
MEL and
Expressions

Version 6

ALIAS � 210 KING STREET EAST � TORONTO, CANADA M5A 1J7

© 2003 Alias Systems, a division of Silicon Graphics Limited. All rights reserved.

All images © Copyright Alias Systems, a division of Silicon Graphics Limited.

Alias is a registered trademark and Conductors, Trax, IPR, Maya Shockwave 3D Exporter, and MEL are trademarks of Alias Systems,

a division of Silicon Graphics Limited. Maya is a registered trademark of Silicon Graphics, Inc., used exclusively by Alias Systems, a

division of Silicon Graphics Limited. IRIX, Open GL, and Silicon Graphics are registered trademarks and SGI is a trademark of Silicon

Graphics, Inc. mental ray and mental images are registered trademarks of mental images GmbH & Co. KG. Lingo is a trademark and

Macromedia, Director, Shockwave and Macromedia Flash are registered trademarks of Macromedia, Inc. Wacom is a trademark of

Wacom Co., Ltd. NVidia is a registered trademark and Gforce is a trademark of NVidia Corporation. Linux is a registered trademark of

Linus Torvalds. Intel and Pentium are registered trademarks of Intel Corporation. Red Hat is a registered trademark of Red Hat, Inc.

ActiveX, Microsoft, and Windows are trademarks of Microsoft Corporation in the United States and/or other countries. Mac, Macintosh

and QuickTime are trademarks of Apple Computer, Inc., registered in the United States and other countries. Adobe, Acrobat, and

Photoshop are trademarks of Adobe Systems Incorporated. UNIX is a registered trademark, licensed exclusively through X/Open

Company, Ltd. AutoCAD is a registered trademark of Autodesk, Inc. Adobe Illustrator and Acrobat are registered trademarks of

Adobe Systems Incorporated. OpenFlight is a registered trademark of MultiGen Inc. Java is a registered trademark of Sun

Microsystems, Inc. All other trademarks, trade names, services marks, or product names mentioned herein are property of their

respective owners.

This document contains proprietary and confidential information of Alias Systems, a division of Silicon Graphics Limited, and is

protected by Federal copyright law and international intellectual property agreements and treaties. The contents of this document

may not be disclosed to third parties, translated, copied, or duplicated in any form, in whole or in part, or by any means, electronic,

mechanical, photocopying, recording or otherwise, without the express prior written consent of Alias Systems, a division of Silicon

Graphics Limited. The information contained in this document is subject to change without notice. Neither Alias Systems, a division of

Silicon Graphics Limited, nor its affiliates, nor their respective directors, officers, employees, or agents are responsible for punitive or

multiple damages or lost profits or any other direct, indirect, special, indirect, incidental, or consequential damages including any

damages resulting from loss of business arising out of or resulting from the use of this material, or for technical or editorial omissions

made herein.

