] curveShape1.cv[2] curveShape1.cv[3] //

cvPosCmd

Produces MEL command cvPos

This example demonstrates how to obtain the world or local space 
position of a NURBS CV or a polygonal vertex.

The command accepts the flags -l/-local or -w/-world, where world is the 
default, to indicate whether a local or world space location of the CV is 
required. The command can handle at most 1 CV per invocation since it 
returns the coordinate as 3 element a MEL float array. If no arguments are 
provided to the command, it checks the active selection list. If exactly one 
CV or vertex is present in that list, it returns its location. If more than one 
is selected, an error is produced. Alternatively, a single component can be 
specified on the command line using MEL syntax. For example: 

cvPos nurbsSphereShape1.cv[0][0];

will return the world space position of the specified CV. 

dagPoseInfoCmd

Produces MEL command dagPoseInfo

This example demonstrates how to extract DAG pose info for a skeleton’s 
bind pose, or for other poses created using the “dagPose” command. It 
demonstrates using an MItSelectionList iterator to determine the selected 
joints, and using the MPlug class to traverse plug connections and get 
matrix data from the graph.

To use this plug-in, build a skeleton and bind geometry using either the 
“Smooth” or “Rigid” Bind feature. Then select the joints for which you 
want to find the bindPose, and execute the command:

dagPoseInfo -f filename;

Please refer to the example code that describes the output format.
API guide 

282



A | Example Plug-ins

Developer > Example plug-in descriptions
deletedMsgCmd

This plug-in demonstrates each of the node deletion callbacks available in 
Maya API.  This plug-in can be used to distinguish when each type of 
callback should be used.  Callbacks are added to nodes by invoking the 
command:

deletedMessage <node 1> [<node 2> ...]

This command will register 3 callbacks on the nodes.

1) MNodeMessage::addNodeAboutToDeleteCallback is used to register an 
about to delete callback on the nodes.

2) MNodeMessage::addNodePreRemovalCallback is used to register a 
pre-removal callback on the nodes.

3) MDGMessage::addNodeRemovedCallback is used to register a callback 
that called when the node is removed.

For example, to register the callbacks for a nurbs sphere:

sphere;
deletedMessage nurbsSphere1;

Now delete the sphere:

delete nurbsSphere1;
// Removal callback node: makeNurbSphere1
// Removal callback node: nurbsSphereShape1
// About to delete callback for node: nurbsSphere1
// Pre-removal callback for node: nurbsSphere1
// Removal callback node: nurbsSphere1

dynExprFieldTest

This plug-in implements a dynExprField node for a uniform field.  This 
allows the per particle attributes to drive the field's attributes.

To run the plug-in, do the following:

source dynExprFieldTest.mel
dynExprFieldTest;

eventTest

Produces MEL command eventTest

The eventTest plug-in is a simple plug-in that displays which “events” are 
occurring inside Maya. An event in Maya is something of interest to the 
Maya internals or plug-ins that occurs at a specific point in time. For 
example, “SelectionChanged” and “timeChanged” are two available 
events. These events can be tracked at the MEL level with the -event flag 
to the scriptJob command.
API guide

283



A | Example Plug-ins 
Developer > Example plug-in descriptions
The plug-in adds an “eventTest” command that lets you see which events 
are available, track specific events, and to see which events are being 
tracked. The basic command syntax is:

eventTest [-m on|off] [eventName ...]

The eventName arguments should be the names of events. If no names are 
specified, the command will operate on all available events.

If you use the -m flag, you can specify whether the plug-in should track 
messages for the specified events or not. If you specify the -m flag without 
any event names, it will turn on or off tracking for all events.

Example:

mel: eventTest -m 1 timeChanged
Event Name            Msgs On
--------------------  -------
timeChanged           yes

After this example, the plug-in will display the line:

event timeChanged occurred

every time the current time changes. You can disable all event tracking 
with the command: eventTest -m off;

exportJointClusterDataCmd

Produces MEL command exportJointClusterData

This example demonstrates how to find all joint cluster nodes and uses the 
MFnWeightGeometryFilter function set and MItGeometry iterator to 
export weights per CV for each geometry deformed by each joint cluster. 

To use this plug-in, build a skeleton and bind geometry using the “Rigid 
Bind” feature. Then type the command:

exportJointClusterData -f filename;

For example:

exportJointClusterData -f "C:/temp/skinData"

The output format used is:

jointName <skinCount>
     skin_1 <weightCount>
     <skin_1_component_index1> <skin_1_wt1>
     <skin_1_component_index2> <skin_1_wt2>
     <skin_1_component_index3> <skin_1_wt3>
     ...
     skin_2 <weightCount>
     <skin_2_component_index1> <skin_2_wt1>
     <skin_2_component_index2> <skin_2_wt2>
     <skin_2_component_index3> <skin_2_wt3>
API guide 

284



A | Example Plug-ins

Developer > Example plug-in descriptions
     ...

exportSkinClusterDataCmd

Produces MEL command exportSkinClusterData

This example demonstrates how to find all skin cluster nodes and uses the 
MFnSkinCluster function set and MItGeometry iterator to export weights 
per CV for all geometry that are bound as a skin to a skeleton.

To use this plug-in, build a skeleton and bind geometry using the 
“Smooth Bind” feature and execute the command:

exportSkinClusterData -f filename;

Please refer to the example code that describes the output format.

findFileTexturesCmd

Produces MEL command findFileTextures

This example demonstrates how to navigate the dependency graph both 
manually and using the DG iterator. The command searches the 
dependency graph looking for file texture nodes that are attached to the 
shading engine. This example also illustrates the use of filters when 
navigating the DG. As file texture nodes are found, information about 
their attributes is extracted and printed on standard error. More extensive 
documentation is in the source code.

To use this plug-in, load a scene that contains some texture information, 
and find a node (or nodes) that are being shaded by a file texture. Then 
execute “findFileTextures nodeName1 nodeName2 ...” to find the file 
textures.

findTexturesPerPolygonCmd

Produces MEL command findTexturesPerPolygon

This example is a variation of the findFileTexturesCmd example. When a 
file texture node is connected to the color attribute of a shader, the file 
name will be extracted and printed along with the polygonal index. More 
extensive documentation is in the source code.

To use this plug-in, apply a shader that has a file texture node applied to 
the color attribute on a selected object and execute the command 
“findTexturesPerPolygon”.

flipUVCmd

Produces a command: flipUV 

This is a simple plug-in for demonstration the use of the new 
MPxPolyTweakUVCommand class to manipulate UVs.  

The syntax of the command is:
API guide

285



A | Example Plug-ins 
Developer > Example plug-in descriptions
flipUV [-es on|off] [-fg on|off] [-h on|off]

Flags:

-es -extendToShell  on|off

-fg -flipGlobal     on|off

-h -horizontal     on|off

To use this plug-in:

• Select UVs from a mesh

• Invoke the flipUV command 

Depending on the type of texture used, results may not show up in the 
modelling windows. To see the result, use the UV Editor.

footPrintManip

Produces dependency graph node footPrintLocator and 
footPrintLocatorManip

This example demonstrates how to use the Show Manip Tool with a user-
defined manipulator. The user-defined manipulator corresponds to the 
foot print locator.

To use this plug-in, just type “createNode footPrintLocator” to create a 
foot print locator, select the foot print, and then click on the Show Manip 
Tool.

footPrintNode

Produces dependency graph node footPrint

This example demonstrates how to create a user-defined locator. A locator 
is a dag object that is drawn in the 3D views but that does not render. This 
example plug-in defines a new locator node that draws a foot print. The 
foot print can be selected and moved using the regular manipulators. 

To use this plug-in, just type “createNode footPrint” to create a foot print 
locator. 

fullLoftNode

Produces dependency graph node fullLoft

This plug-in demonstrates how to take an array of NURBS curves as input 
and produce a NURBS surface as output. The input curves must have the 
same number of knots, and both form and degree are ignored. 

To use this command, draw two or more curves. Select the curves and 
execute the MEL command “source fullLoftNode.mel”. This creates the 
fullLoft node and an output surface, as well as several rebuildCurve 
nodes to provide a uniform number of CVs for the fullLoft node. 
API guide 

286



A | Example Plug-ins

Developer > Example plug-in descriptions
getAttrAffectsCmd

Produces MEL command getAttrAffects

This command takes the name of a node as an argument. It then iterates 
over each attribute of the node and prints a list of the attributes that it 
affects and the ones that affect it. To use it issue the command 
“getAttrAffects nodeName”, where nodeName is the name of the node 
whose attributes you want to display. If invoked with no arguments, 
getAttrAffects will display the attribute info regarding all selected nodes.

helixCmd

Produces MEL command helix

This is the helixCmd example from the documentation. It is a 
demonstration of building a simple command which does not have undo. 
The command accepts two arguments, “-r” to set the radius of the helix, 
and “-p” to set the pitch of the helix. So, to create a helix, execute the 
command “helix [ -r #] [ -p #]” in the command window.

A MEL script is also provided with this example which can be run by 
executing the command “source helixCmd”.

This script creates a new “Plug-ins” menu under which the “helix” 
command can be found. Selecting this menu item will bring up a window 
that allows you to set the radius and pitch for the new helix. This is a good 
example of hooking up a command to the UI. 

helix2Cmd

Produces MEL command helix2

This example takes a selected curve and turns it into a helix. That in and 
of itself isn’t very interesting, but the plug-in implements undo and redo 
functions so that the change can be undone and then redone. This plug-in 
is then a simple example of implementing a command which supports do, 
undo, and redo. To use it, create a curve, then execute “helix2” in the 
command window. The curve will change into a helix. Select “Undo” 
from the “Edit” menu, and the change will be undone. Select “Redo” and 
it will be redone. 

helixMotifCmd

Produces MEL command helixMotif

This plug-in is only available on IRIX and Linux.

Note This is a simplified version of the internal Maya loft node. 
API guide

287



A | Example Plug-ins 
Developer > Example plug-in descriptions
This example demonstrates how to create a separate Motif window that 
uses the same application shell as Maya.

The new window contains a single Motif button widget labelled Create 
Helix that when pressed creates a helix exactly as is done in the 
getProjectedFacesCmd example. Maya still controls the X event loop, but 
arbitrary X widgets and callbacks can be registered, and they will be 
dispatched by Maya when their event occurs. 

helixTool

Produces MEL commands helixToolCmd and helixToolContext

This example takes the helix example one large step forward by wrapping 
the command in a context. This allows you to drag out the region in which 
you want the helix drawn. To use it, you should first execute the 
command “source helixTool”. This will create a new entry in the “Shelf1” 
tab of the tool shelf called “Helix Tool”. Click on the new icon, then move 
the cursor into the perspective window and drag out a cylinder which 
defines the volume in which the helix will be generated. This plug-in is an 
excellent example of building a context around a command.

helloCmd

Produces MEL command hello

This is the “hello” example from the documentation. You simply type a 
“hello” in the command window and “Hello” will be output to the 
window from which you started Maya. 

helloWorldCmd

Produces MEL command helloWorld

This is the first example from the documentation. When “helloWorld” is 
typed into the command window “Hello World” is output to the window 
from which you started Maya. 

idleTest

Produces MEL command idleTest

The idleTest plug-in shows an example of using both the idle messages 
and UI deleted messages in a simple plug-in. These messages correspond 
to the -idleEvent and -uiDeleted flags for the scriptJob command.

When you load the plug-in, it adds the command “idleTest”. To run it, 
type “idleTest n” where n is some positive number. Idle test will then 
create a window and start filling it with a list of prime numbers. The test 
will compute one new prime number for each idle message that it 
receives. You will notice that idle messages stop during playback or while 
dragging an object.
API guide 

288



A | Example Plug-ins

Developer > Example plug-in descriptions
If you type a large enough number for n, you will also notice that the idle 
messages will use up *all* available CPU cycles. For this reason, plug-ins 
should generally cancel their requests for idle messages once they are no 
longer needed.

When you delete the window that idleTest has created, the plug-in will 
receive a “UI deleted” message and cancel any outstanding idle message 
callbacks.

iffInfoCmd

Produces MEL command iffInfo

This command takes as an argument the name of an IFF file. The file is 
opened and read and general information about the file is returned as a 
result. For example: “iffInfo sphere.iff”

iffPixelCmd

Produces MEL command iffPixel

This command takes as arguments the name of an IFF file and the x and y 
co-ordinates of a pixel in the image. It returns the r/g/b/a values at that 
pixel. For example: “iffPixel sphere.iff 100 210"

iffPpmCmd

Produces MEL command iffPpm

This command takes as arguments the names of an existing IFF file and 
the name of a PPM (portable pixmap) file that it should create. The IFF 
image is read and written out in PPM format to the second file.

For example: “iffPpm sphere.iff sphere.ppm”.

instanceCallbackCmd

This plug-in demonstrates the functionality of the MDagMessage class 
which allows the listening of instance related messages.  The messages 
support listening to:

1) Instance Added for a specified node(and its instances)

2) Instance Removed for a specified node(and its instances)

3) Instance Added for any node

4) Instance Removed for any node

This plug-in works in the following manner:

i.   Draws a circle,

ii.  Gets its dagPath using an iterator

iii. Adds callback for instance added and removed for this circle.
API guide

289



A | Example Plug-ins 
Developer > Example plug-in descriptions
The callback functions just displays a message indicating the invocation of 
the registered callback function.

To execute this plug-in, do the following:

instCallbackCmd;

jitterNode

Produces dependency graph node jitter

This plug-in is an example of a user-defined procedural dependency 
graph node. It is primarily oriented toward animation, but can be used to 
add noise in any connection between two float attributes. It takes a float 
value as input, adds a pseudo-random value to the input and outputs the 
noisy float value. For example, if the output of a parameter curve node is 
connected to the input of the jitter node and the output of the jitter node is 
connected to the translateX attribute of a surface, the motion of the surface 
will “jitter” parallel to the X axis. 

The node has one other input, “time”. The output of the time slider node, 
“time1.outTime”, should be connected to the time attribute on the jitter 
node if the “jittered” animation is to be repeatable. The attribute “scale” 
can be used to increase or decrease the magnitude of the random offset 
applied to the input of the jitter node. 

Once the plug-in is loaded, the MEL command: 

jitter "jitter1" "someNode1.outFloat" "someNode2.inFloat";

will create the jitter node, jitter1, attach the attribute someNode1.outFloat 
to jitter1.input and attach jitter1.output to someNode2.inFloat. It also 
attaches the time slider output, time1.outTime to jitter1.time and 
jitter2.time.

Additionally, it creates two windows with sliders for adjusting the scale. 

The jitter node can be easily demonstrated in conjunction with the 
circleNode plug-in. Load the circleNode and jitterNode plug-ins. Then 
execute the following commands: 

source circleNode
source jitterNode
createSphereAndAttachCircleNode;
jitter "jitter1" "circleNode1.sineOutput" 
"sphere1.translateX";
jitter "jitter2" "circleNode1.cosineOutput" 
"sphere1.translateZ";

Clicking the “play” icon on the time slider will cause the sphere to move 
along a “jittered” circle. The amount of jitter can be varied by adjusting 
the scale sliders in the windows “jitter1 Scale Editor” and “jitter2 Scale 
Editor”. 
API guide 

290



A | Example Plug-ins

Developer > Example plug-in descriptions
jlcVcrDevice

Registers new midi input device jlcVcrDevice

This plug-in is only available on IRIX and Linux.

Loading this plug-in will register the JL-Cooper midi VCR input device 
with Maya as type jlcVcrDevice. 

To use the device, execute the MEL script “jlcVcrDevice.mel”. This will 
attach the buttons on the midi device to the animation playback 
commands in Maya as follows: 

• The play button will start animation playback. 

• The stop button will stop animation playback. 

• The rewind button sets the current time to the start time in the range 
control. 

• The forward button sets the current time to the end time in the range 
control. 

• The rec button executes the setKeyframe command. 

• The scrub wheel moves the time forward and back. 

To get a list of all input devices currently registered in Maya, use the 
command listInputDevices. 

latticeNoise

Produces dependency graph node latticeNoise and MEL command latticeNoise

This plug-in is an example of the following: 

• how to have node attributes input and output geometry 

• how to modify dependency graph connections using the API 

• how to take Maya objects as arguments to a user defined MEL 
command 

The latticeNoise command creates a new lattice deformer around the 
currently selected geometry, or around the objects specified on the 
command line. The command also inserts a latticeNoise node in between 
the lattice shape in the DAG and the node that performs the deformation. 

The end effect of the latticeNoise command is that the objects inside the 
lattice deform with respect to the lattice, but they also wobble about 
randomly as noise is applied to the lattice points. The latticeNoise node 
has attributes for amplitude and frequency that control the amount of 
noise applied. 

An example of using the command is: 

latticeNoise nurbsSphereShape1 nurbsConeShape1;
API guide

291



A | Example Plug-ins 
Developer > Example plug-in descriptions
lepTranslator

Adds the new file format Lep to the file manipulation dialogs

As soon as this plug-in is loaded, the new file format will be available in 
the “Open”, “Import, and “Export” dialogs. 

The icon that is displayed in the file selection boxes is the one that is 
contained in the file lepTranslator.rgb that is also located in the example 
plug-in directory. Maya will find this icon as long as the path to the 
directory that contains it is included in FILE_ICON_PATH environment 
variable. 

An “Lep” file is an ASCII file with a first line of “<LEP>”. The remainder 
of the file contains MEL commands that create one of the primitives: 
nurbsSphere, nurbsCone and nurbsCylinder, as well as move commands to 
position them. 

When writing the file, only primitives of these three types will be created 
along with their positions in 3D space. The reader routine will actually 
handle more MEL commands than these, but only this limited set of types 
will be written. 

As well, this example demonstrates how to utilize file options. When 
saving a file, if you click on the option box beside the File > Export menu 
item, a dialog will pop up that contains two radio boxes asking whether to 
“Write Positions”. The default is true, and if false is selected, then the 
move commands for primitives will not be written to the output file. This 
dialog is implemented by the MEL script, lepTranslatorOpts.mel which is 
also located in the plug-in directory. 

An sample input file is supplied in the example plug-in directory as 
lepTranslator.lep. 

listLightLinksCmd

Produces MEL command listLightLinks.

This example demonstrates how to use the MLightLinks class to query 
Maya's light linking information. The command takes no arguments.If the 
currently selected object is a light, then the command will select all objects 
illuminated by that light. If the currently selected object is a piece of 
geometry, then the command will select all the lights that illuminate that 
geometry.

listPolyHolesCmd

Produces MEL command listPolyHoles.
API guide 

292



A | Example Plug-ins

Developer > Example plug-in descriptions
This example demonstrates how to use the MFnMesh::getPolyHoles() 
function to describe all the holes in a polygon mesh. The command takes 
no arguments. When invoked, the command outputs a description of any 
holes in the currently selected mesh to the Output Window (on 
Windows), or to the console (on IRIX and Linux platforms).

lockEvent 

Produces MEL command lockEvent

This plug-in demonstrates the API callbacks for node and plug locking.  
These callbacks allow you to receive notification when the locked status of 
a plug or node is queried internally. The API programmer has the option, 
upon receipt of the callback, to override/(-o) the lock state of node or 
plug. This override is controlled via a decision variable passed into the 
callback function.  The variable can hold two values 

1. decision = true  --> You want to accept the lock state and do      
whatever the internal default behavior is.