Table of contents
Table of contents . 3

1 Background . 13

MEL and Ex-

pressions

About MEL . 13
MEL . 13

The MEL and expressions book. 13

MEL for programmers . 14

2 Running MEL . 19

Using MEL in Maya . 19
Run MEL commands . 19

See or record the MEL commands associated with actions 21

Make a shelf button for a script . 21

Get help on a MEL command . 22

MEL windows and editors . 22
Script editor. 22

3 Values and variables . 25

Values and variables . 25
Integer and floating point numbers . 25

Strings . 25

Explicit and implicit typing. 26

Variables . 27

Assigning values to variables and attributes . 28

Printing values . 29

Picking a random number . 29

4 Arrays, vectors, and matrices . 31

Arrays, vectors, and matrices 31
Arrays. 31

Get and change the size of an array . 32

Vectors . 33
MEL and Expressions

3

Table of Contents
Matrices . 34

5 Syntax . 37

Syntax . 37
Command syntax . 37

Delimiters and white space . 39

Expressions, operators and statements . 40

Operator precedence . 41

Blocks. 42

Comments . 43

Differences between expression and MEL syntax 43

6 Controlling the flow of a script . 45

Controlling the flow of a script 45
Testing and comparing values . 45

Boolean values . 46

if...else if...else. 46

?: operator . 47

switch...case . 47

while. 49

do...while . 50

for . 50

for-in. 51

break . 52

continue . 52

Testing the existence of commands, objects, and attributes 52

The difference between = and == . 53

Common problems. 54

7 Attributes. 57

Working with attributes . 57
Attributes . 57

Attribute names . 57

Data types of attributes . 58
MEL and Expressions

4

Table of Contents
Getting and setting attributes . 59

Getting and setting multi-value attributes . 61

8 Procedures . 65

Defining and using procedures 65
Procedures. 65

Defining procedures . 65

Calling procedures . 67

Global and local variables . 68

Testing if a function is available in MEL . 69

Checking where a procedure comes from . 69

9 Animation expressions. 71

Create and edit animation expressions 71
Animation expressions. 71

Creating animation expressions . 72

Each attribute can only have one driver . 74

time and frame keywords . 74

Find an animation expression you created previously 75

Edit text in an animation expression. 78

Edit an animation expression with a text editor 79

Delete an animation expression . 83

MEL windows and editors . 84
Expression editor . 84

10 I/O and interaction . 87

I/O and interaction . 87
User interaction. 87

Reading and writing files . 89

Testing file existence, permissions, and other properties 91

Manipulating files . 91

Working with directories . 93

Executing system commands . 93

Reading from and writing to system command pipes 94
MEL and Expressions

5

Table of Contents
Calling MEL from AppleScript and vice-versa 95

11 Debugging, optimizing, and troubleshooting 97

MEL debugging features . 97
Signaling with error, warning, and trace . 97

Handling errors with catch and catchQuiet . 98

Showing error line numbers . 98

Showing the calling stack when an error occurs 99

Optimizing script and expression speed 100
Optimize scripts . 100

Optimize expressions . 101

Reduce redundant expression execution . 104

Troubleshooting . 105
Accessing global variables. 105

Initialization is different from assignment . 105

Common expression errors . 106

Executing MEL commands in an expression can have unintended side

effects. 106

Error message format. 107

Common error messages. 108

12 Creating Interfaces. 111

Creating user interfaces . 111
ELF commands . 111

Windows . 111

Controls . 112

Layouts . 112

Groups . 118

Menus . 118

Collections . 119

Parents and children. 119

Naming . 121

UI command templates . 122

Deleting UI elements . 124
MEL and Expressions

6

Table of Contents
Attaching commands to UI elements . 125

A simple window . 126

Modal dialogs . 128

Using system events and scriptJobs . 129

13 Particle expressions . 133

Particle expressions . 133
Particle expressions . 133

Creation expression execution . 134

Runtime expression execution . 135

Set the dynamics start frame. 136

Set attributes for initial state usage . 136

Write creation expressions . 137

Write runtime expressions. 138

Work with particle attributes . 143

Add dynamic attributes . 143

Understand per particle and per object attributes 144

Understand initial state attributes . 145

Assign to a custom attribute . 150

Assign to a particle array attribute of different length 154

Use creation expression values in a runtime expression 154

Work with position, velocity, and acceleration 155

Work with color. 158

Work with emitted particles . 159

Work with collisions . 159

Work with lifespan . 164

Work with specific particles . 164

Assign to vectors and vector arrays 168

Assign to a vector variable. 168

Use the vector component operator with variables 169

Assign to a vector array attribute component 169

List of particle attributes. 171

14 Script nodes . 185
MEL and Expressions

7

Table of Contents
Script nodes . 185
Script nodes . 185

Create or edit a script node . 185

Prevent script nodes from executing when you open a file 187

15 Advanced . 189

Advanced programming topics 189
Automatic type conversion . 189

Limits . 190

Local array collection . 192

Array arguments are passed by reference . 192

Changing the user script locations with MEL. 193

Advanced animation expressions topics 194
How often an expression executes . 194

Use custom attributes in expressions. 194

Display attribute and variable contents . 198

Reproduce randomness . 198

Remove an attribute from an expression . 202

Disconnect an attribute . 202

Rename an object . 206

Executing MEL commands in an expression 207

Understand path names. 207

Unexpected attribute values . 208

Data type conversions . 210

16 Style . 213

Good MEL style . 213
Style . 213

Using white space. 213

Adding comments . 214

Naming variables . 214

Procedures and scripts . 215

Bullet-proof scripting . 215
MEL and Expressions

8

Table of Contents
17 Useful functions. 217

Useful functions . 217
Limit functions. 217

abs . 217

ceil . 217

floor . 218

clamp . 218

min . 219

max . 219

sign. 220

trunc . 220

Exponential functions . 221

exp . 221

log . 221

log10 . 221

pow . 222

sqrt . 222

Trigonometric functions . 223

cos . 223

cosd . 225

sin. 225

sind. 230

tan . 230

tand . 231

acos . 231

acosd . 231

asin. 232

asind. 232

atan . 232

atand . 233

atan2 . 233

atan2d . 233

hypot . 234
MEL and Expressions

9

Table of Contents
Vector functions . 234

angle . 234

cross. 235

dot . 236

mag . 236

rot . 237

unit . 238

Conversion functions . 239

deg_to_rad. 239

rad_to_deg. 239

hsv_to_rgb . 240

rgb_to_hsv . 240

Array functions . 241

clear . 241

size . 241

sort . 242

Random number functions. 243

gauss . 243

noise. 244

dnoise . 246

rand . 246

sphrand . 247

seed . 249

Curve functions . 251

linstep . 252

smoothstep . 255

hermite. 256

General commands . 260

eval. 260

print . 262

system . 264

18 FAQ . 267

FAQ . 267
MEL and Expressions

10

Table of Contents
Tasks . 267

What is the command for getting the Set Editor? 267

Why are the extra attributes I added not in the Channel Box? 267

How can I change the order of extra attributes in the Channel Box?267

How can I export selected data to an already opened file?. 268

Scripting and syntax . 268

What is the operator for raising to a power? 268

How can I find out what variables have been declared? 268

How do I list all global variables? . 268

How can I change an integer to a string? . 268

Can I specify a dynamic matrix? . 269

How do I execute a statement created at runtime? 270

What is the difference between eval, backquotes, and ()? 270

How can I stop a MEL script that is running? 271

Modeling . 272

How can I count polygons? . 272

How can I get the name of a (selected) shape node? 272

Commands to pick curve on surface. 272

How do I get and set specific UV values on a polygon? 272

How can I create a closestPointOnSurface node? 273

How can I get an object’s pivot point in world space? 273

Animation, dynamics, and rendering 273

How do I get or set the position along the timeline using MEL? . . . 273

How to randomize keyframes? . 274

How do I export sets from a Maya file? . 274

How can I select a set of particles? . 274

How do I kill individual particles? . 275

How can I make a list of what objects are connected to what shading

groups? . 275

How can I render from within a script? . 275

How do I set the batch render directory in MEL?. 276

What is the command to strip shaders from an object? 276

19 Example scripts . 277
MEL and Expressions

11

Table of Contents
Example scripts . 277
Learning from Maya’s own script files . 277

Read animation values from a text file . 277

Particle Collision Boundary . 278

Point Explosion . 281

Testing Added Particle Attributes . 283

Testing Dynamics Events . 287

Dynamics Time Playback . 290

Finding Unshaded Objects . 293

Index . 297
MEL and Expressions

12

1 | Background

MEL and Expressions > MEL
1 Background

MEL and
Expressio
ns

About MEL

MEL

MEL is a scripting language at the heart of Maya. Maya’s user interface is
created using MEL, and MEL provides an easy way to extend the
functionality of Maya. Everything you can do using Maya’s graphical
interface can be automated and extended using MEL.Familiarity with
MEL can deepen your understanding of and expertise with Maya.

You can take advantage of MEL without learning programming. For
example, it’s easy in Maya to perform some actions with the graphical
interface, then drag the commands that resulted from the Script editor to
the shelf to create a button. However, learning MEL will open up new
worlds to you, allowing you produce effects and save time in ways
impossible using the graphical interface.

Here are some examples of things you can do with MEL:

• Bypass Maya’s user interface, quickly create shortcuts, and access
advanced features.

• Customize Maya’s interface and change defaults on a scene-by-scene
basis.

• Create procedures and scripts for custom modeling, animation,
dynamics, and rendering tasks.

The MEL and expressions book

This book explains how to create scripts in the MEL language.

Maya has literally thousands of commands to perform various functions,
some very specific. We have highlighted the functions most useful in
general programming in the “Useful functions” section of this book.
However, to find out about any and all MEL commands, refer to the MEL
command reference documentation in Maya’s online help.
MEL and Expressions

13

1 | Background
MEL and Expressions > MEL for programmers
MEL for programmers

As a language, MEL is descended from UNIX shell scripting. This means
MEL is strongly based on executing commands to accomplish things (like
executing commands in a UNIX shell), rather than manipulating data
structures, calling functions, or using object oriented methods as in other
languages.

Most commands you use to control Maya act like UNIX command-line
utilities: little stand-alone programs with many options that modify their
behavior.

Keeping the shell scripting origins of MEL in mind will help you
understand some of its quirkier aspects.

Quick overview

Assignment and values

The assignment operator in MEL is the equal sign (=). MEL also has
shortcut assignment operators like C and Java (+=, -=, /=, *=, ++, --, etc.).

MEL is a strongly typed language, however it allows implicit declaration
and typing in most instances. When you declare a variable you also
declare its type and can optionally assign an initial value.

Variable names start with a $, followed by a letter, then any combination
of letters, numbers, and underscores. Unlike PERL, all types of variables
(scalar and compound) start with $.

MEL has the usual integer (int), floating point (float) and string data
types. It also has a vector data type which is a triple of floats (which can
be useful when working with 3D data), arrays (a variable-sized list, in
which all elements are of the same type), and matrices (matrix, a fixed-
size two dimensional table of floats). Items in an array must all be of the
same type.

int $a = 5;

float $b = 3.456;

vector $v = <<1.2, 3.4, 6.5>>;

float $ar[] = {1.2, 3.4, 4.5}; // An array of floats

matrix $mtx[3][2]; // A 3x2 matrix of floats

You cannot make an array of arrays in MEL.

MEL automatically converts types whenever possible.

Control and looping statements and operators

MEL’s control statements are very similar to C and Java.

if ($a == $b) {

...
MEL and Expressions

14

1 | Background

MEL and Expressions > MEL for programmers
} else if ($a > $b) {

...

} else {

...

}

$a = ($b > 10) ? $c : ($c - 10);

switch ($color) {

 case “blue”:

 ...

 break;

 case $c1:

 ...

 break;

 default:

 ...

 break;

}

while ($a < size($arry)) {

...

}

do {

 ...

} while ($a > 0);

int $i;

for ($i = 10; $i > 0; $i--) {

print($i+"...\n");

}

print("Blastoff!!!");

string $arry[3] = {“red”,”green”,”blue”};

for ($k in $arry) {

...

}

Defining and calling procedures

You create user-defined procedures using the following syntax:

global proc <return type> <name>(<arg list>) {

...

return <exp>;

}

global proc float squareAndAdd(float $x, float $y) {

return $x * $x + $y;

}

MEL and Expressions

15

1 | Background
MEL and Expressions > MEL for programmers
square(5.0, 2.0);

27

If you leave out the global keyword the procedure is only available in the
script file in which it is defined.

If the procedure does not return a value, leave out the return type
keyword and do not include a return statement.

global proc msg() {

print(“Hello world\n”);

}

Comments

MEL uses C++ style single-line comments preceded by // and freeform
comments surrounded by /* and */.

MELisms

There are some aspects of MEL programming that will trip up
experienced programmers as well as beginners.

Every statement in MEL must end with a semi-colon (;), even at the end of a
block.

if ($a > $b) {print(“Hello”);};

// Both semicolons are required!

Unlike some scripting languages/environments (but like the Logo
language), stating an expression that returns a value does not
automatically print the value in MEL. Instead it causes an error.