2. decision = false --> You want to deny the lock state and do the      
opposite of what Maya would usually do.

The flow of execution would be as follows:

1. Received a callback from Maya.

2. What kind of event is this?

3. Do I want to allow this event?

4. Yes, I do not want to OVERRIDE this event. decision = true.

4. No, I want to OVERRIDE this event. decision = false.

5. Return from callback.

Example usage:

   sphere ;
   // Watch the translateX plug on the sphere we just created
   lockEvent -a 3 nurbsSphere1.translateX;
   // Do not allow any changes to the plug.
   lockEvent -o true;
   // Now you can try changes nurbsSphere1.translateX 's value
   // but you will not be allowed to do so.
   //
   setAttr "nurbsSphere1.translateX" 22;

maTranslator

Produces file translator Maya ASCII(via plug-in)
API guide

293



A | Example Plug-ins 
Developer > Example plug-in descriptions
This plugin is an example of a file translator. Although this is not the 
actual code used by Maya when it creates files in MayaAscii format, it 
nonetheless produces a very close approximation of the same format.  
Close enough that Maya can load the resulting files as if they were 
MayaAscii. 

Currently, the plugin does not support the following:

• Export Selection.  The plugin will only export entire scenes.

• Referencing files into the default namespace, or using a renaming      
prefix. It only supports referencing files into a separate namespace.

• MEL reference files.

• Size hints for multi plugs.

To use this plug-in, load it and then invoke it through the Export All  
menu item.

marqueeTool

Produces MEL command marqueeToolContext

This is another context example, except that this example does not have an 
associated command. To use it, you must execute the command “source 
marqueeTool” in the command window. This will create a new entry in 
the “Shelf1” tab of the tool shelf called “Marquee Tool”. When this tool is 
active, you can select objects in the 3D windows in the same way that you 
would with the selection tool, that is it can be used for either click 
selection, drag selection. Both will also work with the shift key held down 
in the same manner as the selection tool. 

meshOpCmd

Produces command meshOp. Produces dependency node meshOpNode.

Demonstrates the use of the new high level polygon API methods that 
have been added to MFnMesh.  

Syntax:  meshOp $operationType

$operationType is one of:

0 - Subdivide edge(s).

1 - Subdivide face(s).

2 - Extrude edge(s).

3 - Extrude face(s).

4 - Collapse edge(s).

5 - Collapse face(s).

6 - Duplicate face(s).

7 - Extract face(s).
API guide 

294



A | Example Plug-ins

Developer > Example plug-in descriptions
8 - Split face(s).

Example usage:

• Select the appropriate component( edge, face )

• meshOp 2;

Note: this plug-in re-uses the following files from the splitUVCmd 

• polyModifierNode.cpp

• polyModifierCmd.cpp

• polyModifierFty.cpp

motionPathCmd

Produces MEL command motionPath

This plug-in assigns a curve as a motion path to an object. To use it, create 
an object and draw a curve. Clear all selected items, then pick the object 
followed by the curve (order is important). Once both are selected, execute 
“motionPath” in the command window, then click the play button. The 
object will move along the curve. This is a simple example of how to use 
the motion path function set. 

motionTraceCmd

Produces MEL command motionTrace

In order to use this plug-in you must first create an object and animate it 
by setting keyframes. An easy way to do this is to just create a primitive, 
then set a bunch of keyframes for it with the spiralAnimCurveCmd plug-
in. 

Once this is done, select the animated object and invoke “motionTrace”. 
The object will move along its animated path under control of the plug-in 
and when the animation is complete, the plug-in will draw a curve into 
the scene that represents the motion path of the object. 

The plug-in accepts -s, -e, and -b parameters to control the startFrame, 
endFrame and byFrame values that it uses in running the animation. 

moveCurveCVsCmd

Produces MEL command moveCurveCVs

This is a simple little plug-in which takes the selected CVs of a NURBS 
curves and moves them to the origin. Of itself it’s not a very practical 
plug-in, but it demonstrates retrieving CVs from a selection list and the 
use of the Curve CV iterator. 
API guide

295



A | Example Plug-ins 
Developer > Example plug-in descriptions
To use it, you must draw a curve, switch Maya from Object selection 
mode to Component selection mode, the pick some or all of the CVs of the 
curve. Then, type the command “moveCurveCVs” in the command 
window to move the CVs. 

moveManip

Produces MEL command moveManipContext to create the example 
context.

To use this plug-in, execute the command "source moveManip". This 
creates a new entry in the "Shelf1" tab of the tool shelf, called 
"moveManip". Create a sphere and click on the moveManip icon on the 
shelf. A free point triad manipulator will appear when the object is 
selected.

moveNumericTool

Produces MEL commands moveNumericToolCmd and 
moveNumericToolContext

This is an example of a selection-action tool that allows the user to type in 
precise translation values to while in the move tool. Once an object is 
selected, the tool turns into a translation tool. In this mode, the user can 
type in numeric values in the numeric input field to translate the object.

This tool only supports the translation of transforms, and will only 
perform translation in orthographic views. Undo, redo, and journaling are 
supported by this tool.

To use this plug-in, execute the command “source moveNumericTool”. 
This creates a new entry in the “Shelf1” tab of the tool shelf, called 
“moveNumericTool”. Click on the new icon, then select an object and 
drag it around in an orthographic view. With the object still selected, type 
in the numeric input field to enter a specific translation. You can specify 
whether you want absolute or relative translation values by clicking on 
the button to the left of the numeric input field.

moveTool

Produces MEL commands moveToolCmd and moveToolContext

This is an example of a selection-action tool. When nothing is selected, this 
tool behaves in exactly the same way as Maya’s selection tool. Once an 
object is selected, the tool turns into a translation tool.

Note that at this time, the plug-in can translate:

• transforms

• NURBS curve CVs

• NURBS surface CVs
API guide 

296



A | Example Plug-ins

Developer > Example plug-in descriptions
• polygonal vertices

This plug-in will only perform translation in orthographic views. Undo, 
redo, and journaling are supported by this tool.

To use this plug-in, execute the command “source moveTool”. This 
creates a new entry in the “Shelf1” tab of the tool shelf, called 
“moveTool”. Click on the new icon, then select an object and drag it 
around in an orthographic view. The left mouse button allows movement 
in two directions, while the middle mouse button constrains the 
movement to a single direction.

moveManip

Produces MEL command moveManipContext to create the example context.

To use this plug-in, execute the command "source moveManip". This 
creates a new entry in the "Shelf1" tab of the tool shelf, called 
"moveManip". Create a sphere and click on the moveManip icon on the 
shelf. A free point triad manipulator will appear when the object is 
selected.

multiCurveNode

Produces dependency graph node multiCurve

This plug-in demonstrates how to use the MArrayDataBuilder class to 
create an array attribute in a compute function, the number of elements of 
which change on each compute cycle. 

The node accepts a nurbsCurve as input, and outputs an array of 
nurbsCurves as outputs. The number of curves is controlled by the 
attribute numCurves and the spacing between each of the output curves is 
controlled by the attribute curveOffset. Both numCurves and curveOffset are 
keyable. 

To use this plug-in, load it then execute the MEL command “source 
multiCurveNode.mel”. This will create a curve, hook it up to an instance 
of a multiCurve node, keyframe the numCurves and curveOffset attributes, 
and then hook the output of the multiCurve node to a curveVarGroup 
node which will display all the output curves. Once this script has been 
run, push play and as the animation progresses, new curves will be 
created and the spacing between them will increase. 

nodeInfoCmd

Produces MEL command nodeInfo

This plug-in demonstrates how to query a dependency node for its type 
and for the plugs connected to it. It iterates over the selected items and for 
each item it prints the following: 

• the type of the current selection item’s dependency node 
API guide

297



A | Example Plug-ins 
Developer > Example plug-in descriptions
• the number of plugs connected to the node 

• name/attribute information for each connected plug 

• the node type(s) that each connected plug is a destination of 

To use it, select some objects, then execute “nodeInfo” in the command 
window. The node information will be printed in the window from which 
you started Maya. 

nodeMessageCmd

Produces MEL command nodeMessage

This plug-in that demonstrates how to register/de-register a callback with 
the MNodeMessage class. This plug-in will register a new command in 
Maya called “nodeMessage” which adds a callback for the all nodes on 
the active selection list. A message is printed to stdout whenever a 
connection is made or broken for those nodes.

NodeMonitor

This class monitors a given node. 

offsetNode

Produces dependency graph node offsetNode

This plug-in demonstrates how to create a user-defined weighted 
deformer with an associated shape. A deformer is a node which takes any 
number of input geometries, deforms them, and places the output into the 
output geometry attribute. This example plug-in defines a new deformer 
node that offsets vertices according to their CV’s weights.

To use this node:

• create a plane or some other object

• type: “deformer -type offset”

• a locator is created by the command, and you can use this locator to 
control the direction of the offset. The object’s CV’s will be offset by 
the value of the weights of the CV’s (the default will be the weight * 
some constant) in the direction of the y-vector of the locator

• you can edit the weights using either the component editor or by 
using the percent command (eg. percent -v .5 offset1;)

ownerEmitter

Produces dependency graph node ownerEmitter

This node is an example of a particle emitter that emits in a direction from 
multiple points defined by a particle shape.
API guide 

298



A | Example Plug-ins

Developer > Example plug-in descriptions
There is an example MEL script “ownerEmitter.mel” that shows how to 
create the node and appropriate connections to correctly establish a user 
defined particle emitter.

particlePathsCmd

This example plug-in produces the MEL command “particlePaths” that 
demonstrates how particle ID information can be used to trace out curves 
from particle positions over time.

The following sequence of commands will create a set of curves for a 
particle explosion:

emitter -type omni -r 15 -sro 0 -nuv 0 -cye none -cyi 1 -spd 1 -srn 0 -nsp 1 -
tsp 0 -mxd 0 -mnd 0 -dx 1 -dy 0 -dz 0 -sp 0;
particle ;
connectDynamic -em emitter1 particle1;
select -r particleShape1;
gravity -pos 0 0 0 -m 0.5 -att 0 -dx 0 -dy -1 -dz 0  -mxd -1  -vsh none -vex 0 
-vof 0 0 0 -vsw 360 -tsr 0.5;
connectDynamic -f gravityField1  particle1;
particlePaths -s 0 -f 4 -i 0.5 particleShape1;

The command uses the function set MFnParticleSystem to sample particle 
positions and identifiers at discrete points in time.

The command supports the options –s (start time), -f (finish time), and –i 
(increment period).  The particle positions will be sampled starting from 
the start time through to the finish time in increments of the increment 
time.  The accumulated particle positions will be passed to the 
MFnNurbsCurve function set to create curves from the accumulated data.

particleSystemInfoCmd

Produces command particleSystemInfo

Demonstrates the use of the new MFnParticleSystem class for retrieving 
particle information.  The number of particle positions followed by the 
positions are printed to the script editor.

Syntax:

particleSystemInfo $particleNodeName;

Example:

particleSystemInfo particleShape2;

pickCmd

Produces MEL command pick
API guide

299



A | Example Plug-ins 
Developer > Example plug-in descriptions
This simple plug-in demonstrates the pick-by-name functionality. Simply 
execute “pick <object_name>” in the command window. Also some 
pattern matching is possible, i.e. “pick surface*” which will pick all objects 
whose name begins with “surface”. 

pnTrianglesNode

This plug-in is ATI Radeon specific. It is a hardware shader plug-in to 
perform: 

• ATI PN triangle tessellation on geometry, if the extension 
ATI_pn_triangles is supported in hardware.

• A simple vertex program using EXT_vertex_program, if the extension 
is supported.

• A simple fragment program using AT_fragment_program, if the 
extension is supported.

This is an excerpt from the PN triangle extension specification:

“When PN Triangle generation is enabled, each triangle-based geometric 
primitive is replaced with a new curved surface using the primitive 
vertices as control points. The intent of PN Triangles are to take a set of 
triangle-based geometry and algorithmically tessellate it into a more 
organic shape with a smoother silhouette. The new surface can either 
linearly or quadratically interpolate the normals across the patch. The 
vertices can be either linearly or cubically interpolated across the patch. 
Linear interpolation of the points would be useful for getting more sample 
points for lighting on the same geometric shape. All other vertex 
information (colors, texture coordinates, fog coordinates, and vertex 
weights) are interpolated linearly across the patch.”

pointOnMeshInfo

This plug-in defines both a MEL command and a DG node which 
computes the worldspace position and normal on a poly mesh given a 
face index, a U-parameter and a V-parameter as input.

The concept of this plug-in is based on the pointOnSurface MEL 
command and pointOnSurfaceInfo node. The pointOnSubdNode.cpp 
plug-in example from the Maya API Devkit was also used for reference.

The MEL script AEpointOnSurfaceInfoTemplate.mel was referred to for 
the AE template MEL script that accompanies the pointOnMeshInfo node.

pointOnSubdNode

Produces dependency graph command pointOnSubd

This node is a simple example of how to query a subdivision surface as an 
input to a dependency node. This node takes a subdivision surface and a 
parameter point on subdivision surface and outputs the position and the 
API guide 

300



A | Example Plug-ins

Developer > Example plug-in descriptions
normal of the surface at that point. The MEL script 
“connectObjectToPointOnSubd.mel” that accompanies this plug-in 
contains detailed documentation on how to use the node and itself 
provides a demonstration of that use.

polyMessageCmd

This  plug-in demonstrates how to register/de-register a callback with the 
MPolyMessage class.

This plug-in will register a new command in Maya called "polyMessage" 
which adds a callback for the all nodes on the active selection list. A 
message is printed to stdout whenever component ids for those nodes are 
changed.

To run this plug-in, do the following:

// create a poly plane
// open the outliner and select the poly shape
// Run the plug-in
polyMessage
// select some vertices of the poly shape
// hit the delete key to see the remapped ids of the edges, 
vertices and faces written out

polyPrimitiveCmd

Produces MEL command polyPrimitive

This plug-in creates several types of polygon primitives and demonstrates 
the creation of polygonal data. Once it is loaded, executing “polyPrimitive 
#”, where “#” is an integer between 1 and 7, in the command window will 
cause a polygon to be created at the origin. 

If you execute the command “source polyPrimitiveCmd”, the script 
polyPrimitiveCmd.mel will be run. After this, if the command 
“polyPrimitiveMenu” is executed, it will bring up a window which allows 
you to create these objects simply by clicking a button. 

polyTrgNode

This plug-in demonstrates how to add user defined triangulation for 
meshes using the new poly API class, MPxPolyTrg.

The node registers a user defined face triangulation function. After the 
function is registered it can be used by any mesh in the scene to do the 
triangulation (replace the mesh native triangulation). In order for the 
mesh to use this function, an attribute on the mesh ‘userTrg’ has to be set 
to the name of the function. 

Different meshes may use different functions. Each of them needs to be 
registered. The same node can provide more than one function.
API guide

301



A | Example Plug-ins 
Developer > Example plug-in descriptions
Example:

createNode polyTrgNode -n ptrg;
polyPlane -w 1 -h 1 -sx 10 -sy 10 -ax 0 1 0 -tx 0 -ch 1 -n 
pp1;
select  -r pp1Shape;
setAttr pp1Shape.userTrg  -type "string" "triangulate";

progressWindowCmd

This plug-in demonstrates how to use the MProgressWindow class. The 
command "progressWindowPlugin" displays a simple progress window 
which updates every second.  The progress window can be terminated by 
hitting escape.

To run this plug-in, do the following:

progressWindowCmd;

A progress window will be displayed.  It should be noted that Maya can 
only display one progress window at a time.  MEL also supports creating 
a progress window.  Program errors may occur if the progress windows of 
MEL and the API are being called at the same time.

quadricShape

Produces shape node quadricShape

This plug-in registers a new type of shape with Maya called 
“quadricShape”. This shape will display spheres, cylinders, disks, and 
partial disks using the OpenGL gluQuadric functions.

For example, to create a sphere:

createNode quadricShape -n qSphere;

setAttr qSphere.shapeType 3;

It should be noted that there are no output attributes for this shape.

The following input attributes define the type of shape to draw.

• shapeType : 0=cylinder, 1=disk, 2=partialdisk, 3=sphere

• radius1 : cylinder base radius, disk inner radius, sphere radius

• radius2 : cylinder top radius, disk outer radius

• height : cylinder height

• startAngle : partial disk start angle

• sweepAngle : partial disk sweep angle

• slices : cylinder, disk, sphere slices

• loops : disk loops

• stacks : cylinder, sphere stacks
API guide 

302



A | Example Plug-ins

Developer > Example plug-in descriptions
referenceQueryCmd

Produces MEL command referenceQuery

This example provides useful information about referenced files in the 
main scene. For each referenced file, the output format is as follows:

Referenced File: filename1
    Connections Made
      sourceAttribute -> destinationAttribute
      ...
Connections Broken
      sourceAttribute -> destinationAttribute
      ...
Attributes Changed Since File Referenced
      attribute1
      attribute2
      ...

To use the plug-in, open a scene file that contains file references. Execute 
the MEL command “referenceQuery”. The reference information is 
written to standard output

renderAccessNode

Produces dependency graph node renderAccessNode

This example demonstrates how to work with render callbacks. The plug-
in will register a render callback, a shadow cast callback, and a post-
process callback. When a render starts, render callback will be invoked, 
providing info related to the render's size. Then if shadow maps exist in 
the render, shadow cast callback will be invoked after shadow maps have 
been calculated, providing data to the shadow maps. Finally after 
geometry's have been rendered, post-render callback will be invoked, 
providing pointers to the rendered pixels.

The plug-in will modify the rendered image in post-process callback to 
demonstrate how to manipulate the pixels. The attribute pointWorld will 
be converted to screen space and back to test 
MRenderData::worldToScreen() and MRenderData::screenToWorld().

renderViewInteractiveRenderCmd

A new example that demonstrates the immediate feedback setting that has 
been added to the startRender() methods of the MRenderView class.  
After loading this plug-in, execute the following to see what options it 
supports:

help renderViewInteractiveRender;

renderViewRenderCmd

Produces MEL command renderViewRender
API guide

303



A | Example Plug-ins 
Developer > Example plug-in descriptions
This example demonstrates how to render a full image to the Render View 
window using the MRenderView class. The command takes no 
arguments. It renders a 640x480 image tiled with a red and white circular 
pattern to the Render View.

renderViewRenderRegionCmd

Produces MEL command renderViewRenderRegion

This example demonstrates how to use the MRenderView class to update 
the currently selected Render Region in Maya's Render View. The 
command takes no arguments, and always updates the Render Region 
with a blue and white circular pattern. The command assumes that the 
Render View is currently displaying a 640x480 image (such as the one 
generated by the 'renderViewRender' example command).

rotateManip

The rotateManip is a manipulator plug-in that demonstrates the rotate 
base manipulator function set.  This example produces the MEL command 
rotateContext to create the tool context for this manipulator.

To create the tool button for the plug-in, create a new shelf named 
“Shelf1” and execute the following MEL commands to create the tool 
button in this shelf:

rotateContext;
setParent Shelf1;
toolButton -cl toolCluster -t rotateContext1 -i1 "moveManip.xpm";

To use the manipulator, select an object and click on the new tool button.  
A rotate manipulator should appear on the object along with a state 
manipulator nearby.  The plug-in rotate manipulator is configured to 
behave similarly to the built-in rotate manipulator.  The state manipulator 
can be used to choose the mode for the rotate manipulator, which can be 
one of object space mode, world space mode, gimbal mode, and object 
space mode with snapping enabled.

sampleCmd

Produces MEL command sampleCmd

This example demonstrates how to sample shading group/node using 
MRenderUtil::sampleShadingNetwork().

The command takes lists of shading info such as pointCamera and UVs, 
and samples a given shading group/node and returns the result colors 
and transparencies. Lighting will be calculated if a shading group is 
sampled. Shadows can be calculated as well if the -shadow flag is 
specified. For example:

sampleCmd file1.outColor 4 -uvs 0 0 1 0 1 1 0 1;
API guide 

304



A | Example Plug-ins

Developer > Example plug-in descriptions
sampleCmd creater1.outColor 4 -refPoints 0 0 0 1 0 0 1 0 1 0 
0 1;

sampleCmd -h provides more details on how to use the command.

sampleParticles

Produces MEL command sampleParticles

This example demonstrates how to sample shading groups or nodes using 
MRenderUtil::sampleShadingNetwork() to assign colors to a particle 
object.

The command takes lists of shading info such as pointCamera and UVs, 
and samples a given shading group or node, then assigns the sampled 
colors and transparencies to a grid of particles using the emit command. 
Lighting will be calculated if a shading group is sampled. Shadows can be 
calculated if the -shadow flag is specified.

• sampleParticles -h provides more details on how to use the command.

• The MEL script, sampleParticles.mel demonstrates how to use this 
command.

scanDagCmd

Produces MEL command scanDag

This plug-in demonstrates walking the DAG using the DAG iterator class. 
To use it, create a number of objects anywhere in the scene, then execute 
the command scanDag. This will traverse the DAG printing information 
about each node it finds to the window from which you started Maya. The 
plug-in contains specific knowledge of cameras, lights, and NURBS 
surfaces, and will print object type specific information for each of these. 

As well, the command accepts several flags:

scanDagSyntax

Produces MEL command scanDagSyntax

-b/-breadthFirst  Perform breadth first search

-d/-depthFirst  Perform depth first search

-c/-cameras  Limit the scan to cameras

-l/-lights  Limit the scan to lights

-n/-nurbsSurfaces  Limit the scan to NURBS surfaces
API guide

305



A | Example Plug-ins 
Developer > Example plug-in descriptions
This command plug-in provides the same functionality as scanDagCmd 
except that the syntax parsing is performed via syntax objects. The 
command accepts several flags:

ShadingConnection

This class stores useful information about a shader's attribute, including 
what's connected upstream of it. It also automatically passes through 
shader switches. 

ShapeMonitor

The ShapeMonitor is a singleton class that watches shape or texture nodes, 
and keep track of which one changed since the last export. It is used to 
keep the IFX scenegraph up-to-date in respect to textures.

Client code can:

• Ask for a pointer to the ShapeMonitor. (using the instance() function) 
If it doesn't already exist, it is created.

• Ask the ShapeMonitor to watch a specific Maya node name 
(specifying whether it's a texture, or a shape) and give a unique 
texture name. Doing so creates some callbacks on the specified node, 
so that we know when it changes. When a specific node changes, it's 
unique name is appended to the list (actually, set) of dirty textures.

• Ask for the list of dirty textures. Those should be removed from the 
IFX scenegraph, and will possibly be regenerated, if they still exist.

• Clear the list of dirty textures.

Additionally, once the ShapeMonitor is no longer necessary (for example, 
the scene is being closed), it can be destroyed using the destroy() function. 
Finally, all callbacks and data structures can be cleared by calling the 
initialize() function.

shellNode

Produces dependency graph node shell

-b/-breadthFirst  Perform breadth first search

-d/-depthFirst  Perform depth first search

-c/-cameras  Limit the scan to cameras

-l/-lights  Limit the scan to lights

-n/-nurbsSurfaces  Limit the scan to NURBS surfaces
API guide 

306



A | Example Plug-ins

Developer > Example plug-in descriptions
This plug-in demonstrates how to generate a complex mesh object 
procedurally. It also demonstrates how to customize the attribute editor 
for a node.

To use the plug-in, enter the MEL command “shell” to create a new shell 
node. A mesh object will also be created to display the output. Open the 
attribute editor for the new shell node to see custom controls for picking 
various sea shell presets. The attribute editor layout is created by the file 
AEShellTemplate.mel and provides a complex example of how to create 
an attribute editor template.

shiftNode

Produces dependency graph node shiftNode

This plug-in demonstrates modifying uvCoord and refPointCamera from 
within a plug-in texture. The uvCoord and refPointCamera are marked as 
“renderSource” attributes. The uvCoord and refPointCamera for the 
current sample position are requested and then subsequently shifted four 
times. Each time these attributes are modified, the inColor attribute is 
requested, and because the attributes are render sources, the request for 
inColor forces a shading evaluation. Thus the 2D or 3D texture connected 
to inColor will be evaluated four additional times for every point shaded. 
The inColor values are averaged which produces a blurred result.

simpleEmitter

Produces dependency graph node simpleEmitter

This node is an example of a particle emitter that emits in a direction from 
a single position. 

There is an example MEL script “simpleEmitter.mel” that shows how to 
create the node and appropriate connections to correctly establish a user 
defined particle emitter.

simpleLoftNode

Produces dependency graph node userLoft

This plug-in demonstrates how to accept geometry as an input, and create 
geometry for output. A NURBS curve is input to the node, and from it a 
NURBS surface is created. The resulting geometry is passed to an internal 
Maya node which displays it and allows it to be positioned. 

To use this node, first draw a curve in the X-Y plane. Then execute the 
MEL command “simpleLoftNode.mel” that contains the following 
commands:

createNode transform -n simpleLoft1;
createNode nurbsSurface -n simpleLoftShape1 -p simpleLoft1;
createNode simpleLoft -n simpleLoftNode1;
connectAttr curveShape1.local simpleLoftNode1.inputCurve;
API guide

307



A | Example Plug-ins 
Developer > Example plug-in descriptions
connectAttr simpleLoftNode1.outputSurface 
simpleLoftShape1.create;

This creates a nurbsSurface node and hooks the result into the world for 
display. It then creates a simpleLoft node, and connects its input to 
curveShape1 (the geometry from the first curve drawn), and connects its 
output to the NURBS surface node. 

A surface will now appear on the screen. If the CVs of the original curve 
are selected and moved, the surface will be reconstructed to match. 

simpleSolverNode

Registers IK solver simpleSolverNode

Loading this plug-in will register a new IK solver with Maya as type 
simpleSolverNode. To use the solver, create a single IK bone with 2 joints 
using the Joint tool, then enter the following command in the command 
window to create an IK handle which uses the new solver:

ikHandle -sol simpleSolverNode -sj joint1 -ee joint2

Moving the handle in the x-y plane will rotate the joint. 

The command:

ikHandle -q -sol handleName

can be used to determine which solver a handle is using. 

simpleSpring

Produces dependency graph node simpleSpring

This node is an example of a spring node that calculates the spring 
behavior that Maya will use in a simulation.

There is an example MEL script “simpleSpring.mel” that shows how to 
create the node and appropriate connections to correctly establish a user 
defined spring law.

sineNode

Produces dependency graph node sine

This plug-in is a simpler version of circleNode. It takes a single input 
value and outputs the sine of this multiplied by 10. It’s a simple example 
of creating a procedural animation. Below are a simple set of commands 
to attach this node to a sphere:

sphere -n sphere;
createNode sine -n sine1;
connectAttr sine1.output sphere.tx;
connectAttr time1.outTime sine1.input;
API guide 

308



A | Example Plug-ins

Developer > Example plug-in descriptions
Once this is done, as the time changes the sphere will roughly move along 
the X axis in a periodic manner.

(Roughly because the input is normally 1 through 48 and the compute 
method of the sine node just takes the sine of the input, which should be 
radians.) 

spiralAnimCurveCmd

Produces MEL command spiralAnimCurve

This plug-in attaches anim curves to the X, Y, and Z translation attributes 
of the selected objects, and then animates the object along a spiral path. 
This is a good example of attaching a anim curve to the attributes of an 
object. 

To use it, select an object (or objects) in the Maya perspective window, the 
execute the command “spiralAnimCurve”. Next click on the “play” 
button on the time slider at the bottom right of the screen. The selected 
objects will move in a spiral as the animation plays. 

splitUVCmd

The splitUV command unshares or “splits” the selected UVs of a 
polygonal mesh. It is also a good example of how to write poly operation 
nodes that properly deal with history, tweaks, etc. For a thorough 
explanation of creating this command, refer to the splitUVCmd example 
in the “Working with the polyAPI” chapter of the <PalItal>Maya 
Developer’s Tool Kit.

surfaceBumpManip

The surfaceBumpManip is a manipulator plug-in that demonstrates how 
the pointOnSurface base manipulator can be used.  This example 
produces the MEL command surfaceBumpContext to create the tool 
context for this manipulator.

To create the tool button for the plug-in, create a new shelf named 
“Shelf1” and execute the following MEL commands to create the tool 
button in this shelf:

surfaceBumpContext;
setParent Shelf1;
toolButton -cl toolCluster -t surfaceBumpContext1 -i1 "moveManip.xpm";

To use the manipulator, create a NURBS sphere and select the tool button.  
A manipulator should appear on the surface of the sphere.  Moving the 
manipulator over the surface of the sphere will cause the surface to be 
modified near the manipulator by moving a CV out along the sphere 
normal.
API guide

309



A | Example Plug-ins 
Developer > Example plug-in descriptions
surfaceCreateCmd

Produces MEL command surfaceCreate

This plug-in creates a NURBS surface by supplying its own CVs and 
knots. To use it, just enter the command “surfaceCreate”. 

surfaceTwistCmd

Produces MEL command surfaceTwist

To use this command, you must first create and select a number of 
NURBS surfaces or polygons (a fun surface to twist is the one created by 
the surfaceCreateCmd command). Then enter the command 
“surfaceTwist” and all selected surfaces will be twisted around the y-axis. 

This command demonstrates how to access and modify the CVs of a 
NURBS surface or the vertices of a polygon. 

sweptEmitter

Produces dependency graph node sweptEmitter

This node is an example of a particle emitter that emits in a direction from 
a curve or surface. 

There is an example MEL script “sweptEmitter.mel” that shows how to 
create the node and appropriate connections to correctly establish a user 
defined particle emitter.

swissArmyManip

Produces dependency graph nodes swissArmyLocator and 
swissArmyLocatorManip

This is a contrived example plug-in that attaches one of every kind of 
user-defined manipulator to a node. It is a good example of the source 
code required to create each user-defined manipulator. To use it, issue the 
command:

createNode swissArmyLocator

then click the showManip icon on the toolbar. The locator on the screen will 
be overlaid with one of every kind of user-defined manipulator.

torusField

Produces dependency graph node torusField

This node is an example of a dynamics field that creates a attract-repel 
field between itself and a distance.

There is an example MEL script “torusField.mel” that shows how to create 
the node and appropriate connections to correctly establish a user defined 
field.
API guide 

310



A | Example Plug-ins

Developer > Example plug-in descriptions
transCircleNode

Produces dependency graph node transCircle

This plug-in demonstrates how to use an attribute that contains multiple 
values (a compound attribute). The translate attribute of the transform node 
is used which is composed of the elements: translateX, translateY, and 
translateZ, all of which are communicated over a single dependency graph 
connection. 

To use this node, execute the MEL command “transCircleNode.mel” that 
contains the following commands:

createNode transCircle -n circleNode1;
sphere -n sphere1 -r 1;
sphere -n sphere2 -r 2;
connectAttr sphere2.translate circleNode1.inputTranslate;
connectAttr circleNode1.outputTranslate sphere1.translate;
connectAttr time1.outTime circleNode1.input;

This creates two spheres and a transCircle node. The translate attribute of 
sphere1 is connected to the input of the transCircle node, and its output is 
connected to the translate attribute of sphere2. 

If the play button is pressed, the second sphere will circle around the first. 
If the first sphere is moved, the second will also move such that the first 
sphere always remains at the center of the circle.

This plug-in also comes with a sample of an attribute editor template.   This 
example suppresses the display of all attributes except scale and frames, 
and also provides an extra quick set control for the scale attribute that uses 
radio buttons to update the attribute value.

translateCmd

Produces MEL command translate

This plug-in translates the CVs of selected curves, surfaces, or polygonal 
objects by a user specified amount. It is a good example of manipulating 
CVs on these three data types. To use it, select an object then execute 
“translate 1.0 2.0 3.0” in the command window. 

It should be noted that this command will not work on NURBS primitives 
that have construction history. The history forces the CVs to return to 
their original position immediately after the translate command has 
moved them. To allow the translate command to work on such surfaces, 
you must either delete the construction history on the object 
(Edit > Delete By Type >  Construction History), or open the Tool Settings 
window before creating the surface and turn off History. 
API guide

311



A | Example Plug-ins 
Developer > Example plug-in descriptions
undoRedoMsgCmd

This plug-in example demonstrates  how to listen to undo and redo 
message events using the MEventMessage class.

The syntax of the command is:

undoRedoMsg add;
undoRedoMsg remove;

The add argument causes listening to undo/redo to be turned on. The 
remove argument causes undo/redo listening to be removed.

userMsgCmd

This example plug-in produces the MEL command “userMessage” that 
demonstrates how a plug-in can use user-defined messages.

Here is an example of how the command can be used:

// Register a user-defined event named “test”.  The plug-in will internally 
register
// callbacks for the event.
userMessage -r test;
// Post to the user-defined event.  The plug-in prints info messages from the 
callbacks.
userMessage -p test;
// Entered userMessage::userCallback2
// Received data: Sample Client Data (an MString object)
// Entered userMessage::userCallback1
// Received data: Sample Client Data (an MString object)
// Deregister the user-defined event
userMessage -d test;
// Trying to post a message after the event has been removed will fail.
userMessage -p test; 

viewCaptureCmd

Produces MEL command viewCapture

This plug-in uses OpenGL to capture the current 3D view and write it into 
a PPM file. To use it, give it a filename as an argument into which the 
PPM image of the current view should be written. 
API guide 

312



A | Example Plug-ins

Developer > Example plug-in descriptions
volumeLightCmd

Produces command volumeLight

Demonstrates the use of the MFnVolumeLight class.  This example creates 
a volume light then queries and sets a number of its attributes.

Example usage:

volumeLight

volumeLight -a $arc -c $coneEndRadius -e 

$emitAmbient

whatisCmd

Produces MEL command whatis

This simple command prints a message to standard out describing the API 
types of Maya objects. If no Maya objects are passed to the command then 
it lists the types of all of the currently selected objects. 

For each object, the following information will be printed: 

• name of the object 

• API type for the object 

• API function sets that could be used on the object. Note that not every 
function set listed actually exists.

This list is essentially the class derivation list containing all parent classes 
of this object. 

For example, the command 

whatis nurbsSphereShape1

results in the following output:

Name: nurbsSphereShape1
Type: kNurbsSurface
Function Sets: kBase, kNamedObject, kDependencyNode, kDagNode, kShape, 
kGeometric, kSurface, kNurbsSurface, kNurbsSurfaceGeom

Limitations

Any parts of other X windows that are obscuring the view will 
be captured rather than the view underneath. This is an effect of 
the OpenGL buffer system on SGIs. 

Color index mode buffers cannot be read by this plug-in, so the 
view should be set to shaded or rgb mode before doing the 
capture. 
API guide

313



A | Example Plug-ins 
Developer > Example plug-in descriptions
This is a good example of taking Maya objects as arguments to a 
command.

yTwistNode

Produces dependency graph node yTwist

This plug-in demonstrates how to create a user-defined deformer. A 
deformer is a node which takes any number of input geometries, deforms 
them, and places the output into the output geometry attribute. This 
example plug-in defines a new deformer node that twists the deformed 
vertices of the input around the y-axis.

To use this node:

• create a sphere or some other object

• select the sphere

• type: “deformer -type yTwist”

• bring up the channel box

• select the yTwist input

• change the Angle value of the yTwist input in the channel box 

zoomCameraCmd

Produces MEL command zoomCamera

This is a simple plug-in which divides the horizontal field of view for the 
current active camera by 2.0. It is a good example of getting the current 
active view, and of modifying the camera. To use this plug-in, first create 
a camera by selecting the menu item 
Rendering > Navigation >Create Camera, then position the camera to 
“look at” an object in the scene. Then, either, 

• Select the menu item View > Perspective > Camera Name 

or

• Hold down the Ctrl key, press the right mouse button, and select 
Perspective > Camera Name from the menu that pops up. 

You will now be looking through the camera. Execute “zoomCamera” in 
the command window, and your view through the camera will zoom-in 
by a factor of 2. 
API guide 

314



A | Example Plug-ins

Developer > Example stand-alone application descriptions
Example stand-alone application descriptions

asciiToBinary

This command takes a list of Maya scene files as arguments. For each one, 
the file is loaded and if the file was in Maya Ascii format, it is written in 
Maya Binary format to a file with the same name that the extension is 
replaced with string “.mb” (or at the end if the filename has no extension). 

helloWorld

Running this application will load the Maya DSOs, initialize everything, 
then simply print “hello World” on standard output.  This example now 
uses the Mlibrary::initialize() method that allows the displaying of 
command console output.

readAndWrite

This command takes a list of Maya scene files as arguments. For each one, 
the file is loaded and written without changes to a file with the same name 
except that the string “.updated” is inserted just before the extension in 
the filename (or at the end if the filename has no extension). 

This command is actually useful because as a side effect of the “read then 
write” operation, the given scene files will be upgraded to the latest Maya 
file format. 

surfaceCreate

This command takes no arguments. It creates a a NURBS surface by 
supplying its own CVs and knots, then writes the result out to a file called 
surf1.ma. 

surfaceTwist

This command takes no arguments. It opens a files called surf1.ma and 
applies the twist function to all surfaces in that file. The modified scene is 
then written out to a file called surf2.ma. 