3 + 5;

// Error: 3 + 5; //

// Error: Syntax error //

print(3+5);

8

In MEL, you often use the same command to create things, edit existing
things, and query information about existing things. In each case, a flag
controls what (create, edit, or query) the command does.

// Create a sphere named “mySphere” with radius 5

sphere -radius 5 -name “mySphere”;

// Edit the radius of mySphere

sphere -edit -radius “mySphere”;

// Print the radius of mySphere

sphere -query -radius
MEL and Expressions

16

1 | Background

MEL and Expressions > MEL for programmers
MEL allows you to type commands in command syntax (similar to UNIX
shell commands) and function syntax. In command syntax you can leave
off quotation marks around single-word strings and separate arguments
with spaces instead of commas.

setAttr(“mySphere1.translateX”,10); // Function syntax

setAttr mySphere1.translateX 10; // Command syntax

Function syntax automatically returns a value. To get a return value using
command syntax, you must enclose the command in backquotes.

$a = getAttr(“mySphere.translateX”); // Function syntax

$b = ‘getAttr mySphere.translateY‘; // Command syntax
MEL and Expressions

17

1 | Background
MEL and Expressions > MEL for programmers
MEL and Expressions

18

2 | Running MEL

 > Run MEL commands
2 Running MEL

Using MEL in Maya

Run MEL commands

Run a single MEL command

Type a command in the command line at the bottom of the Maya main
window.

If the command line is not visible, you can turn it on by choosing Display
> UI Elements > Command Line.

Create and run a MEL script

Click the Script editor button in the bottom right of the main Maya
window, or choose Windows > General Editors > Script editor to open
the Script editor.

To... Do this

Execute a command and return
the keyboard focus to the view
windows so you can use
hotkeys.

Type the command press the Enter or
Return key.

Execute a command and leave
the keyboard focus in the
command line.

Type the command and press the
Enter key on the numeric keypad.

Scroll through the history of
commands.

Press up and down in the command
line.
MEL and Expressions

19

2 | Running MEL
 > Run MEL commands
The Script editor lets you type in longer, multi-line scripts and see their
output in the history pane.

Type your script in the bottom pane of the Script editor window. To
execute the script do any of the following:

To execute the script in the bottom pane:

• press the Enter key on the numeric keypad

or

• Choose Script > Execute.

or

• Select the text you want to execute and press Ctrl + Enter

The script and the result appear in the top pane.

Script files

You can run MEL scripts as separate files. They have the extension .mel by
default.

You can execute external script files in two ways:

• In the Script editor, choose File > Source Script.

When you source a MEL script, local procedures are not declared or
executed.
MEL and Expressions

20

2 | Running MEL

 > See or record the MEL commands associated with actions
If you change a script after sourcing it, the change is not automatically
picked up by Maya. You need to re-run the script with File > Source
Script.

• Place the script in one of Maya’s standard script directories. When
you type the name of the file, Maya will source the contents of the file,
and if a procedure with the same name exists in the file Maya will
execute it. This lets you create scripts that work like built-in
commands.

See or record the MEL commands associated
with actions

In the Script editor, turn on Script > Echo All Commands.

As you work in Maya, all the MEL commands Maya uses internally to
execute actions and change the user interface will be printed in the Script
editor.

To record a series of actions

1 Turn on Echo All Commands.

2 Perform the actions you want to record.

3 Select the commands in the Script editor and do one of the following:

• To make a shelf button that executes the recorded commands, in
the Script editor menus choose File > Save Selected to Shelf.

• To save the recorded commands to a file, in the Script editor
menus choose File > Save Selected.

Make a shelf button for a script

1 Select the script code in the Script editor.

2 Drag the selection with the middle mouse button up to the shelf.

or

In the Script editor menus choose File > Save Selected to Shelf.

Note MEL scripts are not mayaAscii files and mayaAscii files are not
MEL scripts. If you rename a .ma file to a .mel file and source it,
you may get errors. Alternatively, if you rename a .mel script to
be a .ma file and open it, you may get errors or even crash Maya.
Maya does special things while reading files to improve
performance and not all commands are compatible with this.
MEL and Expressions

21

2 | Running MEL
 > Get help on a MEL command
Get help on a MEL command

MEL windows and editors

Script editor

Menus

File

Open Script

Loads the contents of a text file into the Script editor.

Source Script

Executes the contents of a text file.

When you source a MEL script, local procedures are not declared or
executed.

If you change a script after sourcing it, the change is not automatically
picked up by Maya. You need to re-run the script with File > Source
Script.

Save Selected

Saves the selected text to a text file.

Save Selected to Shelf

Adds a button to the current shelf which executes the selected text.

Edit

Clear History

Clears the top pane of the Script editor.

To... Do this

Show a short synopsis of
command usage and flags.

In the command line or Script editor,
type help <command name>, for
example:

help move

Show the online help for a
command.

Go to the Help menu and select MEL
Command Reference.
MEL and Expressions

22

2 | Running MEL

 > Script editor
Clear Input

Clears the bottom pane of the Script editor.

Clear All

Clears both the top and bottom panes of the Script editor.

Script

Execute

Runs the text in the bottom pane of the Script editor. You can also
press Enter on the numeric keypad.

Echo All Commands

When this item is on, all MEL commands executed by Maya appear in
the top pane of the Script editor.

For example, if you choose Create > Polygon Primitives > Sphere, the
corresponding MEL command (polySphere) that Maya executes is
printed in the top pane.

Show Stack Trace

Opens another window which lists errors and their line numbers in
external script files. This is very useful for debugging scripts in
external files.

Suppress Command Results

When turned on, the Script editor does not show the result of
commands. Result messages start with // Result:.

Suppress Info Messages

When turned on, the Script editor does not show informational
messages. Informational messages are of many different types and do
not have a set prefix (except for //).

Suppress Warning Messages

When turned on, the Script editor does not show warning messages.
Warning messages start with // Warning:.

Suppress Error Messages

When turned on, the Script editor does not show error messages.
Error messages start with // Error:.

The Script editor menu items can also be controlled through the
scriptEditorInfo command (-sr/suppressResults
 -si/suppressInfo, -sw/suppressWarnings,
--se/suppressErrors).
MEL and Expressions

23

2 | Running MEL
 > Script editor
Panes

The top pane shows the history of commands and their results.

Type MEL commands and scripts in the bottom pane.

To execute the script in the bottom pane:

• press the Enter key on the numeric keypad

or

• Choose Script > Execute.

or

• Select the text you want to execute and press Ctrl + Enter

Note Suppressing Script editor messages does not suppress
messages from appearing in the Help Line.
MEL and Expressions

24

3 | Values and variables

 > Integer and floating point numbers
3 Values and variables

Values and variables

Integer and floating point numbers

Integers

Integers are numbers without a fractional part. For example:

5

-20

0

32000

Floating point numbers

Floating point numbers (or floats) have a fractional part. For example:

3.1415926

2.0

-6592.582

0.0

MEL and Maya maintain the distinction between integer and floats
because computers can work with integers many times faster with
integers than with floating point numbers. Whenever you are doing
something that does not require fractional precision (for example, simple
counting), use integers instead of floats.

Non-decimal numbers

You can type integers using hexadecimal (base 16) notation by adding 0x
to the beginning of the number:

0xA0 // equals 160

0xFFF // equals 4095

Strings

Strings are sequences of characters. The literal representation of a string is
surrounded by double quotes. For example:

“MEL is fun!”
MEL and Expressions

25

3 | Values and variables
 > Explicit and implicit typing
“abcdef012345”

“:<>()&^%ABC”

Within strings you can use codes to include some special characters:

Concatenating strings

You can stick strings together (concatenate them, in programmer parlance)
using the + operator:

“MEL” + “ is fun!”

// This is the same as “MEL is fun!”

Explicit and implicit typing

Explicit typing

Normally MEL figures out whether a number is an integer or a float based
on whether it has a decimal part. You can force a number to be an integer
or float by declaring its type explicitly:

(float) 7

// The number is floating point.