Shader source code examples

Example shader Classification Description

anisotropicShader shader/surface example shader that modifies specular 
highlights 

backfillShader shader/surface modified Phong surface shader that 
fills non-diffuse illuminated areas 
with color 
API guide

315



A | Example Plug-ins 
Developer > Shader source code examples
brickShader texture/2d brick texture node 

cellShader texture/3d Solid texture of cells

checkerShader texture/2d node that uses texture UV coordinates 
to make a checker pattern 

compositingShader texture/2d node for compositing anti-aliased 
mask and rgb textures 

contrastShader utility/color node that manipulates color with 
contrast + bias 

depthShader shader/surface example surface shader that colors 
objects based on distance from the 
camera 

displacementShader shader/
displacement

example displacement shader 

flameShader texture/3d Solid texture of flames

gammaShader utility/color node that manipulates color with 
gamma correction 

geomShader utility/general node that outputs geometry xyz 
position 

hwAnisotropicShader_NV20 shader/surface/
utility

NV20-specific (Geforce3) sample 
shader to produce an anisotropic 
shading effect

hwPhongShader shader/surface/
utility

example of using a cube-environment 
map to perform per pixel phong 
shading

hwToonShader_NV20 hader/surface/
utility

NV20-specific (Geforce3) sample 
shader for cartoon-like effects

interpShader utility/general node that interpolates two colors 
based on the surface normal 

lambertShader shader/surface example Lambert surface shader 

lavaShader texture/3d Solid texture of lava

Example shader Classification Description
API guide 

316



A | Example Plug-ins

Developer > Shader source code examples
anisotropicShader

Produces dependency graph node AnisotropicShader

This node modifies the specular highlight of a surface shader. 

The output attributes of the AnisotropicShader node are called “outColor” 
and “outTransparency”. To use this shader, create a AnisotropicShader 
node with Shading Group or connect it’s output to a Shading Group’s 
“SurfaceShader” attribute.

backfillShader

Produces dependency graph node BackFillShader

This node is an example of a surface shader that fills non-diffuse 
illuminated areas with color. 

The inputs for this node are can be found in the Maya UI on the Attribute 
Editor for the node. 

lightShader light example light shader 

mixtureShader utility/color node that takes two color inputs and 
two mask inputs and mixes them into 
a resulting color 

noiseShader texture/3d node that applies a noise function to 
the output color

phongShader shader/surface example Phong surface shader 

shadowMatteShader shader/surface example shader that outputs mask/
alpha in shadowed areas only 

slopeShader utility/color colors faces of a mesh based on their 
slope or angle relative to a user 
defined threshold

solidCheckerShader texture/3d example solid texture 

vertexColorShader 
(cvColorShader)

utility/color node that allows vertex color (CPV) to 
be software rendered

volumeShader shader/volume example volume shader 

Example shader Classification Description
API guide

317



A | Example Plug-ins 
Developer > Shader source code examples
The output attribute of the node is called “outColor”. It is a 3 float value 
that represents the resulting color produced by the shader. To use this 
shader, create a BackFillShader with Shading Group or connect its output 
to a Shading Group’s “SurfaceShader” attribute. 

brickShader

Produces dependency graph node brickTexture

This node is an example of brick 2d texture. 

The output attribute of the BrickTexture node is called “outColor”. To use 
this shader, create a BrickTexture and connect it’s output to an input of a 
surface/shader node such as Color. 

cellShader

Produces dependency graph node Cells

This node is an example of a solid texture that divides 3D space into cells.

The output attributes of this node are called “outColor” and “outAlpha.”

To use this shader, create a Cell node and connect the output to an input 
of a surface/shader node such as Color.

checkerShader

Produces dependency graph node CheckerNode

This node is an example of evaluating texture UV coordinates and 
produces a checkerboard pattern. It also can take advantage of the 2d 
texture placement node for transforming UV coordinates with a 
manipulator. 

The inputs for this node are two colors and two bias values, where each 
bias value is used to determine the pattern. 

The output attribute of the CheckerNode node is called “outColor”. It is a 
3 float value that represents the resulting color derived from the object’s 
UV texture coordinates. To use this shader, create a CheckerNode and 
connect its output to an input of a surface/shader node such as Color. 

compositingShader

Produces dependency graph node CompositeNode

This node is an example of a compositing shading node. 

The inputs for this node are foreground, background, back color, and a 
mask value. 

The output attributes of the CompositeNode node are called “outColor” 
and “outAlpha”. To use this shader, create a CompositeNode and connect 
it’s output to an input of a surface/shader node such as Color. 
API guide 

318



A | Example Plug-ins

Developer > Shader source code examples
contrastShader

Produces dependency graph node ContrastNode

This node is an example of manipulating color. 

The inputs for this node are input color, contrast and bias. The contrast 
and bias inputs are 3 float values so that it can be applied to each rgb 
channel of an input color separately. 

The output attribute of the ContrastNode node is called “outColor”. It is a 
3 float value that represents the resulting color derived from the effective 
contrast and bias settings. To use this shader, create a ContrastNode and 
connect its output to an input of a surface/shader node such as Color. 

depthShader

Produces dependency graph node DepthShader

This node is an example of a surface shader that colors objects based on 
distance from the camera. 

The inputs for this node are can be found in the Maya UI on the Attribute 
Editor for the node. 

The output attribute of the node is called “outColor”. It is a 3 float value 
that represents the resulting color produced by the node. To use this 
shader, create a DepthShader with Shading Group or connect its output to 
a Shading Group’s “SurfaceShader” attribute. 

displacementShader

Produces dependency graph node DispNodeExample

This node is an example of displacement shader. 

The inputs for this node are input color and an input multiplier. 

The output attribute of the DispNodeExample node is called 
“displacement”. To use this shader, create a DispNodeExample node and 
connect it’s output to the “displacementShader” input of a Shading 
Group. 

flameShader

Produces dependency graph node Flame

This node is an example of a solid texture that uses turbulence and an axis 
to animate the texture’s movement.

The output attributes of this node are called “outColor” and “outAlpha.”

To use this shader, create a Flame node and connect the output to an input 
of a surface/shader node such as Color.
API guide

319



A | Example Plug-ins 
Developer > Shader source code examples
gammaShader

Produces dependency graph node GammaNode

This node is an example of manipulating color with gamma correction. 

The inputs for this node are input color and gamma values. The gamma 
input has 3 float values so that it can be applied to each rgb channel of an 
input color separately. 

The output attribute of the GammaNode node is called “outColor”. To use 
this shader, create a GammaNode and connect its output to an input of a 
surface/shader node such as Color. 

geomShader

Produces dependency graph node GeomNode

This node is an example of a evaluating the geometric xyz position on an 
object. 

The inputs for this node are scale and offsets depicted as sliders in the 
Attribute Editor for the node. 

The output attribute of the GeomNode node is called “outColor”. It is a 3 
float value that represents the xyz position on the object. To use this 
shader, create a GeomNode and connect its output to an input of a 
surface/shader node such as Color. 

hwAnisotropicShader_NV20

NV20-specific (Geforce3) sample shader.

This shader produces an anisotropic shading effect. It allows the user to 
change the parameters of an anisotropic lookup table.

This shader builds on the foundation demonstrated in the hwUnlitShader.

hwPhongShader

This is an example of a using a cube-environment map to perform per 
pixel Phong shading.

The light direction is currently fixed at the eye position. This could be 
changed to track an actual light but has not been coded for this example.

If multiple lights are to be supported, than the environment map would 
need to be looked up for each light either using multitexturing or 
multipass.

hwToonShader_NV20

NV20-specific (Geforce3) sample shader.

This shader allows for cartoon-like effects.
API guide 

320



A | Example Plug-ins

Developer > Shader source code examples
It allows the user to specify a base decal texture, and a lighting look-up 
texture.

This shader builds on the foundation demonstrated in the hwUnlitShader.

interpShader

Produces dependency graph node InterpNode

This node is an example of evaluating the surface normal on an object. 

The inputs for this node are two colors and an input value that will 
modify the interpolation of color. 

The output attribute of the InterpNode node is called “outColor”. It is a 3 
float value that represents the interpolated color as a result of the surface 
normal. To use this shader, create a IntepNode and connect its output to 
an input of a surface/shader node such as Color or Transparency. 

lambertShader

Produces dependency graph node LambertShader

This node is an example of a Lambert shader and how to build a 
dependency node as a surface shader in Maya. 

The inputs for this node are many, and can be found in the Maya UI on 
the Attribute Editor for the node. 

The output attributes for the node are “outColor” and “outTransparency”. 
To use this shader, create a lambertShader with Shading Group or connect 
the outputs to a Shading Group’s “SurfaceShader” attribute. 

lavaShader

Produces dependency graph node Lava

This node is an example of a solid texture that uses turbulence.

The output attributes of this node are called “outColor” and “outAlpha”.

To use this shader, create a Lava node and connect the output to an input 
of a surface/shader node such as Color.

lightShader

Produces dependency graph node lightNode

This node is an example of a directional light. 

The inputs for this node are direction, color, and some boolean flags to 
indicate if the light is contributing to ambient, diffuse, and specular 
components. There is also a position input that can receive a connection 
from a 3d manipulator for placement within the scene. 
API guide

321



A | Example Plug-ins 
Developer > Shader source code examples
The output attribute of the LightNode node is compound attribute called 
“lightData”. To use this shader, create a LightNode and modify it’s inputs 
to see the different illumination results. 

mixtureShader

Produces dependency graph node MixtureNode

This node is an example of evaluating multiple inputs and produces a 
resulting color. 

The inputs for this node are two colors and two masks, where each color 
has a corresponding mask associated with it and the result color is the 
mixture of both colors with masks. 

The output attribute of the MixtureNode node is called “outColor”. It is a 
3 float value that represents the resulting color mixture based on the mask 
values. To use this shader, create a MixtureNode and connect it’s output 
to an input of a surface/shader node such as Color. 

noiseShader

Produces dependency graph node SolidNoise

This node is an example of a 3d texture. 

The output attribute of the SolidNoise node is called “outColor”. 

shadowMatteShader

Produces dependency graph node ShadowMatte

This node will create a matte/mask only in areas that are in a lights 
shadow through the transparency output.

You can optionally use a boolean input to see where the shadow areas are 
in the color channels instead of the mask. 

The output attributes of the ShadowMatte node are called “outColor” and 
“outTransparency”. To use this shader, create a ShadowMatte node with 
Shading Group or connect it’s output to a Shading Group’s 
“SurfaceShader” attribute. 

slopeShader

Produces dependency graph node slopeShader

The slopeShape is comprised of three components: slopeShader, 
slopeShader Behavior and slopeShaderNode.

The slopeShader colors faces of a mesh based on their slope or angle 
relative to a user defined threshold.
API guide 

322



A | Example Plug-ins

Developer > Shader source code examples
solidCheckerShader

Produces dependency graph node SolidChecker

This node is an example of a 3d checker texture. 

The output attributes of the SolidChecker node are called “outColor” and 
“outAlpha”. To use this shader, create a SolidChecker node and connect 
its output to an input of a surface/shader node such as Color. 

phongShader

Produces dependency graph node PhongNode

This node is an example of a Phong shader and how to build a 
dependency node as a surface shader in Maya. 

The inputs for this node are can be found in the Maya UI on the Attribute 
Editor for the node. 

The output attribute of the node is called “outColor”. It is a 3 float value 
that represents the resulting color produced by the node. To use this 
shader, create a phongNode with Shading Group or connect its output to 
a Shading Group’s “SurfaceShader” attribute. 

vertexColorShader (cvColorShader)

This plug-in creates a node that allows vertex color (CPV) to be software 
rendered.

volumeShader

Produces dependency graph node VolumeNode

This node is an example of a volume shader. Volume shaders are used to 
apply color to specialized shapes associated with light sources called 
“light shapes”. One such set of shapes is created by the Light Fog effect. 
The Light Fog effect can be assigned to any point or spot light through the 
attribute editors for the point and spot lights.

The output attribute of the VolumeNode node is called “outColor”. To use 
this shader, create a VolumeNode node and connect its output to the 
“volumeShader” input of a Shading Group. The shading group must be 
connected to a light shape. 
API guide

323



A | Example Plug-ins 
Developer > Shader source code examples
API guide 

324



Index
Symbols
&stat . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

A
accessories

definition, API methods . . . . . . . . . . . . . . . . . . . 96
accessoryAttribute()

API method  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

accessoryNodeSetup()
API method  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

addManipulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
algebra, linear

buildRotationNode . . . . . . . . . . . . . . . . . . . . . . 274
ambientLight dependency 
graph rendering node . . . . . . . . . . . . . . . . . . . . . . . 224
animation

example with
spiralAnimCurveCmd plug-in  . . . . . . . . . . . . 309

procedural example with 
sineNode plug-in . . . . . . . . . . . . . . . . . . . . . . . . 308

animCubeNode plug-in  . . . . . . . . . . . . . . . . . . . . . 271

anisotropicShader node  . . . . . . . . . . . . . . . . . . . . . 317
API

description  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

API applications
building in Windows environment  . . . . . . . . 216

API classes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156
API library

OpenMaya  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
OpenMayaAnim  . . . . . . . . . . . . . . . . . . . . . . . . . 11

OpenMayaFX . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

OpenMayaRender . . . . . . . . . . . . . . . . . . . . . . . . 11
OpenMayaUI . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

API manips
addManipulator . . . . . . . . . . . . . . . . . . . . . . . . . 132
base manipulators . . . . . . . . . . . . . . . . . . . . . . . 122
CircleSweepManip  . . . . . . . . . . . . . . . . . . . . . . 121

connectToDependNode  . . . . . . . . . . . . . . . . . . 124
container manipulators. . . . . . . . . . . . . . . . . . . 122
conversion functions . . . . . . . . . . . . . . . . . . . . . 128
createchildren method  . . . . . . . . . . . . . . . . . . . 123

creator method . . . . . . . . . . . . . . . . . . . . . . . . . . 123
CurveSegmentManip  . . . . . . . . . . . . . . . . . . . . 122
definition. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
deleteManipulator . . . . . . . . . . . . . . . . . . . . . . . 132
deregistration . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

DirectionManip . . . . . . . . . . . . . . . . . . . . . . . . . 121
DiscManip  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

DistanceManip . . . . . . . . . . . . . . . . . . . . . . . . . . 121
draw method  . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
footPrintManip  . . . . . . . . . . . . . . . . . . . . . . . . . 133

FreePointTriadManip . . . . . . . . . . . . . . . . . . . . 120
initialize method  . . . . . . . . . . . . . . . . . . . . . . . . 123
manips and nodes, communication with. . . . 125
manipToPlug callback method . . . . . . . . . . . . 129
MManipData  . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
moveToolManip.cpp. . . . . . . . . . . . . . . . . . . . . 133
MPxManipContainer  . . . . . . . . . . . . . . . . . . . . 123
one-to-one assocations  . . . . . . . . . . . . . . . . . . . 127
plugToManip callback method . . . . . . . . . . . . 129

PointOnCurveManip  . . . . . . . . . . . . . . . . . . . . 121

PointOnSurfaceManip  . . . . . . . . . . . . . . . . . . . 121

registration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

StateManip . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
ToggleManip  . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

writing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
apiMeshShape  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

plug-in . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 271
apiType() method  . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

applications
API

building in Windows environment  . . . . . 216
applySpringLaw()

API method  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

arcLenNode plug-in  . . . . . . . . . . . . . . . . . . . . . . . . 270

arguments
adding to plug-ins . . . . . . . . . . . . . . . . . . . . . . . . 21

arrays
curves, with multiCurveNode plug-in. . . . . . 297

asciiToBinary
stand-alone application  . . . . . . . . . . . . . . . . . . 315

attribute editor
customizing

with shellNode plug-in  . . . . . . . . . . . . . . . 307

attributes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
API guide

325



Index
multiple values
example with tranCircleNode plug-in . . . 311

shading node plug-ins  . . . . . . . . . . . . . . . . . . . 102
simple  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

B
BackFillShader node  . . . . . . . . . . . . . . . . . . . . . . . . 317
ball environment texture. . . . . . . . . . . . . . . . . . . . . 225
base manipulators

in API. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
bd

blind data, abbreviation, API . . . . . . . . . . . . . . . 90
blastCmd plug-in . . . . . . . . . . . . . . . . . . . . . . . . . . . 272

blendColors dependency graph 
rendering node . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224
blindComplexDataCmd plug-in . . . . . . . . . . . . . . 272
blindData

and dynamic attributes, API  . . . . . . . . . . . . . . . 90
blindDoubleDataCmd plug-in . . . . . . . . . . . . . . . . 273
blindShortDataCmd plug-in  . . . . . . . . . . . . . . . . . 273

blinn dependency graph rendering node. . . . . . . 224
blocks

data, for shading node plug-ins  . . . . . . . . . . . 102
data, general in API . . . . . . . . . . . . . . . . . . . . . . . 91

brickShader node . . . . . . . . . . . . . . . . . . . . . . . . . . . 318
brownian dependency graph rendering node. . . 225
build environments

setting up in UNIX  . . . . . . . . . . . . . . . . . . . . . . 211

setting up in Windows . . . . . . . . . . . . . . . . . . . 215
build file

creating for plug-ins in Windows environment . 
216

building Windows environment API applications . . 
216

buildRotationNode plug-in  . . . . . . . . . . . . . . . . . . 274
bulge dependency graph rendering node  . . . . . . 225
bump2d dependency graph rendering node . . . . 225
bump3d dependency graph rendering node . . . . 225

C
camera dependency graph rendering node . . . . . 225
cameraFarClipPlane rendering attribute . . . . . . . 235

cameraNearClipPlane rendering attribute. . . . . . 235
cameras

modifying with 
zoomCameraCmd plug-in . . . . . . . . . . . . . . . . 314

cameraView dependency graph 
rendering node . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225
cellShader node  . . . . . . . . . . . . . . . . . . . . . . . . . . . . 318
checker dependency graph rendering node  . . . . 225
checkerShader node. . . . . . . . . . . . . . . . . . . . . . . . . 318
child nodes  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
children

and compound attributes, in API . . . . . . . . . . . 89
chrome environment texture . . . . . . . . . . . . . . . . . 225
circleNode plug-in . . . . . . . . . . . . . . . . . . . . . . . . . . 276

CircleSweepManip. . . . . . . . . . . . . . . . . . . . . . . . . . 121
clamp dependency graph rendering node . . . . . . 225
classes

MFnMesh  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160
MltMeshEdge . . . . . . . . . . . . . . . . . . . . . . . . . . . 158
MltMeshFaceVertex  . . . . . . . . . . . . . . . . . . . . . 159