(int) 7.5

// The number is integer (MEL automatically truncates to 7)

You can also explicitly state that a value is a string, even if it doesn’t
exactly look like one:

(string) 500

// This is the same as “500”

(string) 56.56

// This is the same as “56.56”

Code Character

\” quotation mark

\n newline

\t tab

\r carriage return

\\ backslash
MEL and Expressions

26

3 | Values and variables

 > Variables
Implicit type conversion

Maya automatically converts numbers to strings or vice versa when you
use them together and it’s obvious what you meant.

Be careful: some cases are ambiguous, and what MEL chooses to do may
not be what you meant! For example:

print(“500” + 5);

Prints: 5005 (the string “500” with the string “5” added on the end), not
505 (the number 500 plus 5).

Variables

You use variables as symbolic names for values. Variables can hold
different values at different points in a script.

Variable names always start with a dollar sign ($). The name can contain
letters, numbers, and underscores (_). The first character of the name (after
the $) cannot be a number.

Variable names are case sensitive. MEL considers $X and $x to be different
variables.

Some examples of valid variable names:

$x

$floaty5000

$longDescriptiveName

$name_with_underscores

$_line

To keep your MEL script clear and understandable, use a variable name
that describes the variable’s function.

Variable names such as $x, $t, and $wtb are not as informative as
$carIndex, $timeLeft, and $wingTipBend. However, do not be too
verbose. For example, $indexForMyNameArray, is overly descriptive.

Declare variables before using them

Before you can use a variable you need to declare it. Declaring the variable
tells Maya you intend to use a variable with this name, and specifies the
type of values the variables can hold.

To declare a variable, use a explicit type keyword followed by the variable
name. For example:

float $param;
int $counter;
string $name;
vector $position;
MEL and Expressions

27

3 | Values and variables
 > Assigning values to variables and attributes
Having to declare variables before you use them prevents a set of
common problems where misspelled or misplaced variables create hard-
to-find bugs. The MEL interpreter will complain if you try to do the
following:

• The MEL interpreter comes across code that tries to access a variable
you haven’t declared.

• You try to declare the same variable twice with different types.

Assigning values to variables and attributes

Once you have declared a variable you can assign values to it using the =
operator. The variable on the left side of the = operator is assigned the
value of the expression on the right side of the operator. For example:

$x = $y * 10;

If you assign a value that does not match the type of the variable, the MEL
interpreter will try to convert the value into the variables type.

For example:

// Declare the variables...

float $foo;

float $bar;

int $baz;

// Now assign values...

$test = 5.4;

// value of $test is 5.4

$bar = $test + 2;

// value of $bar is 7.4

$baz = $bar;

// the value of $baz is 7

// MEL converted the value to an integer.

An assignment evaluates as the assigned value.

Combining declaration and assignment

For convenience you can assign a value to a variable when you create it.
For example:

float $param = 1.5;
int $counter = 10;
string $name = “Alice”;
vector $position = <<1.5, 2.5, 3.5>>;

If the type of a variable is obvious from the value you assign to it, you can
leave out the type keyword. For example:

$name = “Alice”;
$position = <<1.5, 2.5, 3.5>>;
MEL and Expressions

28

3 | Values and variables

 > Printing values
This is called an implicit declaration. However it’s good practice to use the
always use the type keyword to make your scripts more readable.

Chaining assignments

When you are assigning the same value to several variables, you can chain
the assignments together:

$x = $y = $z = 0;

Convenience assignment operators

The following type of expression occurs often when you are
programming:

$x = $x + 1;

This is so common that MEL provides several convenience operators to
accomplish this with less typing. For example:

$x++ // adds 1 to the value of $x

$x-- // subtracts 1 from the value of $x

$x += 5 // adds 5 to the value of $x

$x -= 3 // subtracts 3 from the value of $x

Printing values

Commands always print their result in the Script editor. However, unlike
some read-eval-print type environments you might be used to, typing an
expression in the command line or Script editor does not automatically
print out the expression’s value. For example, typing the following
expression in the Script editor...

500 + 5

...results in a syntax error. To print the result of an expression you must
use the print command:

print(500);

print(“Hello world!\n”);

print(“The time is now “ + $time);

Picking a random number

The rand command generates a random floating point number. If you give
one argument, it returns a number between 0 and the argument:

rand(1000);

// Result: 526.75028 //

If you give two arguments, it returns a random number between the first
and second arguments:
MEL and Expressions

29

3 | Values and variables
 > Picking a random number
rand(100,200);

// Result: 183.129179 //

See also the sphrand, gauss, and seed commands.
MEL and Expressions

30

4 | Arrays, vectors, and matrices

 > Arrays
4 Arrays, vectors, and
matrices

Arrays, vectors, and matrices

Arrays

An array is an ordered list of values. All values in an array must be of the
same type. You can make arrays of integers, floats, strings, or vectors.
Arrays grow as you add elements to them.

To declare an array variable, use:

• the keyword of the type which this array will hold,

• then the variable name,

• add square brackets ([]) to the end of the variable name.

int $ari[];

You can set the initial size of the array by putting a number inside the
square brackets:

float $arf[4];

string $temp[3];

Getting and setting the value of an array element

To assign a value to a certain element in an array variable, put the element
number (known as the index to the array) in square brackets after the
variable name in the assignment statement:

$arf[2] = 45.646;

$temp[50] = “Glonk!”;

To get the value of an array element, just use the variable name with the
index in square brackets:

print($arf[2]); // 45.646

$temp[51] = $temp[49];
MEL and Expressions

31

4 | Arrays, vectors, and matrices
 > Get and change the size of an array
Remember that the numbering of the elements in an array starts at 0. The
index of the first element is 0, the second element is 1, and so on. This
means that the maximum index of an array is always one less than the
number of elements in the array.

string $array[3] = {"first\n", "second\n", "third\n"};

print($array[0]); // Prints "first\n"

print($array[1]); // Prints "second\n"

print($array[2]); // Prints "third\n"

Literal representation

The literal representation of an array is a list of values separated by
commas (all of the same type, of course), surrounded by curly braces:

{1, 2, 3, 4}

{"blue", "red", "black"}

You can assign literal values to an array variable with or without explicit
declaration:

$rip = {1, 2, 3, 4};

string $hats = {"blue", "red", "black"};

string $shoes[3] = {"black", "brown", "blue suede"};

Arrays are only one dimensional

Arrays can only hold scalar values. You cannot create an array of arrays.
However, you can use the matrix datatype to create a two-dimensional
table of floating point values.

Get and change the size of an array

Use the size function to get the size of an array:

string $hats[3] = {"blue", "red", "black"};

print(size($hats)); // 3

The size of an array increases automatically as needed. Let’s say you have
an array with two elements. If you try to assign to a third element of the
array, the array size automatically increases to three elements. If you
query the value of an element beyond the array size, a value of 0 is
returned. For a string array, empty quotation marks would be returned.

int $scores[]; // Declared as a zero element array.

$scores[150] = 3; // Now a 151 element array.

$scores[200] = 5; // Now a 201 element array.

The second statement above gives the array 151 elements and assigns
element index 150 the value 3. The third statement expands the array to
201 elements and assigns element index 200 the value 5.
MEL and Expressions

32

4 | Arrays, vectors, and matrices

 > Vectors
When you assign a value in an array, Maya reserves memory for all
elements up to that number. If you are not careful, you can exceed the
capacity of your computer with a single array declaration. For example,
the following two statements would force you to quit Maya on most
computers:

int $bigBoy[];

$bigBoy[123456789] = 2; // DANGER!

Clear an array

Use the clear function to free the memory used by an array and leave it
with zero elements.

string $hats[] = {"blue", "red", "black"};

clear($hats);

print(size($hats)); // 0

Vectors

A vector is a triple of floating point numbers (usually representing X, Y,
and Z). It’s convenient to have a triple-float data type in MEL because so
many operations in 3D involve manipulating X,Y,Z values.