MltMeshPolygon . . . . . . . . . . . . . . . . . . . . . . . . 156

MltMeshVertex  . . . . . . . . . . . . . . . . . . . . . . . . . 159
polygonal  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

classification
shading nodes  . . . . . . . . . . . . . . . . . . . . . . . . . . 112

closed curve  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222
closestPointOnCurve

plug-in . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 276
closestPointOnMesh

plug-in . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 277
cloth dependency graph rendering node . . . . . . . 225
cloud dependency graph rendering node . . . . . . 225
clusterWeightFunction plug-in . . . . . . . . . . . . . . . 277
code examples

shader source table . . . . . . . . . . . . . . . . . . . . . . 315
color utility

blendColors  . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224
clamp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225

contrast . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225
gammaCorrect . . . . . . . . . . . . . . . . . . . . . . . . . . 226
hsvToRgb  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226
luminance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226
rgbToHsv  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 228

command
API guide 

326



Index
output to journal file . . . . . . . . . . . . . . . . . . . . . . 56
plug-ins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
registering with InitializePlugin() . . . . . . . . . . . 33

command plug-ins . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28, 147

and shapes, in API . . . . . . . . . . . . . . . . . . . . . . . 140
compositingShader node  . . . . . . . . . . . . . . . . . . . . 318
compound attribute

description, for API . . . . . . . . . . . . . . . . . . . . . . . 89
compute

method, shading node plug-ins. . . . . . . . . . . . 102
compute methods

description, for API . . . . . . . . . . . . . . . . . . . . . . . 92
condition dependency graph rendering node . . . 225
conditionTest plug-in  . . . . . . . . . . . . . . . . . . . . . . . 278

connections
implicit

and create render node. . . . . . . . . . . . . . . . 112
connectNodes(). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176

revisited. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180
connectToDependNode  . . . . . . . . . . . . . . . . . . . . . 124
construction history . . . . . . . . . . . . . . . . . . . . . . . . . 152
constructor

and shading node plug-ins  . . . . . . . . . . . . . . . 101
container manipulators

in API. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
context

in API. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
contrast dependency graph rendering node . . . . 225
contrastShader node  . . . . . . . . . . . . . . . . . . . . . . . . 319
conventions

naming  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

conversion functions
API manips . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

ConvertEdgesToContainedFacesCmd 
plug-in . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 279

convertMapCmd plug-in  . . . . . . . . . . . . . . . . . . . . 279

ConvertVerticesToContainedEdgesCmd 
plug-in . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 279

ConvertVerticesToContainedFacesCmd
plug-in . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 280

crater dependency graph rendering node . . . . . . 225
createchildren . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

creator
and shading node plug-ins  . . . . . . . . . . . . . . . 101

creator, method for manips, API . . . . . . . . . . . . . . 123
creators  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

data, in API . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
cube environment texture. . . . . . . . . . . . . . . . . . . . 225
curves

access through MObject handles. . . . . . . . . . . . 18
assigning as motion path with 
motionPathCmd plug-in  . . . . . . . . . . . . . . . . . 295

create helix, with helix2Cmd plug-in . . . . . . . 287

CurveSegmentManip  . . . . . . . . . . . . . . . . . . . . . . . 122

cvColorNode plug-in  . . . . . . . 280, 281, 282, 284, 303

cvColorShader  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 281
cvColorShader node  . . . . . . . . . . . . . . . . . . . . . . . . 323
cvExpandCmd plug-in . . . . . . . . . . . . . . . . . . . . . . 282
cvPosCmd plug-in . . . . . . . . . . . . . . . . . . . . . . . . . . 282

cylinders, create, with quadricShape plug-in  . . . 302

D
DAG

definition. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
hierarchy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
iterator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
nodes

access through MObject handles  . . . . . . . . 18
child. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
generalized instancing . . . . . . . . . . . . . . . . . 67
instances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
naming  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
parenting information  . . . . . . . . . . . . . . . . . 63

paths of instances  . . . . . . . . . . . . . . . . . . . . . 64
position information . . . . . . . . . . . . . . . . . . . 63
reusing names . . . . . . . . . . . . . . . . . . . . . . . . 66
rotation information . . . . . . . . . . . . . . . . . . . 63

scale information . . . . . . . . . . . . . . . . . . . . . . 63
shapes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
transform nodes  . . . . . . . . . . . . . . . . . . . . . . 67
transforms  . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
walking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

objects, shapes, API . . . . . . . . . . . . . . . . . . . . . . 135
paths  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
walking

with scanDagCmd plug-in  . . . . . . . . . . . . 305

with scanDagSyntax plug-in . . . . . . . . . . . 306

DAG node
API guide

327



Index
description  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

data blocks
and shading node plug-ins  . . . . . . . . . . . . . . . 102
description, for API . . . . . . . . . . . . . . . . . . . . . . . 91

data creators
description, for API . . . . . . . . . . . . . . . . . . . . . . . 91

data handle
and shading node plug-ins  . . . . . . . . . . . . . . . 102
description, for API . . . . . . . . . . . . . . . . . . . . . . . 91

DeclareSingle macro  . . . . . . . . . . . . . . . . . . . . . . . . . 14
default error log path  . . . . . . . . . . . . . . . . . . . . . . . . 23

defaultLightList dependency graph
rendering node . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225
defaultRenderUtilityList dependency graph 
rendering node . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225
defaultShaderList dependency graph 
rendering node . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225
defaultTextureList dependency graph 
rendering node . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225
deform() method

for MPxDeformerNode. . . . . . . . . . . . . . . . . . . . 96
degree (of curve)  . . . . . . . . . . . . . . . . . . . . . . . . . . . 222
deleteManipulator . . . . . . . . . . . . . . . . . . . . . . . . . . 132
dependency graph

jitterNode plug-in  . . . . . . . . . . . . . . . . . . . . . . . 290
latticeNoise plug-in . . . . . . . . . . . . . . . . . . . . . . 291

navigating
with findTexturesCmd plug-in . . . . . . . . . 285

with findTexturesPerPolygonCmd 
plug-in. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 285

nodes
circleNode plug-in  . . . . . . . . . . . . . . . . . . . 276

dependency graph nodes, API. . . . . . . . . . . . . . . . . 84
dependency node

querying
with nodeInfoCmd plug-in . . . . . . . . . . . . 297

depthShader node  . . . . . . . . . . . . . . . . . . . . . . . . . . 319
deregistration

for manipulators, API . . . . . . . . . . . . . . . . . . . . 125
shapes  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

desctructor
and shading node plug-ins  . . . . . . . . . . . . . . . 101

destructor
MObject . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

detecting errors in Mel

errlog flag . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
device plug-ins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
devices

input
jlcVcrDevice plug-in . . . . . . . . . . . . . . . . . . 291

registering with InitializePlugin(). . . . . . . . . . . 33
directionalLight dependency graph 
rendering node . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225
DirectionManip  . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

DiscManip . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
displacement output attribute . . . . . . . . . . . . . . . . 229
displacementShader dependency graph 
rendering node . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225
displacementShader node  . . . . . . . . . . . . . . . . . . . 319
displayError() method  . . . . . . . . . . . . . . . . . . . . . . . 38

displayWarning() . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
distanceBetween dependency graph 
rendering node . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225
DistanceManip . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

doIt()
API method  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

doIt() method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
doModifyPoly()  . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174
draw

shapes, API . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
draw, method for manips, API  . . . . . . . . . . . . . . . 124
dynamic attributes . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

blindComplexDataCmd plug-in . . . . . . . . . . . 272

blindDoubleDataCmd  . . . . . . . . . . . . . . . . . . . 273

blindShortDataCmd plug-in  . . . . . . . . . . . . . . 273
for blind data API  . . . . . . . . . . . . . . . . . . . . . . . . 90

E
edges  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

iterator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158
edit points . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222
emitters

definition, API . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
envBall dependency graph rendering node  . . . . 225

envChrome dependency graph rendering node. 225
envCube dependency graph rendering node  . . . 225
envFog dependency graph rendering node. . . . . 225
API guide 

328



Index
environment texture
envBall. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225
envChrome . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225
envCube  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225
envSky . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226
sphere  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226

environment variable
MAYA_LOCATION . . . . . . . . . . . . . . . . . . . . . 211

MAYA_PLUG_IN_PATH  . . . . . . . . . . . . . 12, 211

MAYA_SCRIPT_PATH  . . . . . . . . . . . . . . . . . . 211

PATH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211

XBMLANGPATH  . . . . . . . . . . . . . . . . . . . . . . . 211

environmentFog dependency graph 
rendering node . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226
environments

build
creating in UNIX . . . . . . . . . . . . . . . . . . . . . 211

creating in Windows. . . . . . . . . . . . . . . . . . 215
envSky dependency graph rendering node . . . . . 226
envSphere dependency graph 
rendering node . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226
errlog flag  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
error

checking  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

log file  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
logging

with MGlobal:startErrorLogging  . . . . . . . . 14
messages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

error logging
in API. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

error method in MStatus . . . . . . . . . . . . . . . . . . . . . . 23
errors

error logging. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
errorString method to obtain 
error description  . . . . . . . . . . . . . . . . . . . . . . . . . 23

MGlobal startError Logging  . . . . . . . . . . . . . . . 23

MStatus class
and error method  . . . . . . . . . . . . . . . . . . . . . 23

perror method to print errors  . . . . . . . . . . . . . . 23
setting default error log path . . . . . . . . . . . . . . . 23

statusCode method . . . . . . . . . . . . . . . . . . . . . . . 23
errorString method

to obtain error descriptions  . . . . . . . . . . . . . . . . 23
evenTest plug-in. . . . . . . . . . . . . . . . . . . . . . . . . . . . 283
example plug-ins

tables, descriptions  . . . . . . . . . . . . . . . . . . . . . . 259
examples

polyModifierCmd . . . . . . . . . . . . . . . . . . . . . . . 164
splitUVCmd . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186

exclusiveMatrix() . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
exportSkinClusterDataCmd plug-in . . . . . . . . . . . 285
extendToShape()  . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

F
faces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

iterator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156
face-vertices  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

iterator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156
farPointWorld rendering attribute  . . . . . . . . . . . . 230
file dependency graph rendering node  . . . . . . . . 226
file formats

Lep, with lepTranslator plug-in  . . . . . . . . . . . 292

filterSize rendering attribute  . . . . . . . . . . . . . . . . . 230
finalize(). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52, 56
findTexturesCmd plug-in . . . . . . . . . . . . . . . . . . . . 285
findTexturesPerPolygonCmd plug-in  . . . . . . . . . 285

flags
short, long, syntax object, API . . . . . . . . . . . . . . 42

flameShader node  . . . . . . . . . . . . . . . . . . . . . . . . . . 319
fog volume shader . . . . . . . . . . . . . . . . . . . . . . 225, 226
footPrintManip . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
footPrintManip plug-in . . . . . . . . . . . . . . . . . . . . . . 286
footPrintNode plug-in. . . . . . . . . . . . . . . . . . . . . . . 286
force

applying, using API  . . . . . . . . . . . . . . . . . . . . . . 98
for-loop

in example plug-in  . . . . . . . . . . . . . . . . . . . . . . . 21

form of curve  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222
formats

file
and lepTranslator plug-in  . . . . . . . . . . . . . 292

fractal dependency graph rendering node. . . . . . 226
FreePointTriadManip  . . . . . . . . . . . . . . . . . . . . . . . 120

fullLoftNode plug-in . . . . . . . . . . . . . . . . . . . . . . . . 286

function set, MFnMesh . . . . . . . . . . . . . . . . . . . . . . 160
function sets  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
function sets,C++ objects  . . . . . . . . . . . . . . . . . . . . . 19
API guide

329



Index
G
gammaCorrect dependency graph 
rendering node . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226
gammaShader node . . . . . . . . . . . . . . . . . . . . . . . . . 320
general utility

bump2d . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225

bump3d . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225

condition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225

lightInfo. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226
multiplyDivide. . . . . . . . . . . . . . . . . . . . . . . . . . 227
place2dTexture. . . . . . . . . . . . . . . . . . . . . . . . . . 227
place3dTexture. . . . . . . . . . . . . . . . . . . . . . . . . . 227
plusMinusAverage  . . . . . . . . . . . . . . . . . . . . . . 227
projection  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227

reverse . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 228
samplerInfo. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 228
setRange  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 228
vectorProduct . . . . . . . . . . . . . . . . . . . . . . . . . . . 228

generalized instancing  . . . . . . . . . . . . . . . . . . . . . . . 67

in dag nodes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
geometry

NURBS
overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221

geometryShape dependency graph 
rendering node . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226
geomShader node  . . . . . . . . . . . . . . . . . . . . . . . . . . 320
getAttrAffectsCmd plug-in  . . . . . . . . . . . . . . . . . . 287

getDrawRequests . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
global active selection list

API . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
glow postprocess

shaderGlow  . . . . . . . . . . . . . . . . . . . . . . . . . . . . 228

granite dependency graph rendering node . . . . . 226
grid dependency graph rendering node  . . . . . . . 226

H
handles

data, for shading node plug-ins  . . . . . . . . . . . 102
data, in API . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

header file
for simple plug-ins  . . . . . . . . . . . . . . . . . . . . . . . 14

helix2Cmd plug-in . . . . . . . . . . . . . . . . . . . . . . . . . . 287
helixCmd plug-in . . . . . . . . . . . . . . . . . . . . . . . . . . . 287

helixMotifCmd plug-in . . . . . . . . . . . . . . . . . . . . . . 288

helixTool plug-in . . . . . . . . . . . . . . . . . . . . . . . . . . . 288
helloCmd plug-in. . . . . . . . . . . . . . . . . . . . . . . . . . . 288
helloWorld

stand-alone application  . . . . . . . . . . . . . . . . . . 315

helloWorldCmd plug-in . . . . . . . . . . . . . . . . . . . . . 288

hFilmAperture rendering attribute . . . . . . . . . . . . 235
hFilmOffset rendering attribute  . . . . . . . . . . . . . . 235

hsvToRgb dependency graph 
rendering node . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226
hull . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221
hwAnisotropicShader_NV20 node . . . . . . . . . . . . 320
hwPhongShader node . . . . . . . . . . . . . . . . . . . . . . . 320
hwToonShader_NV20 node

shaders
hwToonShader_NV20, API . . . . . . . . . . . . 320

I
Id String

for shading node plug-ins  . . . . . . . . . . . . . . . . 102
identifiers

in dependency graph, API . . . . . . . . . . . . . . . . . 79
idleTest plug-in  . . . . . . . . . . . . . . . . . . . . . . . . . . . . 288

iffInfoCmd plug-in  . . . . . . . . . . . . . . . . . . . . . . . . . 289

iffPixelCmd plug-in . . . . . . . . . . . . . . . . . . . . . . . . . 289
iffPpmCmd plug-in . . . . . . . . . . . . . . . . . . . . . . . . . 289

if-statement
in example plug-in  . . . . . . . . . . . . . . . . . . . . . . . 21

IK
solver

simpleSolver plug-in  . . . . . . . . . . . . . . . . . 308

IK solver
definition, API . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

imagePlane dependency graph 
rendering node . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226
implicit connections

and create render node . . . . . . . . . . . . . . . . . . . 112
implicitCone dependency graph 
rendering node . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226
inclusiveMatrix()  . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
initialize

shading node plug-ins  . . . . . . . . . . . . . . . . . . . 101
API guide 

330



Index
initialize, method for manips, API  . . . . . . . . . . . . 123
initializePlugin

for shading node plug-ins  . . . . . . . . . . . . . . . . 101
InitializePlugin()

to register commands . . . . . . . . . . . . . . . . . . . . . 33
to register devices  . . . . . . . . . . . . . . . . . . . . . . . . 33
to register tools. . . . . . . . . . . . . . . . . . . . . . . . . . . 33

initializePlugin(). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
initiating error loggin

with MGLobal startError  . . . . . . . . . . . . . . . . . . 23
input devices

jlcVcrDevice plug-in . . . . . . . . . . . . . . . . . . . . . 291
instanced . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

instancing, generalized
in dag nodes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

interactive tool plug-ins  . . . . . . . . . . . . . . . . . . . . . . 31
intermediate object. . . . . . . . . . . . . . . . . . . . . . . . . . . 68
interpNode

example, for shading node plug-ins . . . . . . . . 102
interpShader node . . . . . . . . . . . . . . . . . . . . . . . . . . 321
isPerspCamera rendering attribute . . . . . . . . . . . . 235
isUndoable() method . . . . . . . . . . . . . . . . . . . . . . . . . 36
iterator

edge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158
face . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156
vertex . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

J
jitterNode plug-in  . . . . . . . . . . . . . . . . . . . . . . . . . . 290

jlcVcrDevice plug-in  . . . . . . . . . . . . . . . . . . . . . . . . 291

L
lambert dependency graph rendering node  . . . . 226
lambertShader node  . . . . . . . . . . . . . . . . . . . . . . . . 321

latticeNoise plug-in . . . . . . . . . . . . . . . . . . . . . . . . . 291
lavaShader node . . . . . . . . . . . . . . . . . . . . . . . . . . . . 321
layeredShader dependency graph 
rendering node . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226
leather dependency graph rendering node . . . . . 226
lensSqueezeRatio rendering attribute . . . . . . . . . . 235
lepTranslator plug-in. . . . . . . . . . . . . . . . . . . . . . . . 292

library
OpenMaya, API . . . . . . . . . . . . . . . . . . . . . . . . . . 11
OpenMayaAnim, API . . . . . . . . . . . . . . . . . . . . . 11
OpenMayaFX, API  . . . . . . . . . . . . . . . . . . . . . . . 11
OpenMayaRender, API  . . . . . . . . . . . . . . . . . . . 11
OpenMayaUI, API. . . . . . . . . . . . . . . . . . . . . . . . 11

light
ambientLight  . . . . . . . . . . . . . . . . . . . . . . . . . . . 224
directionalLight . . . . . . . . . . . . . . . . . . . . . . . . . 225
pointLight . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227
spotLight . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 228

light dependency graph rendering node . . . . . . . 226
lightDataArray rendering attribute. . . . . . . . . . . . 231
lightFog dependency graph rendering node . . . . 226
lightInfo dependency graph rendering node  . . . 226
lightList dependency graph rendering node . . . . 226
lights

access through MObject handles. . . . . . . . . . . . 18
lightShader node  . . . . . . . . . . . . . . . . . . . . . . . . . . . 321
linear algebra

buildRotationNode . . . . . . . . . . . . . . . . . . . . . . 274

listLightLinksCmd plug-ins . . . . . . . . . . . . . . . . . . 292
listPolyHolesCmd plug-in  . . . . . . . . . . . . . . . . . . . 293
lists

API selection
manipulating . . . . . . . . . . . . . . . . . . . . . . . . . 25

lists, selection
cvExpandCmd plug-in . . . . . . . . . . . . . . . . . . . 282

loading plug-ins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
loadPlugin  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

loadPlugin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
locators

and footPrintManip plug-in. . . . . . . . . . . . . . . 286
and footPrintNode plug-in  . . . . . . . . . . . . . . . 286

loft
with fullLoftNode plug-in . . . . . . . . . . . . . . . . 286
with simpleLoftNode plug-in . . . . . . . . . . . . . 307

luminance dependency graph 
rendering node . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226

M
M classes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
manipToPlug
API guide