To declare a vector, use the vector keyword:

vector $victor;

Literal representation

The literal representation of a vector is three floats separated by commas,
surrounded by << and >>. For example:

vector $roger = <<3.0, 7.7, 9.1>>;
vector $more = <<4.5, 6.789, 9.12356>>;

Getting and setting vector values

You can read the individual numbers from a vector variable using the .x,
.y, and .z accessors. You must surround the variable and accessor with
parentheses:

vector $test = <<3.0, 7.7, 9.1>>;

print($test.x) // 3.0

print($test.y) // 7.7

print($test.z) // 9.1

You cannot use the accessors to set individual parts of a vector:

vector $test = <<3.0, 7.7, 9.1>>;

($test.y) = 5.5 // ERROR

However, you can use the following trick to set individual values:
MEL and Expressions

33

4 | Arrays, vectors, and matrices
 > Matrices
// Assign a vector to variable $test:

vector $test = <<3.0, 7.7, 9.1>>;

$test = <<$test.x, 5.5, $test.z>>

// $test is now <<3.0, 5.5, 9.1>>

Matrices

A matrix is a two-dimensional table of floating point values.

To declare a matrix, use the matrix keyword and the variable name,
followed by the number of rows and columns in the matrix:

matrix $a3[2][3];

This creates a matrix with 2 rows of 3 columns, and assigns it to variable
$a3. Each element of the matrix is initially filled with zeros.

Unlike arrays, you must specify the size of a matrix when you create it:

matrix $a2[][]; // ERROR: Size not specified

Literal representation

The literal representation of a matrix is a series of values separated by
commas representing rows, with rows separated by semicolons. The
values are surrounded by << and >>:

matrix $a3[3][4] = <<2.5, 4.5, 3.25, 8.05;

 1.12, 1.3, 9.5, 5.2;

 7.23, 6.006, 2.34, 4.67>>

Any difference between the size you specify and the literal matrix you
assign is filled with zeros.

Even when you assign a literal matrix to a variable, you must still specify
the size of the matrix:

matrix $a1[][] = <<1; 4>>; // ERROR: Size not specified

Getting and setting matrix values

Setting an element of a matrix is similar to setting an element in an array.
Remember that the first index specifies the row and the second index
specifies the column.

matrix $a3[4][2];

$a3[1][0] = 9;

Note Scientists often use the word vector to mean a magnitude and
direction. In Maya, a vector is simply a related group of three
floating point numbers.
MEL and Expressions

34

4 | Arrays, vectors, and matrices

 > Matrices
Unlike arrays, you cannot expand the size of a matrix. If you try to set a
value outside the range of the matrix MEL will signal an error:

$a3[0][1] = 7; // ERROR: Element doesn’t exist
MEL and Expressions

35

4 | Arrays, vectors, and matrices
 > Matrices
MEL and Expressions

36

5 | Syntax

 > Command syntax
5 Syntax

Syntax

Command syntax

MEL includes a wide variety of commands for all aspects of using Maya.
Some typical examples of using MEL commands include quickly creating
objects, precisely moving objects, and working more efficiently with
objects.

For example, you can use a MEL command to create a sphere named
bigBoy with a radius of exactly 27.5 units:

sphere -radius 27.5 -name “bigBoy”;

You can then enter this MEL command to rotate bigBoy 90 degrees around
the Z-axis:

rotate -relative 0 0 90 “bigBoy”;

As another example, if you are creating a joint with the joint tool and you
want to move the joint 5 units in an X-axis direction, you can execute the
following MEL command without having to interrupt the joint creation:

move -relative 5 0 0;

By convention, most commands operate on an object if you specify its
name, otherwise they operate on the current selection.

You can use MEL commands in two ways: imperative syntax and function
syntax.

Imperative syntax

The imperative command syntax looks like a command in a UNIX or DOS
shell, with optional flags and arguments after the command name:

sphere -name “martha” -radius 10;

The imperative style is a complete statement and should end with a
semicolon. If you want to use a command’s imperative syntax as part of
an expression, you need to backquote the command. See “Using return
values: function syntax and backquotes” below.
MEL and Expressions

37

5 | Syntax
 > Command syntax
Unquoted strings

When you use this imperative command syntax (as opposed to the
function syntax explained below), you can optionally leave off quotation
marks around single-word strings. So you could write the sphere
command like this:

sphere -name martha -radius 10;

You will often see this in scripts, especially for strings such as node and
attribute names which are always one word. However, as a beginner, you
may want to avoid using this feature because it makes strings less distinct
from keywords and commands.

Function syntax

Function syntax looks like a standard function call in a computer
language.

Flags

Flags modify how a command works. A flag comes after the command
name, is proceeded by a dash (-), and is followed by a parameter.

sphere -radius 5;

In this example, the radius flag’ parameter is 5.

Create, edit, and query modes

Many commands have different behavior based on a pair of special flags:
-edit and -query.

• If you don’t include an -edit or -query flag, a command operates in
create mode. In this mode, the command creates the named object/
node in the scene graph.

sphere -name “george”;

• If you include the -edit flag with a command, the command changes
one or more properties (determined by other flags) of the named
object.

sphere -edit -radius 10 “george”;

Imperative syntax Function syntax

attributeExists visibility mySphere; attributeExists(“visibility”,”mySphere”);

abs -50; abs(-50);
MEL and Expressions

38

5 | Syntax

 > Delimiters and white space
• If you include the -query flag with a command, the command returns
the value of a property (determined by another flag) of the named
object.

sphere -query -radius "george";

// Result: 10 //

The online help for each command lists which flags are available in create,
edit, and query modes.

Using return values: function syntax and backquotes

When you use the function syntax of a command, the command returns a
value. When you use the imperative syntax, the command simply prints
its return value to the Script editor, it does not provide a usable return
value. Using imperative syntax in an expression will cause a syntax error:

if (size($word)) print(“Not empty.\n”);

// Function syntax of size returns a value.

// This is OK.

if (size $word) print(“Not empty.\n”);

// Can’t use imperative

// This is a syntax error.

To use imperative command syntax in an expression you must surround
the command with backquotes:

if (‘size $word‘) print(“Not empty.\n”);

You will use backquotes often to use the return value of a command in
query mode inside an expression:

if (‘sphere -query -radius “mySphere”‘ == 5)

print(“This sphere has a radius of 5!”;

Delimiters and white space

Every MEL statement should end with a semicolon (;). In most cases this is
an absolute requirement.

print(“End with a semicolon.”);

print(“Semicolons separate”); print(“ different

statements.”);

Whitespace (spaces, tabs, and newlines) is ignored by MEL (except inside
strings, of course).

Remember that unlike some other languages, a newline does not separate
statements in MEL. So the following is an error:

print(“Hello”)

print(“There”)
MEL and Expressions

39

5 | Syntax
 > Expressions, operators and statements
You must add a semicolon to separate the statements:

print(“Hello”);

print(“There”)

Very important note

In MEL, unlike most languages, all statements inside a block (surrounded
by curly braces) must end in semicolons, even if it is the only statement in the
block.

if ($s > 10) {print(“Glonk!”)} // Syntax error.

if ($s > 10) {print(“Glunk!”);} // Notice the semicolon.

Expressions, operators and statements

Expressions

An expression is a series of values and operators that evaluate to a new
value:

3 + 5 // => 8

size(“Hello”) // => 5

size(“Hello”)*2 // => 10

(10 > 5) // => 1

(5 > 10) // => 0

When using an expression inside MEL command syntax you must
surround the expression with parentheses, and not use unquoted strings:

string $object = "cake";

setAttr $object.tx 2; // Wrong

setAttr ($object + .tx) 2; // Wrong

setAttr ($object + ".tx") 2; // Right

Maya also uses the word expression to refer specifically to bits of code you
can attach to an attribute to drive animation.

� See “Animation expressions” on page 71.

� See “Creating animation expressions” on page 72.

Operators

A binary operator requires two operands, one before the operator and one
after the operator:

operand1 operator operand2

For example:

3 + 4

$x = 5

$bool1 or $bool2
MEL and Expressions

40

5 | Syntax

 > Operator precedence
A unary operator requires a single operand, either before or after the
operator:

operator operand

or

operand operator

For example:

$x++ // Increments the value of $x by one.