331



Index
callback method, API  . . . . . . . . . . . . . . . . . . . . 129
manipulators

base, in API . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
CircleSweepManip, API . . . . . . . . . . . . . . . . . . 121
connectToDependNode method, API  . . . . . . 124
container, in API  . . . . . . . . . . . . . . . . . . . . . . . . 122
createchildren method, API . . . . . . . . . . . . . . . 123
creator method, API  . . . . . . . . . . . . . . . . . . . . . 123
CurveSegmentManip, API . . . . . . . . . . . . . . . . 122
definition, API  . . . . . . . . . . . . . . . . . . . . . . . . . . 119
deregistration for, API  . . . . . . . . . . . . . . . . . . . 125
DirectionManip, API . . . . . . . . . . . . . . . . . . . . . 121
DiscManip, API . . . . . . . . . . . . . . . . . . . . . . . . . 121
DistanceManip, API  . . . . . . . . . . . . . . . . . . . . . 121
draw method, API . . . . . . . . . . . . . . . . . . . . . . . 124
FreePointTriadManip, API. . . . . . . . . . . . . . . . 120
initialize method, API . . . . . . . . . . . . . . . . . . . . 123
PointOnCurveManip, API . . . . . . . . . . . . . . . . 121
PointOnSurfaceManip, API . . . . . . . . . . . . . . . 121
registration for, API. . . . . . . . . . . . . . . . . . . . . . 125
StateManip, API . . . . . . . . . . . . . . . . . . . . . . . . . 122
ToggleManip, API . . . . . . . . . . . . . . . . . . . . . . . 121
writing, in API . . . . . . . . . . . . . . . . . . . . . . . . . . 122

marble dependency graph rendering node . . . . . 226

MArgDatabase . . . . . . . . . . . . . . . . . . . . . . . . . . . 42, 43
MArgList class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
MArgParser. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
marqueeTool plug-in . . . . . . . . . . . . . . . . . . . . . . . . 294
MArrayDataBuilder class

example
with multiCurveNode plug-in  . . . . . . . . . 297

materialInfo dependency graph 
rendering node . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226
matrixEyeToNormPersp rendering attribute  . . . 236
matrixEyeToWorld rendering attribute . . . . . . . . 236
matrixNormPerspToEye rendering attribute  . . . 236
matrixObjectToWorld rendering attribute . . . . . . 231
matrixWorldToEye rendering attribute . . . . . . . . 236
matrixWorldToObject rendering attribute. . . . . . 231
MAttributeSpec  . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142
Maya API

description  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

MAYA_LOCATION  . . . . . . . . . . . . . . . . . . . . . . . . 211

MAYA_PLUG_IN_PATH. . . . . . . . . . . . . . . . . 12, 211

MAYA_SCRIPT_PATH  . . . . . . . . . . . . . . . . . . . . . 211

MDagPath

pathCount() . . . . . . . . . . . . . . . . . . . . . . . . . . 68
MDrawData  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
MDrawInfo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

MDrawRequest  . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
MDrawRequestQueue. . . . . . . . . . . . . . . . . . . . . . . 138
mediumRefractiveIndex rendering attribute. . . . 231
MEL

description  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
mesh objects

generating with shellNode plug-in. . . . . . . . . 307
messages

to standard output
example using whatisCmd plug-in  . . . . . 313

MEvent  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
MFn  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

Type enumeration . . . . . . . . . . . . . . . . . . . . . . . . 28

description . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
MFnMesh  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

MFnMesh function set. . . . . . . . . . . . . . . . . . . . . . . 160
MFnPlugin  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

deregisterContextCommand(). . . . . . . . . . . . . . 50
registerContextCommand() . . . . . . . . . . . . . . . . 50
registration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

MGlobal
getFunctionSetList()  . . . . . . . . . . . . . . . . . . . . . . 28
select() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
selectByName()  . . . . . . . . . . . . . . . . . . . . . . . 28, 29
sourceFile() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
startErrorLogging  . . . . . . . . . . . . . . . . . . . . . . . . 14

MIt  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
MItSelectionList . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

description  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
MItSurfaceCV . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

mixtureShader node  . . . . . . . . . . . . . . . . . . . . . . . . 322
MltMeshEdge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

iterator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158
MltMeshFaceVertex. . . . . . . . . . . . . . . . . . . . . . . . . 156

iterator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159
MltMeshPolygon . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

iterator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156
MltMeshVertex. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156
API guide 

332



Index
iterator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159
MManipData. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
MObject . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Motif windows

creating
in helixMotifCmd example plug-in  . . . . . 288

motion paths
and motionTraceCmd plug-in . . . . . . . . . . . . . 295

motionPathCmd plug-in . . . . . . . . . . . . . . . . . . . . . 295
motionTraceCmd plug-in . . . . . . . . . . . . . . . . . . . . 295

mountain dependency graph 
rendering node . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226
move CVs, with moveCurveCVsCmd  . . . . . . . . . 295
moveCurveCvsCmd plug-in  . . . . . . . . . . . . . . . . . 295
moveNumericTool plug-in . . . . . . . . . . . . . . . . . . . 296
moveTool plug-in. . . . . . . . . . . . . . . . . . . . . . . . . . . 296
moveToolManip.cpp . . . . . . . . . . . . . . . . . . . . . . . . 133

MPx  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
MPxCommand . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

MPxContext  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
MPxContextCommand . . . . . . . . . . . . . . . . . . . . . . . 49

MPxDeformerNode
description  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

MPxEmitterNode
description  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

MPxFieldNode
description  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

MPxGeometryData  . . . . . . . . . . . . . . . . . . . . . . . . . 137
MPxGeometryIterator . . . . . . . . . . . . . . . . . . . . . . . 136
MPxHwShaderNode

description  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

MPxIkSolverNode
description  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

MPxLocatorNode
description  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

MPxManipContainer . . . . . . . . . . . . . . . . . . . . . . . . 123
MPxNode

description, API class  . . . . . . . . . . . . . . . . . . . . . 96
MPxObjectSet

description  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

MPxSpringNode
description  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

MPxSurfaceShape  . . . . . . . . . . . . . . . . . . . . . . 135, 136

matchComponent . . . . . . . . . . . . . . . . . . . . 142
MPxSurfaceShapeUI . . . . . . . . . . . . . . . . . . . . . . . . 136
MPxToolCommand . . . . . . . . . . . . . . . . . . . . . . . . . . 51

doFinalize()  . . . . . . . . . . . . . . . . . . . . . . . . . . 56
MPxTransform

description  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
MS

kSuccess  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
MSelectionList  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

description  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
MSimple.h . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
MStatus class  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

and error logging. . . . . . . . . . . . . . . . . . . . . . . . . 23
API error logging. . . . . . . . . . . . . . . . . . . . . . . . . 22
error method  . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

MSyntax. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42, 43
multiCurveNode plug-in  . . . . . . . . . . . . . . . . . . . . 297
multilisterLight dependency graph 
rendering node . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226
multiple shape nodes  . . . . . . . . . . . . . . . . . . . . . . . . 67
multiplyDivide dependency graph 
rendering node . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227

N
names

in dag nodes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
reusing  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

picking by
with pickCmd plug-in  . . . . . . . . . . . . . . . . 300

naming conventions  . . . . . . . . . . . . . . . . . . . . . . . . . 20
networks

shading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
and texture coordinates . . . . . . . . . . . . . . . 100

newSyntax method  . . . . . . . . . . . . . . . . . . . . . . . . . . 43

nodeInfoCmd plug-in . . . . . . . . . . . . . . . . . . . . . . . 297

nodeMessageCmd plug-in . . . . . . . . . . . . . . . . . . . 298

NodeMonitor plug-in  . . . . . . . . . . . . . . . . . . . . . . . 298
nodes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

DAG
access through MObject handles  . . . . . . . . 18
walking with scanDagCmd plug-in . . . . . 305
walking with scanDagSyntax plug-in . . . 306
API guide

333



Index
DAG, definition . . . . . . . . . . . . . . . . . . . . . . . . . . 63

dependency
and latticeNoise plug-in . . . . . . . . . . . . . . . 291
circleNode plug-in  . . . . . . . . . . . . . . . . . . . 276

header files for plug-ins . . . . . . . . . . . . . . . . 78
jitterNode plug-in . . . . . . . . . . . . . . . . . . . . 290
navigating with findTexturesCmd 
plug-in. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 285
navigating with 
findTexturesPerPolygonCmd plug-in . . . 285
querying with nodeInfoCmd plug-in. . . . 297

dependency graph
access through MObject handles  . . . . . . . . 18

for dependency graph, API  . . . . . . . . . . . . . . . . 84
render

and implicit connections  . . . . . . . . . . . . . . 112
shading

and dependency graph. . . . . . . . . . . . . . . . . 99
and networks . . . . . . . . . . . . . . . . . . . . . . . . . 99
and placement nodes  . . . . . . . . . . . . . . . . . 100
and plug-ins . . . . . . . . . . . . . . . . . . . . . . . . . 101
plug-ins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
pre-defined attributes . . . . . . . . . . . . . . . . . . 99
registration and classification . . . . . . . . . . 112
special shading nodes. . . . . . . . . . . . . . . . . 116

noiseShader node
SolidNoise. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 322

nonAmbientLightShapeNode 
dependency graph rendering node . . . . . . . . . . . . 227
nonExtendedLightShapeNode 
dependency graph rendering node . . . . . . . . . . . . 227
normalCamera rendering attribute . . . . . . . . . . . . 231
numShadingSamples rendering attribute  . . . . . . 231
NURBS geometry

overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221

O
objectId rendering attribute . . . . . . . . . . . . . . . . . . 232
objects and function sets

C++ objects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
objectType rendering attribute  . . . . . . . . . . . . . . . 232

offsetNode plug-in . . . . . . . . . . . . . . . . . . . . . . . . . . 298
one-to-one assocations

API manips . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
onTrianglesNode plug-in . . . . . . . . . . . . . . . . . . . . 300
open curve. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222

OpenMaya
API library description . . . . . . . . . . . . . . . . . . . . 11

OpenMayaAnim
API library description . . . . . . . . . . . . . . . . . . . . 11

OpenMayaErrorLog  . . . . . . . . . . . . . . . . . . . . . . . . . 23

OpenMayaFX
API library description . . . . . . . . . . . . . . . . . . . . 11

OpenMayaRender
API library description . . . . . . . . . . . . . . . . . . . . 11

OpenMayaUI
API library description . . . . . . . . . . . . . . . . . . . . 11

opticalFX dependency graph rendering node . . . 227
outColor output attribute . . . . . . . . . . . . . . . . . . . . 229
outGlowColor output attribute . . . . . . . . . . . . . . . 229
output attribute

displacement  . . . . . . . . . . . . . . . . . . . . . . . . . . . 229
outColor  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229
outGlowColor  . . . . . . . . . . . . . . . . . . . . . . . . . . 229
outTransparency . . . . . . . . . . . . . . . . . . . . . . . . 229

outTransparency output attribute . . . . . . . . . . . . . 229
ownerEmitter plug-in . . . . . . . . . . . . . . . . . . . . . . . 298

P
parenting

DAG, description. . . . . . . . . . . . . . . . . . . . . . . . . 63
information

in dag nodes. . . . . . . . . . . . . . . . . . . . . . . . . . 63
parseArgs  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
particle utility

particleAgeMapper . . . . . . . . . . . . . . . . . . . . . . 227
particleColorMapper. . . . . . . . . . . . . . . . . . . . . 227
particleIncandMapper  . . . . . . . . . . . . . . . . . . . 227
particleTranspMapper  . . . . . . . . . . . . . . . . . . . 227

particleAge rendering attribute . . . . . . . . . . . . . . . 232
particleAgeMapper dependency graph 
rendering node . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227
particleCloud dependency graph 
rendering node . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227
particleColor rendering attribute  . . . . . . . . . . . . . 232
particleColorMapper dependency graph 
rendering node . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227
particleId rendering attribute. . . . . . . . . . . . . . . . . 232
particleIncandescence rendering attribute. . . . . . 232
API guide 

334



Index
particleIncandMapper dependency graph 
rendering node . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227
particleLifespan rendering attribute . . . . . . . . . . . 232
particles

emit, from single direction
with simpleEmitter plug-in . . . . . . . . . . . . 307

emitter, with ownerEmitter plug-in . . . . . . . . 298
particleTransparency rendering attribute  . . . . . . 232
particleTranspMapper dependency graph 
rendering node . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227
particleWeight rendering attribute . . . . . . . . . . . . 232
partition dependency graph rendering node  . . . 227
PATH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211

path
default error log . . . . . . . . . . . . . . . . . . . . . . . . . . 23
of dag instance . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

paths
motion

and motionTraceCmd plug-in. . . . . . . . . . 295
motion, assigning with 
motionPathCmd plug-in  . . . . . . . . . . . . . . . . . 295

pattern matching
with pickCmd plug-in  . . . . . . . . . . . . . . . . . . . 300

periodic curve . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222
perror method

to print errors . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
phong dependency graph rendering node  . . . . . 227
phongE dependency graph rendering node  . . . . 227
phongShader node. . . . . . . . . . . . . . . . . . . . . . . . . . 323
pickCmd plug-in  . . . . . . . . . . . . . . . . . . . . . . . . . . . 300
pixelCenter rendering attribute . . . . . . . . . . . . . . . 232
pixels

RGB values, with iffPixelCmd plug-in . . . . . . 289
place2dTexture dependency graph 
rendering node . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227
place3dTexture dependency graph 
rendering node . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227
plug-in

loading, command line . . . . . . . . . . . . . . . . . . . . 12
loading, Plug-in Manager. . . . . . . . . . . . . . . . . . 12

plug-in manager
loading and unloading plug-ins  . . . . . . . . . . . . 12

plug-ins
adding arguments . . . . . . . . . . . . . . . . . . . . . . . . 21

animCubeNode . . . . . . . . . . . . . . . . . . . . . . . . . 271
apiMeshShape  . . . . . . . . . . . . . . . . . . . . . . . . . . 271
arcLenNode  . . . . . . . . . . . . . . . . . . . . . . . . . . . . 270
blastCmd. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 272
blindComplexDataCmd . . . . . . . . . . . . . . . . . . 272

blindDoubleDataCmd  . . . . . . . . . . . . . . . . . . . 273

blindShortDataCmd  . . . . . . . . . . . . . . . . . . . . . 273
building

in Windows environments  . . . . . . . . . . . . 215
buildRotationNode . . . . . . . . . . . . . . . . . . . . . . 274

circleNode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 276
closestPointOnCurve  . . . . . . . . . . . . . . . . . . . . 276
closestPointOnMesh . . . . . . . . . . . . . . . . . . . . . 277
clusterWeightFunction . . . . . . . . . . . . . . . . . . . 277

command  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

ConditionTest. . . . . . . . . . . . . . . . . . . . . . . . . . . 278
ConvertEdgesToContainedFacesCmd . . . . . . 279

convertMapCmd . . . . . . . . . . . . . . . . . . . . . . . . 279
ConvertVerticesToContainedEdgesCmd. . . . 279
ConvertVerticesToContainedFacesCmd . . . . 280
creating build file

in Windows environment  . . . . . . . . . . . . . 216
cvColorNode  . . . . . . . . . . . 280, 281, 282, 284, 303
cvExpandCmd . . . . . . . . . . . . . . . . . . . . . . . . . . 282

cvPosCmd. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 282
dependency graph

dependency graph plug-ins. . . . . . . . . . . . . 31
device  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
evenTest  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 283
example

location in UNIX environment . . . . . . . . . 211
location in Windows environment . . . . . . 215

examples, descriptions . . . . . . . . . . . . . . . . . . . 259
exportSkinClusterDataCmd. . . . . . . . . . . . . . . 285
findTexturesCmd  . . . . . . . . . . . . . . . . . . . . . . . 285

findTexturesPerPolygonCmd  . . . . . . . . . . . . . 285
footPrintManip  . . . . . . . . . . . . . . . . . . . . . . . . . 286

footPrintNode  . . . . . . . . . . . . . . . . . . . . . . . . . . 286
fullLoftNode. . . . . . . . . . . . . . . . . . . . . . . . . . . . 286
getAttrAffectsCmd  . . . . . . . . . . . . . . . . . . . . . . 287
header file, simple . . . . . . . . . . . . . . . . . . . . . . . . 14
helix2Cmd  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 287

helixCmd  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 287

helixMotifCmd. . . . . . . . . . . . . . . . . . . . . . . . . . 288
helixTool . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 288
helloCmd  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 288

helloWorldCmd . . . . . . . . . . . . . . . . . . . . . . . . . 288
API guide

335



Index
idleTest  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 288
iffInfoCmd  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 289

iffPixelCmd. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 289
iffPpmCmd . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 289

initializePlugin()  . . . . . . . . . . . . . . . . . . . . . . . . . 32
interactive tools . . . . . . . . . . . . . . . . . . . . . . . . . . 31
jitterNode  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 290
jlcVcrDevice  . . . . . . . . . . . . . . . . . . . . . . . . . . . . 291
latticeNoise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 291
lepTranslator  . . . . . . . . . . . . . . . . . . . . . . . . . . . 292
listLightLinksCmd. . . . . . . . . . . . . . . . . . . . . . . 292
listPolyHolesCmd . . . . . . . . . . . . . . . . . . . . . . . 293
loading. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

with loadPlugin . . . . . . . . . . . . . . . . . . . . . . . 12
marqueeTool  . . . . . . . . . . . . . . . . . . . . . . . . . . . 294
motionPathCmd  . . . . . . . . . . . . . . . . . . . . . . . . 295

motionTraceCmd. . . . . . . . . . . . . . . . . . . . . . . . 295
moveCurveCvsCmd . . . . . . . . . . . . . . . . . . . . . 295
moveNumericTool  . . . . . . . . . . . . . . . . . . . . . . 296
moveTool  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 296
multiCurveNode . . . . . . . . . . . . . . . . . . . . . . . . 297
nodeInfoCmd . . . . . . . . . . . . . . . . . . . . . . . . . . . 297

nodeMessageCmd . . . . . . . . . . . . . . . . . . . . . . . 298

NodeMonitor . . . . . . . . . . . . . . . . . . . . . . . . . . . 298
offsetNode  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 298
onTrianglesNode . . . . . . . . . . . . . . . . . . . . . . . . 300
ownerEmitter . . . . . . . . . . . . . . . . . . . . . . . . . . . 298
pickCmd . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 300
pointOnMeshInfo  . . . . . . . . . . . . . . . . . . . . . . . 300

polyPrimitiveCmd. . . . . . . . . . . . . . . . . . . . . . . 301
polyTrgNode  . . . . . . . . . . . . . . . . . . . . . . . . . . . 301
quadricShape . . . . . . . . . . . . . . . . . . . . . . . . . . . 302
renderAccessNode  . . . . . . . . . . . . . . . . . . . . . . 303

renderViewRenderCmd . . . . . . . . . . . . . . . . . . 304

renderViewRenderRegionCmd . . . . . . . . . . . . 304
sampleCmd. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 304
sampleParticles  . . . . . . . . . . . . . . . . . . . . . . . . . 305
scanDagCmd  . . . . . . . . . . . . . . . . . . . . . . . . . . . 305

scanDagSyntax . . . . . . . . . . . . . . . . . . . . . . . . . . 306
shading nodes

anatomy of . . . . . . . . . . . . . . . . . . . . . . . . . . 101
attributes for. . . . . . . . . . . . . . . . . . . . . . . . . 102
creating . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

initializing  . . . . . . . . . . . . . . . . . . . . . . . . . . 101

uninitializing . . . . . . . . . . . . . . . . . . . . . . . . 101
ShadingConnection . . . . . . . . . . . . . . . . . . . . . . 306