In addition, MEL has one ternary (three operand) operator:

condition ? exp1 : exp2

Statements

A statement is a structure of keywords and expressions that control the
flow of the program:

if (condition)

exp1

else

exp2

while (condition)

exp1

Operator precedence

The following shows the order of operator precedence in MEL. Operators
on the same row have equal precedence. If a statement has two or more
operators with the same precedence, the left-most operator is evaluated
first. Unary and assignment operators are right associative; all others are
left associative.

() []

! ++ - -
* / % ^
+ -
< <= > >=
== !=
&&

||

Highest

= += -= *= /=
? :

Lowest
MEL and Expressions

41

5 | Syntax
 > Blocks
Blocks

A block is a group of expressions that can stand in for a single expression.
Blocks are surrounded by curly braces:

{

print(“Hello there.”);

print(“Glad to meet you.”);

print(“So long!”);

}

For example, the if statement has this form:

if (condition)

exp1

exp1 can be a single expression:

if ($x > 5)

print(“It’s more than 5!”);

...or a block of expressions:

if ($x > 5) {

print(“It’s more than 5!”);

$x = 0;

$y++;

}

Blocks will become important when you start to use conditional and
looping statements.

Very important note

In MEL, unlike most languages, all statements inside a block (surrounded
by curly braces) must end in semicolons, even if it is the only statement in the
block.

if ($s > 10) {print(“Glonk!”)} // Syntax error.

if ($s > 10) {print(“Glunk!”);} // Notice the semicolon.

Variable scope in blocks

Blocks can also be useful to limit the scope of a variable, since any local
variable declared in a block is only visible inside that block:

int $test = 10;

{

int $test = 15;

print($test+"\n");

}

print($tt+"\n");

// Result:
MEL and Expressions

42

5 | Syntax

 > Comments
15

10

Comments

Use comments to document your scripts. Leave yourself notes about what
variables are for and what each section of code is doing. This will make it
much easier to maintain the code later.

Everything on a line after a double-slash (//) is considered a comment
and ignored by MEL (except inside strings, of course).

// This is a comment.

print(5 + 10); // This is a comment too.

You can comment out an arbitrary block of code by surrounding it with
/* and */.

/*

This is a multi-line comment.

You can type as much text in here as you want.

*/

Freeform comments cannot be nested:

/*

This is a comment.

/* Sorry, you can’t put a comment inside a comment. */

You’ll get a syntax error here.

*/

This type of comment doesn’t work in animation expressions. Only //
works in expressions.

Differences between expression and MEL
syntax

There are only two differences between expression and MEL syntax: direct
access of object attributes, and the use of the time and frame variables.

Direct access to object attributes

In an expression, you can directly access object attributes where as in MEL
you must use the getAttr, setAttr, getParticleAttr, or setParticleAttr
commands.

The following are some examples of expression syntax that directly
accesses object attributes.

persp.translateX = 23.2;

float $perspRotX = persp.rotateX;
MEL and Expressions

43

5 | Syntax
 > Differences between expression and MEL syntax
To do something like the above in MEL you would have to use the setAttr
and getAttr commands as the following examples illustrate.

setAttr("persp.translateY", 23.2);

float $perspRotY = getAttr("persp.rotateY");

Execute the following command in the Script editor to create a couple
particles:

particle -position 1 2 3 -position 2 1 3 -name dust;

now you can use the following expression syntax for the particle shape:

vector $pos = position;

acceleration = <<2, 1, 0>>;

To do something like the above in MEL you would have to use the
setParticleAttr and getParticleAttr commands as the following examples
illustrate.

select dustShape.pt[0];
 float $temp[] =
 getParticleAttr("-attribute", "position", "dustShape.pt[0]");
 vector $position = <<$temp[0], $temp[1], $temp[2]>>;
 setParticleAttr("-attribute", "velocity", "-vectorValue",
 -3, 0, 0, "dustShape.pt[0]");

Note that the above MEL commands are only for the first particle in the
particleShape.

time and frame variables

In an expression, you can use the time and frame predefined variables. For
example:

persp.translateY = frame;

persp.rotateY = time;

You can’t use time and frame in MEL. To access time and frame
information in MEL, you have to do something like the following:

float $frame = ‘currentTime -q‘;

string $timeFormat = ‘currentUnit -query -time‘;

currentUnit -time sec;

float $time = ‘currentTime -q‘;

currentUnit -time $timeFormat;

Comments

You cannot use multi-line /* */ comments in expressions. You can use //
comments.
MEL and Expressions

44

6 | Controlling the flow of a script

 > Testing and comparing values
6 Controlling the flow
of a script

Controlling the flow of a script

Testing and comparing values

Comparison operators

Logic operators

Expressio
n

Meaning Evaluates
to

(5 == 10) 5 is equal to 10 false

(5 != 10) 5 is not equal to 10 true

(5 < 10) 5 is less than 10 true

(5 > 10) 5 is greater than 10 false

(5 >= 10) 5 is greater than or equal to 10 false

(5 <= 10) 5 is less than or equal to 10 false

Symbol Logical
equivalent

True only if:

|| or either left-hand or right-hand side is true

&& and both left-hand and right-hand sides are
true

! not right-hand side is false
MEL and Expressions

45

6 | Controlling the flow of a script
 > Boolean values
Boolean values

MEL uses 1 to represent true and 0 to represent false. When operators
return boolean values, they use 1 or 0.

MEL also lets you use true and false as well as on and off for boolean
values to help readability.

In a logical operator, any non-zero value evaluates to true (1), and zero (0)
evaluates to false. However, remember that in MEL, a value may evaluate
to true, but not be equal to true:

int $xsv = 5;

if ($xsv) print("true\n"); // True

if (true) print("true\n"); // True

if ($xsv == true) print("true\n"); // False

Avoid trying to compare values to “true”.

if...else if...else

You’ll often want you program to make decisions and change its behavior
based on testing some condition. For example, only print a value if it is
greater than 10. Like most languages, MEL has an if control structure:

if ($x > 10) {

print(“It’s greater than 10!\n”);

print(“Run!!!\n”);

}

You can also specify code to run when the condition is not true with the
else keyword:

if ($x > 10) {

print(“It’s greater than 10!\n”);

print(“Run!!!\n”);

} else {

print(“It’s not above 10.\n”);

print(“It’s safe... for now.\n”);

}

You can specify several alternatives with the else if statement:

if ($color == “blue”)

print(“Sky\n”);

else if ($color == “red”)

print(“Fire\n”);

else if ($color == “yellow”)

print(“Sun\n”);

else

print(“I give up!\n”);
MEL and Expressions

46

6 | Controlling the flow of a script

 > ?: operator
?: operator

The ?: operator lets you write a shorthand if-else statement in one
statement.

The operator has the form:

condition ? exp1 : exp2;

If condition is true, the operator returns the value of exp1. If the condition
is false, the operator returns the value of exp2.

// If $y > 20, $x is set to 10,

// otherwise $x is set to the value of $y.

$x = ($y > 20) ? 10 : $y;

// If $x > 10, print “Greater than”, otherwise

// print “Less than or equal”.

print(($x > 10) ? “Greater than” : “Less than or equal”);

Readability

The following statement sets Balloon’s scaleY attribute to time divided by
2 if time is less than 2, and time multiplied by 2 if time is greater than or
equal to 2. (This causes the scaleY attribute to increase slower in the first
two seconds than after two seconds.)

Balloon.scaleY = (time < 2) ? time / 2 : time * 2;

This is the same as the following if-else statement:

if (time < 2)

Balloon.scaleY = time / 2;

else

Balloon.scaleY = time * 2;

While the ?: operator saves space and typing, the if...else form is clearly
much easier to read. For this reason many programmers avoid using the ?:
operator for complex expressions.

switch...case

A switch statement evaluates its control expression and then jumps to the
case statement whose value matches the control expression:

switch (controlExp) {

 case value1:

 exp1;

 break;

 case value2:

 exp2;

 break;

 case value3:
MEL and Expressions

47

6 | Controlling the flow of a script
 > switch...case
 exp3;

 break;

 ...

 default:

 exp4;

 break;

}

If none of the case statements match the control value, the default
statement executes. The default statement is optional and can be placed
anywhere in the sequence of case statements.

If you want more than one case statement to execute the same block of
code, put the case statements right after each other. For example, if you
wanted switch on both “a” and “A”:

switch ($letter) {

 case "a":

 case "A":

 print("Apple\n"); // Executed if "a" or "A"

 break;

 case "b":

 case "B":

 print("Banana\n"); // Executed if "b" or "B"

 break;

}

Beware of falling

For historical compatibility with other languages, MEL’s switch statement
includes a bit of strange behavior: if you don’t add a break statement at
the end of the expressions under a case statement, MEL will continue to
evaluate the other expressions in the switch block until it reaches a break
statement or the end of the block. This is known as fall-through.

For example, consider this switch statement:

switch ($color){

case “GREEN”:

 do_green();

 break;

case “PINK”:

 do_pink();

case “RED”:

 do_red();

 break;

default:

 do_blue();

 break;

}

MEL and Expressions

48

6 | Controlling the flow of a script

 > while
In this statement, if $color is “PINK”, the switch statement will jump to
case “PINK”: and execute do_pink(). What you might not expect is that
because there is no break statement after that, execution will fall through
and execute do_red() as well!

Fall-through is error-prone and almost never useful. Watch out for it.
Unless you are familiar with the switch statement from another language,
it is usually a better idea to use an if...else if...else statement instead:

if ($color == “GREEN”) {

do_green();

} else if ($color == “PINK”) {

do_pink();

} else if ($color == “RED”) {

do_red();

} else {

do_blue();

}

If you actually want to use fall-through as a feature, it is helpful to point
out that you are doing so in a comment so anyone looking at your code
doesn’t just assume it’s an error:

switch ($color){

case “GREEN”:

 do_green();

 break;

case “PINK”:

 do_pink();

 // FALL THROUGH

case “RED”:

 do_red();

...

Although the last case in a switch statement does not need a break
statement since the switch is at its end, it is still a good idea to add the
break statement. If you add more cases to the switch statement, the break
statement is already there.

while

A while loop has the form:

while (condition) {

statement1;

statement2;

...

}

The while statement checks the condition, and if it’s true, executes the
block, then repeats. As long as the condition is true, the block continues to
execute.
MEL and Expressions

49

6 | Controlling the flow of a script
 > do...while
float $test = 0;

while ($test < 5) {

print("$test equals: " +$test+"\n");

$test = $test + 1;

}

This example prints the following lines in the Script editor:

$test equals: 0

$test equals: 1

$test equals: 2

$test equals: 3

$test equals: 4

do...while

A do loop has this form:

do {

statement;

statement;

 ...

} while (condition);

Unlike the while loop, a do...while loop checks the condition at the end
of each cycle. The block will execute at least once. The loop terminates
when condition is false.

float $test = 0;

do {

print("$test equals: " +$test+"\n");

$test = $test + 1;

}

while ($test < 5);

This prints the following lines in the Script editor:

$test equals: 0

$test equals: 1

$test equals: 2

$test equals: 3

$test equals: 4

for

A for loop has this format:

for (initialization; condition; change of condition) {

statement;

statement;

 ...

}

MEL and Expressions

50

6 | Controlling the flow of a script

 > for-in
The brackets after for statement must contain three parts, separated by
semicolons. It’s very important to understand the relationship between
these parts:

• The initialization sets up the initial value of a looping variable, for
example $i = 0 or $i = $v+1. This expression is run only once before
the loop starts.

• The condition is checked at the start of each iteration of the loop. If it’s
true, the block executes. If it’s false, the loop ends and execution
continues after the loop. For example $i < 5 or $i < size($words).

• The change of condition is run at the end of each iteration of the loop.
This expression should make some change that gets each iteration
closer to the end goal of the loop. For example $i++ or $i += 5.

A for loop evaluates the termination condition before executing each
statement. The condition compares variable, attribute, or constant values.

int $i;

for ($i = 10; $i > 0; $i--) {

print($i+"...\n");

}

print("Blastoff!!!");

for-in

The most common use of a for loop is to iterate over every element of an
array. MEL has a special form of the for loop that lets you do this very
easily.

The for-in loop has the form:

for (array-element in array) {

statement;

statement;

...

}

string $carType[3] = {"Porsche", "Ferrari", "BMW"};

string $car;

for ($car in $carType) {

print("I want a new ");

print($car + ".\n");

}

This prints the following lines in the Script editor:

I want a new Porsche.

I want a new Ferrari.

I want a new BMW.
MEL and Expressions

51

6 | Controlling the flow of a script
 > break
The loop executes three times, once for each array element in $carType.

break

Sometimes you want to exit a loop immediately as soon as some condition
is met. The break instruction exits a loop from any point in its block,
bypassing the loop’s condition. Execution resumes at the next statement
after the loop. You can use a break instruction with a while, do, or for
loop.

This example finds the first value in a string array that is longer than 4
characters.

string $words[] = {"a","bb","ccc","dddd","eeeee","ffffff"};

string $long = "";

for ($i = 0; $i < size($words); $i++) {

if (size($words[$i]) > 4) {

$long = $words[$i];

break;

}

print($words[$i] + " is too short...\n");

};

print($long + " is the first long word.\n");

continue

Sometimes you want to finish the current iteration of a loop immediately,
but continue looping. The continue instruction ends the current iteration
and starts next iteration of the loop, skipping any statements between the
continue and the end of the loop.

Testing the existence of commands, objects,
and attributes

Commands and scripts: exists

The exists command returns true if the argument is a valid command,
subroutine, or script.

if (exists(“sphere”)) {

sphere; // make a sphere

}

objects: objExists

The objExists function returns true when an object exists with a certain
name:

sphere -name "george";
MEL and Expressions

52

6 | Controlling the flow of a script

 > The difference between = and ==
// Result: george makeNurbSphere1 //

print(objExists("george"));

1

print(objExists("martha"));

0

attributes on nodes: attributeExists

Use attributeExists to check whether a given attribute exists on a node.
The command has the form:

attributeExists(“attributeName”,”nodeName”)

For example:

if (attributeExists(“visibility”,”mySphere”)) {

setAttr mySphere.visibility on;

}

The difference between = and ==

A common problem when you’re writing MEL code is to confuse two very
similar looking but different operators:

• The = (single equal sign) operator assigns values to variables. For
example, $a = 10 assigns the value 10 to the variable $a.

• The == (double equal sign) operator tests whether two values are
equal. For example, ($a == 10) tests whether the value of $a is equal
to 10.

If you mix these two operators up it can cause very hard to find bugs in
your MEL scripts.

Imagine you want to print a message if the value of variable $a is equal to
10. If you try the following:

if ($a = 10) {

print “equal to 10!”;

}

You’ll find this script always prints “equal to 10!” no matter what. This is
because this script mistakenly used a single equal sign (the assignment
operator), so the “test” is actually assigning 10 to $a. An assignment
evaluates to the assigned value, in this case 10. Any value other than zero
is considered true, and so the condition is always true!

The correct code in this case is:

if ($a == 10) {

print “equal to 10!”;

}

(Notice the use of == instead of =.)
MEL and Expressions

53

6 | Controlling the flow of a script
 > Common problems
Using an assignment in a conditional can actually be a useful shortcut in
certain situations, however beginners should always beware of mixing up
= and ==.

Common problems

The following topics describe solutions to common mistakes in expression
flow control statements.

Modifying variable values in test conditions

If you use a while, do, or for loop in an expression, remember to change
the variable or attribute being tested in the test condition of the loop.
Failing to do so can halt Maya operation.

Example 1

Suppose you create an object named Balloon and decide to use a while
loop to increase its Y scaling after three seconds of animation play.

while (time > 3)

Balloon.scaleY = time;

Though you might think this expression sets Balloon’s scaleY attribute to
the increasing value of time after the animation time exceeds 3 seconds, it
actually halts Maya operation as soon as time exceeds 3. At that moment,
the while condition is true, so the while loop statement Balloon.scaleY =
time executes repeatedly and endlessly.

Even though a statement sets an attribute within an expression, Maya
updates the attribute only after the expression finishes executing. Because
the expression never finishes executing, Maya halts.