ShapeMonitor. . . . . . . . . . . . . . . . . . . . . . . . . . . 306

shellNode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 307
shiftNode  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 307
simpleEmitter. . . . . . . . . . . . . . . . . . . . . . . . . . . 307
simpleLoftNode . . . . . . . . . . . . . . . . . . . . . . . . . 307
simpleSolver . . . . . . . . . . . . . . . . . . . . . . . . . . . . 308
simpleSpring  . . . . . . . . . . . . . . . . . . . . . . . . . . . 308

sineNode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 308
spiralAnimCurveCmd  . . . . . . . . . . . . . . . . . . . 309

splitUVCmd . . . . . . . . . . . . . . . . . . . . . . . . . . . . 309

surfaceCreateCmd . . . . . . . . . . . . . . . . . . . . . . . 310
surfaceTwistCmd  . . . . . . . . . . . . . . . . . . . . . . . 310

sweptEmitter  . . . . . . . . . . . . . . . . . . . . . . . . . . . 310
swissArmyManip  . . . . . . . . . . . . . . . . . . . . . . . 310

torusField . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 310
transCircleNode. . . . . . . . . . . . . . . . . . . . . . . . . 311
translateCmd  . . . . . . . . . . . . . . . . . . . . . . . . . . . 311
unloading

with unloadPlugin  . . . . . . . . . . . . . . . . . . . . 12

viewCaptureCmd  . . . . . . . . . . . . . . . . . . . . . . . 312

whatisCmd . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 313

writing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
yTwist . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 314
zoomCameraCmd . . . . . . . . . . . . . . . . . . . . . . . 314

plugToManip
callback method, API  . . . . . . . . . . . . . . . . . . . . 129

plusMinusAverage dependency graph 
rendering node . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227
pointCamera rendering attribute  . . . . . . . . . . . . . 233
pointLight dependency graph 
rendering node . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227
pointMatrixMult dependency graph 
rendering node . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227
pointObj rendering attribute  . . . . . . . . . . . . . . . . . 233
PointOnCurveManip. . . . . . . . . . . . . . . . . . . . . . . . 121
pointOnMeshInfo plug-in. . . . . . . . . . . . . . . . . . . . 300
PointOnSurfaceManip. . . . . . . . . . . . . . . . . . . . . . . 121
pointWorld rendering attribute . . . . . . . . . . . . . . . 233
polygon

API classes  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156
components  . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
shape node . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

polygonal mesh
shape, create with apiMeshShape . . . . . . . . . . 146

polygons
API guide 

336



Index
cylinders, create, with
quadricShape plug-in . . . . . . . . . . . . . . . . . . . . 302
primitives, create with polyPrimitiveCmd  . . 301

spheres, create, with quadricShape plug-in  . 302

polyModifierCmd
example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164
initialization . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168
preprocessing . . . . . . . . . . . . . . . . . . . . . . . . . . . 171

processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174
polyPrimitiveCmd plug-in . . . . . . . . . . . . . . . . . . . 301

polyShape node  . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
accessing data. . . . . . . . . . . . . . . . . . . . . . . . . . . 154
attributes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152
creating data . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154
data flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

interfacing with . . . . . . . . . . . . . . . . . . . . . . . . . 154
modifying data. . . . . . . . . . . . . . . . . . . . . . . . . . 154

polyTrgNode plug-in  . . . . . . . . . . . . . . . . . . . . . . . 301

pop(). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
position

information
in dag nodes . . . . . . . . . . . . . . . . . . . . . . . . . . 63

obtaining
with cvPosCmd plug-in . . . . . . . . . . . . . . . 282

postprocess
glow

shaderGlow  . . . . . . . . . . . . . . . . . . . . . . . . . 228

postProcessList dependency graph 
rendering node . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227
PPM

and iffPpmCmd plug-in . . . . . . . . . . . . . . . . . . 289

processMeshNode() . . . . . . . . . . . . . . . . . . . . . . . . . 178
processModifierNode() . . . . . . . . . . . . . . . . . . . . . . 179
processTweaks() . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179
processUpstreamNode() . . . . . . . . . . . . . . . . . . . . . 178
projection dependency graph rendering node  . . 227
property sheets, for tools

in API. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
Proxies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
push() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

Q
quadricShape  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

quadricShape plug-in  . . . . . . . . . . . . . . . . . . . . . . . 302

R
ramp dependency graph rendering node  . . . . . . 227
rayDepth rendering attribute. . . . . . . . . . . . . . . . . 233
rayDirection rendering attribute . . . . . . . . . . . . . . 233
rayOrigin rendering attribute  . . . . . . . . . . . . . . . . 233
readAndWrite

stand-alone application  . . . . . . . . . . . . . . . . . . 315

redoIt() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
API method  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

reflect dependency graph rendering node. . . . . . 227
refPointCamera rendering attribute . . . . . . . . . . . 233
refPointObject rendering attribute  . . . . . . . . . . . . 233
refPointWorld rendering attribute  . . . . . . . . . . . . 234
refresh

shapes, API . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
registration

for manipulators, API . . . . . . . . . . . . . . . . . . . . 125
MFnPlugin  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
shading nodes  . . . . . . . . . . . . . . . . . . . . . . . . . . 112
shapes  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

render global
renderQuality. . . . . . . . . . . . . . . . . . . . . . . . . . . 228
resolution  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 228

renderable sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
renderAccessNode plug-in. . . . . . . . . . . . . . . . . . . 303
renderCone dependency graph 
rendering node . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227
renderGlobals dependency graph 
rendering node . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227
renderGlobalsList dependency graph 
rendering node . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227
rendering attribute

cameraFarClipPlane  . . . . . . . . . . . . . . . . . . . . . 235
cameraNearClipPlane . . . . . . . . . . . . . . . . . . . . 235
farPointWorld  . . . . . . . . . . . . . . . . . . . . . . . . . . 230

filterSize  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 230
hFilmAperture . . . . . . . . . . . . . . . . . . . . . . . . . . 235
hFilmOffset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235
isPerspCamera . . . . . . . . . . . . . . . . . . . . . . . . . . 235
lensSqueezeRatio . . . . . . . . . . . . . . . . . . . . . . . . 235
lightDataArray . . . . . . . . . . . . . . . . . . . . . . . . . . 231
API guide

337



Index
matrixEyeToNormPersp. . . . . . . . . . . . . . . . . . 236
matrixEyeToWorld  . . . . . . . . . . . . . . . . . . . . . . 236
matrixNormPerspToEye. . . . . . . . . . . . . . . . . . 236
matrixObjectToWorld . . . . . . . . . . . . . . . . . . . . 231

matrixWorldToEye  . . . . . . . . . . . . . . . . . . . . . . 236
matrixWorldToObject . . . . . . . . . . . . . . . . . . . . 231
mediumRefractiveIndex . . . . . . . . . . . . . . . . . . 231
normalCamera . . . . . . . . . . . . . . . . . . . . . . . . . . 231

numShadingSamples  . . . . . . . . . . . . . . . . . . . . 231
objectId  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 232

objectType. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 232
particleAge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 232

particleColor. . . . . . . . . . . . . . . . . . . . . . . . . . . . 232
particleId . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 232

particleIncandescence . . . . . . . . . . . . . . . . . . . . 232
particleLifespan . . . . . . . . . . . . . . . . . . . . . . . . . 232

particleTransparency  . . . . . . . . . . . . . . . . . . . . 232

particleWeight . . . . . . . . . . . . . . . . . . . . . . . . . . 232
pixelCenter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 232
pointCamera. . . . . . . . . . . . . . . . . . . . . . . . . . . . 233
pointObj  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233
pointWorld . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233

rayDepth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233

rayDirection . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233
rayOrigin. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233
refPointCamera  . . . . . . . . . . . . . . . . . . . . . . . . . 233
refPointObject. . . . . . . . . . . . . . . . . . . . . . . . . . . 233
refPointWorld  . . . . . . . . . . . . . . . . . . . . . . . . . . 234

tangentUCamera . . . . . . . . . . . . . . . . . . . . . . . . 234
tangentVCamera  . . . . . . . . . . . . . . . . . . . . . . . . 234
triangleNormalCamera. . . . . . . . . . . . . . . . . . . 234
uvCoord  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 234

vertexCameraOne . . . . . . . . . . . . . . . . . . . . . . . 234
vertexCameraThree . . . . . . . . . . . . . . . . . . . . . . 235
vertexCameraTwo . . . . . . . . . . . . . . . . . . . . . . . 234

vertexUvOne  . . . . . . . . . . . . . . . . . . . . . . . . . . . 235
vertexUvThree . . . . . . . . . . . . . . . . . . . . . . . . . . 235

vertexUvTwo . . . . . . . . . . . . . . . . . . . . . . . . . . . 235
vFilmAperture . . . . . . . . . . . . . . . . . . . . . . . . . . 236

vFilmOffset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 236
xHighRenderRegion . . . . . . . . . . . . . . . . . . . . . 236
xLowRenderRegion. . . . . . . . . . . . . . . . . . . . . . 236
xPixelAngle. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 236
yHighRenderRegion . . . . . . . . . . . . . . . . . . . . . 236

yLowRenderRegion. . . . . . . . . . . . . . . . . . . . . . 236
rendering node (dependency graph)

ambientLight  . . . . . . . . . . . . . . . . . . . . . . . . . . . 224

blendColors  . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224
blinn. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224
brownian. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225
bulge  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225
bump2d . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225
bump3d . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225
camera . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225
cameraView . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225

checker  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225
clamp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225

cloth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225

cloud  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225

condition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225

contrast . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225
crater . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225
defaultLightList . . . . . . . . . . . . . . . . . . . . . . . . . 225
defaultRenderUtilityList  . . . . . . . . . . . . . . . . . 225
defaultShaderList  . . . . . . . . . . . . . . . . . . . . . . . 225
defaultTextureList . . . . . . . . . . . . . . . . . . . . . . . 225
directionalLight . . . . . . . . . . . . . . . . . . . . . . . . . 225
displacementShader  . . . . . . . . . . . . . . . . . . . . . 225
distanceBetween  . . . . . . . . . . . . . . . . . . . . . . . . 225

envBall. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225
envChrome . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225
envCube  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225
envFog. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225
environmentFog  . . . . . . . . . . . . . . . . . . . . . . . . 226

envSky . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226
envSphere . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226
file  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226
fractal. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226
gammaCorrect . . . . . . . . . . . . . . . . . . . . . . . . . . 226
geometryShape  . . . . . . . . . . . . . . . . . . . . . . . . . 226
granite . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226
grid  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226

hsvToRgb  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226
imagePlane . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226
implicitCone . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226
lambert  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226
layeredShader  . . . . . . . . . . . . . . . . . . . . . . . . . . 226
leather . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226
light . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226
lightFog . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226
lightInfo. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226
lightList . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226
luminance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226
marble . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226
API guide 

338



Index
materialInfo  . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226

mountain. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226
multilisterLight  . . . . . . . . . . . . . . . . . . . . . . . . . 226
multiplyDivide. . . . . . . . . . . . . . . . . . . . . . . . . . 227
nonAmbientLightShapeNode . . . . . . . . . . . . . 227
nonExtendedLightShapeNode  . . . . . . . . . . . . 227
opticalFX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227

particleAgeMapper . . . . . . . . . . . . . . . . . . . . . . 227
particleCloud . . . . . . . . . . . . . . . . . . . . . . . . . . . 227
particleColorMapper. . . . . . . . . . . . . . . . . . . . . 227
particleIncandMapper  . . . . . . . . . . . . . . . . . . . 227
particleTranspMapper  . . . . . . . . . . . . . . . . . . . 227
partition. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227
phong. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227
phongE  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227

place2dTexture. . . . . . . . . . . . . . . . . . . . . . . . . . 227
place3dTexture. . . . . . . . . . . . . . . . . . . . . . . . . . 227
plusMinusAverage  . . . . . . . . . . . . . . . . . . . . . . 227
pointLight . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227
pointMatrixMult  . . . . . . . . . . . . . . . . . . . . . . . . 227
postProcessList. . . . . . . . . . . . . . . . . . . . . . . . . . 227
projection  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227

ramp. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227
reflect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227
renderCone . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227
renderGlobals. . . . . . . . . . . . . . . . . . . . . . . . . . . 227
renderGlobalsList  . . . . . . . . . . . . . . . . . . . . . . . 227
renderQuality . . . . . . . . . . . . . . . . . . . . . . . . . . . 228
renderSphere  . . . . . . . . . . . . . . . . . . . . . . . . . . . 228
resolution  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 228

reverse . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 228
rgbToHsv  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 228

rock 3D texture. . . . . . . . . . . . . . . . . . . . . . . . . . 228
samplerInfo. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 228
setRange  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 228
shaderGlow  . . . . . . . . . . . . . . . . . . . . . . . . . . . . 228

shadingMap . . . . . . . . . . . . . . . . . . . . . . . . . . . . 228
simpleVolumeShader . . . . . . . . . . . . . . . . . . . . 228
snow  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 228

solidFractal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 228
spotLight . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 228
stencil. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 228
stucco . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 228
surfaceLuminance . . . . . . . . . . . . . . . . . . . . . . . 228
surfaceShader . . . . . . . . . . . . . . . . . . . . . . . . . . . 228
texture2d . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 228

texture3d . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 228

textureEnv  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 228

useBackground  . . . . . . . . . . . . . . . . . . . . . . . . . 228

vectorProduct. . . . . . . . . . . . . . . . . . . . . . . . . . . 228
volumeShader  . . . . . . . . . . . . . . . . . . . . . . . . . . 228
water . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229
wood . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229

renderQuality dependency graph 
rendering node . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 228
renderSphere dependency graph 
rendering node . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 228
renderVewRenderRegionCmd plug-in  . . . . . . . . 304

renderViewRenderCmd plug-in . . . . . . . . . . . . . . 304
resolution dependency graph 
rendering node . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 228
reusing names

in dag nodes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
reverse dependency graph rendering node . . . . . 228
RGB values

for pixels, with iffPixelCmd plug-in . . . . . . . . 289
rgbToHsv dependency graph 
rendering node . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 228
rock dependency graph rendering node  . . . . . . . 228
RotateManip . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

rotation
information

in dag nodes. . . . . . . . . . . . . . . . . . . . . . . . . . 63

S
sampleCmd plug-in. . . . . . . . . . . . . . . . . . . . . . . . . 304
sampleParticles plug-in. . . . . . . . . . . . . . . . . . . . . . 305
samplerInfo dependency graph 
rendering node . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 228
scale

information
in dag nodes. . . . . . . . . . . . . . . . . . . . . . . . . . 63

ScaleManip . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
scanDagCmd plug-in  . . . . . . . . . . . . . . . . . . . . . . . 305

scanDagSyntax . . . . . . . . . . . . . . . . . . . . . . . . . . . 42, 43
scanDagSyntax plug-in . . . . . . . . . . . . . . . . . . . . . . 306

scanDagSyntaxCmd example  . . . . . . . . . . . . . . . . . 69
screen capture

example plug-in
viewCaptureCmd . . . . . . . . . . . . . . . . . . . . 312
API guide

339



Index
selection
shapes, API . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
with marqueeTool plug-in . . . . . . . . . . . . . . . . 294

selection lists
API, manipulating . . . . . . . . . . . . . . . . . . . . . . . . 25

cvExpandCmd plug-in . . . . . . . . . . . . . . . . . . . 282

selection-action
with moveTool plug-in . . . . . . . . . . . . . . . . . . . 296

setObject()
method  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

setRange dependency graph rendering node  . . . 228
sets

function, C++ objects  . . . . . . . . . . . . . . . . . . . . . 19
renderable

and shading groups  . . . . . . . . . . . . . . . . . . 100
shader

displacement
displacementShader . . . . . . . . . . . . . . . . . . 225

surface
blinn  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224

lambert  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226
layeredShader  . . . . . . . . . . . . . . . . . . . . . . . 226
phong  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227

phongE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227
shadingMap . . . . . . . . . . . . . . . . . . . . . . . . . 228

surfaceShader. . . . . . . . . . . . . . . . . . . . . . . . 228
useBackground  . . . . . . . . . . . . . . . . . . . . . . 228

volume
envFog  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225

lightFog. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226
particleCloud . . . . . . . . . . . . . . . . . . . . . . . . 227

volumeShader . . . . . . . . . . . . . . . . . . . . . . . 228
shaderGlow dependency graph 
rendering node . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 228
shaders

access through MObject handles . . . . . . . . . . . . 18
anisotropicShader node, API . . . . . . . . . . . . . . 317
BackFillShader node, API. . . . . . . . . . . . . . . . . 317
brickShader node, API  . . . . . . . . . . . . . . . . . . . 318
cellShader node, API . . . . . . . . . . . . . . . . . . . . . 318
checkerShader node, API . . . . . . . . . . . . . . . . . 318
compositingShader node, API . . . . . . . . . . . . . 318
contrastShader node, API. . . . . . . . . . . . . . . . . 319
cvColorShader, API. . . . . . . . . . . . . . . . . . . . . . 323
depthShader node, API. . . . . . . . . . . . . . . . . . . 319
displacementShader node, API . . . . . . . . . . . . 319
flameShader node, API . . . . . . . . . . . . . . . . . . . 319

gammaShader node, API . . . . . . . . . . . . . . . . . 320
geomShader node, API . . . . . . . . . . . . . . . . . . . 320
hwAnisotropicShader_NV20, API  . . . . . . . . . 320
hwPhongShader, API . . . . . . . . . . . . . . . . . . . . 320
interpShader node, API  . . . . . . . . . . . . . . . . . . 321
lambertShader node, API . . . . . . . . . . . . . . . . . 321
lavaShader node, API . . . . . . . . . . . . . . . . . . . . 321
lightShader node, API. . . . . . . . . . . . . . . . . . . . 321
mixtureShader node, API . . . . . . . . . . . . . . . . . 322
noiseShader node, API . . . . . . . . . . . . . . . . . . . 322
phongShader node, API . . . . . . . . . . . . . . . . . . 323
shadowMatteShader node, API  . . . . . . . . . . . 322
slopeShader, API . . . . . . . . . . . . . . . . . . . . . . . . 322
solidCheckerShader node, API . . . . . . . . . . . . 323
source code examples, table. . . . . . . . . . . . . . . 315
volumeShader node, API . . . . . . . . . . . . . . . . . 323

shading
networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

and texture coordinates . . . . . . . . . . . . . . . 100
nodes

pre-defined attributes . . . . . . . . . . . . . . . . . . 99
special . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

ShadingConnection plug-in . . . . . . . . . . . . . . . . . . 306

shadingMap dependency graph 
rendering node . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 228
shadowMatteShader node . . . . . . . . . . . . . . . . . . . 322
shape node

description  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
underworld. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

shape node, polygonal  . . . . . . . . . . . . . . . . . . . . . . 151
shape nodes  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
ShapeMonitor plug-in . . . . . . . . . . . . . . . . . . . . . . . 306
shapes

and components, in API . . . . . . . . . . . . . . . . . . 140
and drawing, in API . . . . . . . . . . . . . . . . . . . . . 138
and MDrawData, API . . . . . . . . . . . . . . . . . . . . 138
and MDrawInfo, API  . . . . . . . . . . . . . . . . . . . . 138
and MDrawRequest, API . . . . . . . . . . . . . . . . . 138
and MDrawRequestQueue, API . . . . . . . . . . . 138
and refresh, in API  . . . . . . . . . . . . . . . . . . . . . . 138
deregistration, API  . . . . . . . . . . . . . . . . . . . . . . 137
MPxGeometryData, API. . . . . . . . . . . . . . . . . . 137
MPxGeometryIterator, API  . . . . . . . . . . . . . . . 136
MPxSurfaceShape, API . . . . . . . . . . . . . . . 135, 136
MPxSurfaceShapeUI, API  . . . . . . . . . . . . . . . . 136
registration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
API guide 

340



Index
selectable DAG objects, API . . . . . . . . . . . . . . . 135
selection

API. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
shape node, writing. . . . . . . . . . . . . . . . . . . . . . 135
user-defined, API. . . . . . . . . . . . . . . . . . . . . . . . 135

shellNode plug-in  . . . . . . . . . . . . . . . . . . . . . . . . . . 307

shiftNode plug-in. . . . . . . . . . . . . . . . . . . . . . . . . . . 307
simple attributes

API . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
simpleEmitter plug-in . . . . . . . . . . . . . . . . . . . . . . . 307

simpleLoftNode plug-in . . . . . . . . . . . . . . . . . . . . . 307

simpleSolver plug-in . . . . . . . . . . . . . . . . . . . . . . . . 308

simpleSpring plug-in. . . . . . . . . . . . . . . . . . . . . . . . 308
simpleVolumeShader dependency graph 
rendering node . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 228
sineNode plug-in . . . . . . . . . . . . . . . . . . . . . . . . . . . 308

sky environment texture . . . . . . . . . . . . . . . . . . . . . 226
slopeShader node . . . . . . . . . . . . . . . . . . . . . . . . . . . 322
snow dependency graph rendering node  . . . . . . 228
solidCheckerShader node . . . . . . . . . . . . . . . . . . . . 323
solidFractal dependency graph 
rendering node . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 228
solving IK

with simpleSolver plug-in . . . . . . . . . . . . . . . . 308
span  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221, 222
sphere environment texture . . . . . . . . . . . . . . . . . . 226
spheres

create, with quadricShape plug-in  . . . . . . . . . 302
spings

behavior, with simpleSpring plug-in . . . . . . . 308
spiralAnimCurveCmd plug-in  . . . . . . . . . . . . . . . 309

spline geometry
overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221

splitUV
command  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199

factory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192
node . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193

splitUVCmd example  . . . . . . . . . . . . . . . . . . . . . . . 186
splitUVCmd plug-in  . . . . . . . . . . . . . . . . . . . . . . . . 309
spotLight dependency graph rendering node . . . 228
springs

definition, API . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
stand-alone application

asciiToBinary . . . . . . . . . . . . . . . . . . . . . . . . . . . 315
helloWorld . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 315
readAndWrite  . . . . . . . . . . . . . . . . . . . . . . . . . . 315
surfaceCreate . . . . . . . . . . . . . . . . . . . . . . . . . . . 315
surfaceTwist . . . . . . . . . . . . . . . . . . . . . . . . . . . . 315

standard output
messages

whatisCmd plug-in . . . . . . . . . . . . . . . . . . . 313
StateManip  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

statusCode method of returning errors  . . . . . . . . . 23
stencil dependency graph rendering node  . . . . . 228
stucco dependency graph rendering node. . . . . . 228
surface shader

blinn. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224
lambert  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226
layeredShader  . . . . . . . . . . . . . . . . . . . . . . . . . . 226
phong  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227

phongE  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227

shadingMap . . . . . . . . . . . . . . . . . . . . . . . . . . . . 228
surfaceShader . . . . . . . . . . . . . . . . . . . . . . . . . . . 228
useBackground  . . . . . . . . . . . . . . . . . . . . . . . . . 228

surfaceCreate
stand-alone application  . . . . . . . . . . . . . . . . . . 315

surfaceCreateCmd plug-in . . . . . . . . . . . . . . . . . . . 310

surfaceLuminance dependency graph 
rendering node . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 228
surfaces

creating with fullLoftNode plug-in  . . . . . . . . 286

surfaceShader dependency graph 
rendering node . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 228
surfaceTwist

stand-alone application  . . . . . . . . . . . . . . . . . . 315

surfaceTwist stand-alone application . . . . . . . . . . 315

surfaceTwistCmd plug-in . . . . . . . . . . . . . . . . . . . . 310
sweptEmitter plug-in  . . . . . . . . . . . . . . . . . . . . . . . 310

swissArmyManip plug-in. . . . . . . . . . . . . . . . . . . . 310
syntax object

creating . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
definition. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
flags . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
registered  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
API guide

341



Index
T
tangentUCamera rendering attribute . . . . . . . . . . 234
tangentVCamera rendering attribute . . . . . . . . . . 234
texture

2D
bulge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225
checker  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225
cloth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225
file  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226
fractal  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226
grid  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226

mountain  . . . . . . . . . . . . . . . . . . . . . . . . . . . 226

ramp  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227

water . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229
3D

brownian  . . . . . . . . . . . . . . . . . . . . . . . . . . . 225

cloud . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225
crater . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225
granite . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226
leather . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226
marble . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226
rock  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 228
snow  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 228

solidFractal . . . . . . . . . . . . . . . . . . . . . . . . . . 228
stucco  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 228

wood . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229

environment
envChrome. . . . . . . . . . . . . . . . . . . . . . . . . . 225
envCube . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225
envSky. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226
sphere . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226

environment, envBall  . . . . . . . . . . . . . . . . . . . . 225
texture2d dependency graph rendering node . . . 228
texture3d dependency graph rendering node . . . 228
textureEnv dependency graph 
rendering node . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 228
textures

access through MObject handles . . . . . . . . . . . . 18
The MDagPath . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
three dimensional textures

brownian . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225
cloud  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225

crater  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225
granite . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226
leather  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226
marble . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226
rock  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 228

snow  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 228

solidFractal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 228
stucco. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 228
wood . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229

ToggleManip  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

tool property sheets
in API. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

tools
registering with InitializePlugin(). . . . . . . . . . . 33

torusField plug-in  . . . . . . . . . . . . . . . . . . . . . . . . . . 310

transCircleNode plug-in . . . . . . . . . . . . . . . . . . . . . 311

transform node
description  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

transform nodes . . . . . . . . . . . . . . . . . . . . . . . . . . 63, 67
transforms

and multiple shapes  . . . . . . . . . . . . . . . . . . . . . . 67
and shapes  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
and texture coordinates

in shading networks . . . . . . . . . . . . . . . . . . 100
camera

with zoomCameraCmd plug-in . . . . . . . . 314
multiple shape nodes  . . . . . . . . . . . . . . . . . . . . . 67
plug-in example

transCircleNode plug-in  . . . . . . . . . . . . . . 311

plug-in examples
translateCmd plug-in . . . . . . . . . . . . . . . . . 311

translateCmd plug-in  . . . . . . . . . . . . . . . . . . . . . . . 311

translation
and anim curves

with spiralAnimCurveCmd plug-in  . . . . 309

with moveCurveCVsCmd plug-in . . . . . . . . . 295
with moveNumericTool plug-in . . . . . . . . . . . 296

triangleNormalCamera rendering attribute  . . . . 234
tweaks  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152, 163
twist

surfaces
using surfaceTwistCmd plug-in . . . . . . . . 310

two dimensional textures
bulge  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225
checker  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225
cloth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225

file  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226
fractal. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226
grid  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226

mountain. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226
ramp  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227
API guide 

342



Index
water  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229
type() method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

typelessness  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

U
underworld . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

undo
turn off, with helixCmd plug-in  . . . . . . . . . . . 287

undo mechanism  . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

undoIt() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
undoModifyPoly() . . . . . . . . . . . . . . . . . . . . . . . . . . 180
uninitialize

shading node plug-in  . . . . . . . . . . . . . . . . . . . . 101
uninitializePlugIn

shading node plug-in  . . . . . . . . . . . . . . . . . . . . 101
uninitializePlugin()  . . . . . . . . . . . . . . . . . . . . . . . . . . 33
unique names . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

in dag nodes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
unloading plug-ins  . . . . . . . . . . . . . . . . . . . . . . . . . . 12

unloadPlugin . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
updateCurve()  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
useBackground dependency graph 
rendering node . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 228
utility

color
blendColors  . . . . . . . . . . . . . . . . . . . . . . . . . 224
clamp. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225
contrast . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225
gammaCorrect . . . . . . . . . . . . . . . . . . . . . . . 226
hsvToRgb . . . . . . . . . . . . . . . . . . . . . . . . . . . 226
luminance . . . . . . . . . . . . . . . . . . . . . . . . . . . 226
rgbToHsv . . . . . . . . . . . . . . . . . . . . . . . . . . . 228
surfaceLuminance . . . . . . . . . . . . . . . . . . . . 228

general
condition. . . . . . . . . . . . . . . . . . . . . . . . . . . . 225
lightInfo  . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226

multiplyDivide  . . . . . . . . . . . . . . . . . . . . . . 227
place2dTexture  . . . . . . . . . . . . . . . . . . . . . . 227
place3dTexture  . . . . . . . . . . . . . . . . . . . . . . 227
plusMinusAverage . . . . . . . . . . . . . . . . . . . 227
projection  . . . . . . . . . . . . . . . . . . . . . . . . . . . 227
reverse. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 228
samplerInfo  . . . . . . . . . . . . . . . . . . . . . . . . . 228
setRange . . . . . . . . . . . . . . . . . . . . . . . . . . . . 228
stencil  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 228
vectorProduct  . . . . . . . . . . . . . . . . . . . . . . . 228

general, bump2d . . . . . . . . . . . . . . . . . . . . . . . . 225
general, bump3d . . . . . . . . . . . . . . . . . . . . . . . . 225
particle

particleIncandMapper  . . . . . . . . . . . . . . . . 227
particleTranspMapper . . . . . . . . . . . . . . . . 227

particle, particleAgeMapper  . . . . . . . . . . . . . . 227
particle, particleColorMapper . . . . . . . . . . . . . 227
surfaceShader . . . . . . . . . . . . . . . . . . . . . . . . . . . 228
volumeShader  . . . . . . . . . . . . . . . . . . . . . . . . . . 228

Utility nodes
in API. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

uvCoord rendering attribute . . . . . . . . . . . . . . . . . 234
UVs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

V
variable

environment
MAYA_LOCATION . . . . . . . . . . . . . . . . . . 211

MAYA_PLUG_IN_PATH . . . . . . . . . . 12, 211

MAYA_SCRIPT_PATH . . . . . . . . . . . . . . . 211

PATH  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211

XBMLANGPATH . . . . . . . . . . . . . . . . . . . . 211

vectorProduct dependency graph 
rendering node . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 228
vertexCameraOne rendering attribute . . . . . . . . . 234
vertexCameraThree rendering attribute. . . . . . . . 235
vertexCameraTwo rendering attribute. . . . . . . . . 234
vertexColorShader node

shaders
vertexColorShader, API . . . . . . . . . . . . . . . 323

vertexUvOne rendering attribute  . . . . . . . . . . . . . 235
vertexUvThree rendering attribute . . . . . . . . . . . . 235
vertexUvTwo rendering attribute . . . . . . . . . . . . . 235
vertices. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

iterator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159
vFilmAperture rendering attribute . . . . . . . . . . . . 236
vFilmOffset rendering attribute. . . . . . . . . . . . . . . 236
viewCaptureCmd plug-in  . . . . . . . . . . . . . . . . . . . 312

volume shader
envFog. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225
lightFog . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226
particleCloud . . . . . . . . . . . . . . . . . . . . . . . . . . . 227
volumeShader  . . . . . . . . . . . . . . . . . . . . . . . . . . 228
API guide

343



Index
volumeShader dependency graph rendering node  . 
228

volumeShader node. . . . . . . . . . . . . . . . . . . . . . . . . 323

W
walking dag structure . . . . . . . . . . . . . . . . . . . . . . . . 69
water dependency graph rendering node . . . . . . 229
whatisCmd plug-in . . . . . . . . . . . . . . . . . . . . . . . . . 313
windows, Motif

create with helixMotifCmd 
example plug-in . . . . . . . . . . . . . . . . . . . . . . . . . 288

wood dependency graph rendering node . . . . . . 229
wrappers

C++ objects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
writing a plug-in  . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

X
XBMLANGPATH  . . . . . . . . . . . . . . . . . . . . . . . . . . 211

xHighRenderRegion rendering attribute . . . . . . . 236
xLowRenderRegion rendering attribute  . . . . . . . 236
xPixelAngle rendering attribute  . . . . . . . . . . . . . . 236

Y
yHighRenderRegion rendering attribute . . . . . . . 236
yLowRenderRegion rendering attribute  . . . . . . . 236
yTwist plug-in  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 314

Z
zoomCameraCmd plug-in  . . . . . . . . . . . . . . . . . . . 314
API guide 

344


	Table of Contents
	1 Plug-in API introduction
	Developer
	Plug-in API
	Overview of plug-in API
	The Maya API on IRIX, Windows, Linux, and Mac�OS�X
	Loading a Plug-in
	Unloading a plug-in
	Writing a simple plug-in
	Important plug-in features
	MSimple.h
	MStatus
	DeclareSimpleCommand
	MArgList

	Interacting with Maya
	Object ownership in the API

	MObject
	Wrappers
	Objects and Function Sets
	Function sets
	Proxies
	Typelessness

	Naming Conventions
	Adding arguments
	Error checking
	MStatus class
	Error logging



	2 Selecting with the API
	Developer
	Plug-in API
	Selecting with the API
	Overview of selecting with the API
	MGlobal::setActiveSelectionList()
	MSelectionList
	MItSelectionList
	setObject() method
	MFn::Type enumeration
	MGlobal::selectByName()




	3 Command plug-ins
	Developer
	Plug-in API
	Add commands to Maya
	Overview of adding commands to Maya
	Plug-ins
	Command plug-ins

	Registering commands
	MFnPlugin
	initializePlugin()
	uninitializePlugin()
	Creator methods
	MPxCommand
	doIt() and redoIt() methods

	Returning results to MEL
	Syntax objects
	Flags
	Creating the Syntax Object
	Parsing the Arguments
	Registration

	Contexts
	MPxContext
	MPxContextCommand
	Creating a context command
	Adding a context command to the Maya shelf

	Tool property sheets
	MPxToolCommand




	4 DAG Hierarchy
	Developer
	Plug-in API
	DAG Hierarchy
	Overview of the DAG Hierarchy
	Nodes
	Instancing

	Transforms and shapes
	DAG paths
	DAG paths and worldspace operations in the API
	Adding or removing nodes from the representation
	Inclusive and exclusive matrices
	Why add the shape node to a DAG path
	Unique Names

	Generalized instancing
	Transforms with multiple shapes
	The Underworld

	DAG walking example




	5 Dependency graph plug-ins
	Developer
	Plug-in API
	Dependency graph plug-ins
	Overview of dependency graph plug-ins
	Parent class descriptions
	The basics
	Dependency Graph (DG) nodes
	Nodes
	Attributes and plugs
	Complex Attributes
	Compound attribute
	Child attributes
	Dynamic Attributes

	Data blocks
	Data handles
	Data creators
	Compute methods
	A more complex example
	MPxNode and its derived classes




	6 Writing a Shading Node
	Developer
	Plug-in API
	Write a shading node
	Overview of shading node plug-ins
	Writing a shading node plug-in
	Anatomy of a shading node plug-in
	InterpNode example code walkthrough
	Attribute Editor view for InterpNode Example
	Connection Editor view of an InterpNode connection
	Hypergraph view of an InterpNode connection

	Shading nodes classification
	Implicit connections and the Create Render Node window

	Shading node icons for Hypershade
	Special shading nodes
	SuperSampling within shading nodes
	Evaluating shading nodes outside of the rendering context




	7 Manipulators
	Developer
	Plug-in API
	Write a manipulator
	Overview of creating manipulators
	What is a manipulator?
	Base manipulators
	Writing a manipulator
	Manipulator containers
	Communication between manipulators and nodes
	One-to-one associations
	Conversion functions

	Connect manipulators to the Show Manipulator Tool
	Writing a manipulator to work with the Show Manipulator Tool
	Adding the manipulator to a Context
	Example Manipulators





	8 Shapes
	Developer
	Plug-in API
	Define a shape
	Shapes in Maya
	User-defined shapes

	Shape classes
	Writing a shape
	Where to start
	Registering and deregistering shapes

	Drawing and refresh
	Drawing in shaded mode

	Selection
	Components
	Mapping attributes to components
	Component matching
	Component iteration
	Translate, scale, and rotate tools for components

	Tweaks and internal attributes
	Geometry data
	File IO
	Deformers
	Example Shapes




	9 Polygon API
	Developer
	Polygon API
	Overview of Polygon API
	How polygons are handled internally
	Polygon components
	The polygonal shape node

	The five basic polygonal API classes
	MItMeshPolygon
	MItMeshEdge
	MItMeshVertex and MItMeshFaceVertex
	MFnMesh

	Construction History and Tweaks
	Construction History
	Tweaks

	polyModifierCmd example
	polyModifierCmd initialization
	polyModifierCmd preprocessing
	polyModifierCmd processing
	Implementing a polyModifierCmd command

	splitUVCmd example
	Initial implementation
	Integrating into the Maya architecture
	polyModifierCmd enhanced splitUV

	Poly exporter plug-ins
	Classes
	polyX3DExporter
	polyRawExporter




	10 Setting up your plug- in build environment
	Developer
	Plug-in API
	Setting up a build area
	IRIX and Linux environments
	Maya plug-ins
	Maya API applications

	Linux compiler requirement
	Using a debugger to debug your plug-ins
	Windows environment
	Maya plug-ins
	Maya API Applications
	Creating your own plug-in build file
	Using the Maya Plug-in Wizard for Developer Studio

	Mac OSX environment
	Maya Plug-ins
	Maya API applications





	11 Appendices
	Developer
	Plug-in API
	Appendices
	Appendix A: NURBS Geometry
	Appendix B: Dependency graph rendering nodes
	Appendix C: Rendering attributes
	Output Attributes requested by Shading Groups
	Rendering Attributes available per sample
	Rendering Attributes available per frame

	Appendix D: Frequently asked questions
	General Questions
	Documentation Questions
	Dependency Graph Questions
	GUI Questions
	Animation Questions
	Windows Questions




	A Example Plug-ins
	Developer
	Plug-in API
	Example plug-ins
	Overview of example plug-ins
	MEL command plug-ins
	Dependency Graph Node Plug-ins
	User-defined dependency graph nodes—creating dynamics nodes
	Rendering plug-ins
	Miscellaneous plug-ins
	Shader source code examples
	System plug-ins

	Example stand-alone applications
	Example plug-in descriptions
	scanDagSyntax

	Example stand-alone application descriptions
	Shader source code examples




	Index