Unless you change Balloon.scaleY within the while loop to a value less
than or equal to 3, the statement executes infinitely.

To get the desired result without halting Maya, use this expression:

if (time > 3)

Balloon.scaleY = time;

Example 2

Suppose you create objects named Cone and Ball, then use a while
statement to link the Ball’s translateY attribute to the Cone’s translateY
attribute:

while (Cone.translateY > 0)

Ball.translateY = Cone.translateY;

At first glance, the expression seems to set Ball’s translateY position to the
value of the Cone’s translateY position whenever Cone’s translateY is
greater than 0.
MEL and Expressions

54

6 | Controlling the flow of a script

 > Common problems
In fact, the expression halts Maya as soon as you translate the Cone to a Y
position greater than 0. At that moment, the while condition is true, so the
while loop statement Ball.translateY = Cone.translateY executes endlessly.

Nothing you do in the user interface can change the Cone’s translateY
position. It stays at translateY value of 0.

Unless you change Cone.translateY within the while loop to a value less
than or equal to 0, the statement executes infinitely.

To get the desired result without halting Maya, use this expression:

if (Cone.translateY > 0)

Ball.translateY = Cone.translateY;

Comparing floating point values to 0 with ==

If you use the == operator to compare a floating point variable or attribute
to 0, your expression might not work correctly. This typically occurs when
you assume the value returned by a built-in function such as cosd will be
exactly 0.

Example

float $x = cosd(90);

if ($x == 0)

print("This equals 0.\n");

else

print("This doesn’t equal 0.\n");

The expression displays the following text:

This doesn’t equal 0.

Though the cosine of 90 degrees is mathematically 0, the cosd(90) function
returns the value 6.123e-17, which is extremely close to 0 but not exactly
equal. Though the number for practical purposes is the same as 0, it’s
stored in the computer as a fractional quantity above 0 because of the way
computers handle floating point numbers.

To fix the problem, compare the values as in this expression:

float $x = cosd(90);

if (($x > -0.0001) && ($x < 0.0001))

print("This equals 0.\n");

else

print("This doesn’t equal 0.\n");

The expression displays the following text:

This equals 0.
MEL and Expressions

55

6 | Controlling the flow of a script
 > Common problems
By checking that $x is between -0.0001 and 0.0001, the appropriate print
statement executes. The value returned by cosd(90) is so close to 0 that it’s
within the small range specified in the if statement’s numerical
comparison.
MEL and Expressions

56

7 | Attributes

 > Attributes
7 Attributes

Working with attributes

Attributes

An attribute is a slot in a node that can hold a value or a connection to
another node. Attributes control how a node works. For example, a
transform node has attributes for the amount of rotation in X, Y, and Z.
You can set attributes to control practically every aspect of your
animation.

Attributes are similar to variables: they hold some value of a certain data
type. The difference is that usually, setting the value of an attribute will
cause some aspect of the scene to be recomputed. For example, changing
the rotateX attribute of a transform node rotates its object.

Attribute names

A full attribute name has the name of the node, a period, and the name of
the attribute on the node, with no spaces between them:

nodeName.attributeName

You can find the name of a node in the edit box at the top of the attribute
editor.

You cannot use the “human readable” attribute names shown in option
windows, in the attribute editor, or by default in the channel box. You can
only use the “long” or “short” name.

• To show MEL-compatible names of attributes in the channel box,
open the channel box’s Channels menu and choose Channel Names >
Long or Channel Names > Short.

• The channel box is very useful for finding out the long name/short
name of an attribute. However, by default the channel box only shows
attributes that are keyable. A node may have more attributes that are
not shown in the channel box because they are not keyable by default.

To show all attributes on an object, type listAttr objectName in the
Script editor: You can also use listAttr -shortNames objectName to
show short names instead of long names.
MEL and Expressions

57

7 | Attributes
 > Data types of attributes
Names are case sensitive: you must use upper and lower-case letters as
the name appears in the Objects and Attributes list of the expression
editor, or the short name/long names in the channel box, or the output of
the listAttr command.

After you click Create or Edit to compile an expression, Maya converts all
attribute abbreviations in the expression to the full attribute name.

Omitting an object name in animation expressions

If you select an object as the Default Object in the Expression Editor, you
can omit the object name and period that’s part of a full attribute name.

Suppose you’ve selected Ball as the Default Object.

In place of this:

Ball.translateY = time;

you can type this:

translateY = time;

Maya interprets translateY as belonging to Ball, the object listed in the
Default Object text box of the Expression Editor.

To make an object the Default Object, type the object’s name in the Default
Object text box.

By default, the selected object is also the default object. You can omit the
object name only for attributes of the object in the Default Object text box.

The Default Object text box is dim when a particle shape node is the
selected object in the Expression Editor. Because a particle shape node’s
attributes can be controlled by only one creation expression and two
runtime expressions (before and after dynamics calculations), the particle
shape node is always the default object when it is the selected object.

You can combine short names and the default object to minimize typing.
Suppose you’ve selected Ball as the Default Object. In place of this:

Ball.translateY = time;

...you can type this:

ty = time;

Data types of attributes

Like variables, each attribute has a data type that determines what kind of
value it can hold. Attributes in Maya are usually floats or booleans, with
vector, integer or string attributes being less common.
MEL and Expressions

58

7 | Attributes

 > Getting and setting attributes
Vector array data types are useful for animating position, velocity,
acceleration, color (using the three values to represent RGB), and other
particle attributes made of three components.

Particle shape nodes have compound data types not seen in other built-in
attributes:

These are also called per particle attributes.

Only particle objects have vector array and float array attributes. The
default vector array attributes for particle objects are position, velocity,
and acceleration. These are also called per particle attributes because you
can set the attribute for each particle to different values.

Data types of custom attributes

When you add a custom attribute to an object with Modify > Add
Attribute, you select whether its data type is floating point, integer,
Boolean, or vector.

Getting and setting attributes

In MEL scripts

In MEL scripts, use the getAttr and setAttr commands to get and set
attribute values:

sphere -name “Brawl”;

print(getAttr(“Brawl.scaleY”));

float $ys = ‘getAttr Brawl.scaleY‘;

setAttr(“Brawl.scaleY”, $ys * 2);

You can get or set an element of a particle vector or float array using the
getParticleAttr and setParticleAttr commands.

float $Tmp[] =

 ‘getParticleAttr -at position FireShape.pt[0]‘;

Meaning Example Example data

array of vectors FireShape.position {<<3.2, 7.7, 9.1>>,
<<4.5, 9.2, 3.1>>,
<<3.8, 4.4, 2.1>>}

array of floating point
numbers

FireShape.lifespan {1.333,
1.666,
2.333,
1.333}
MEL and Expressions

59

7 | Attributes
 > Getting and setting attributes
vector $particlePosition = <<$Tmp[0], $Tmp[1], $Tmp[2]>>;

setParticleAttr -at position -vv 0 0 7 FireShape.pt[0];

In expressions

In animation expressions, you do not use the getAttr and setAttr
commands. You can simply use the node/attribute name in expressions:

myCone.scaleY = mySphere.scaleX * 2

Paths to nodes

If two objects in a scene have different parents, they're permitted to have
the same name. For example, a scene could have two spheres named
doughnutHole if one sphere could has a parent of GroupA and the other
sphere has no parent at all.

In these cases you can’t specify an object using only its name, because
Maya wouldn’t know which object you were talking about. MEL will print
the following error:

ERROR: Which one?

If Maya can’t automatically figure out which object you mean, you need to
specify a unique path to the object.

A path tells Maya how to find the exact object you want by listing the
steps through the hierarchy it needs to take to find the object. For
example:

In this example, the full path of the hand object is:

|character|shoulder|arm|hand

The vertical bar character (|) indicates that the object to the left of the
character is the parent of the object to its right:

sphere -name doughnutHole;

group -name GroupA;

sphere -p 3 0 0 -name doughnutHole;

setAttr doughnutHole.scaleY 3.3; // ERROR: Which one?

setAttr GroupA|doughnutHole.scaleY 3.3;
MEL and Expressions

60

7 | Attributes

 > Getting and setting multi-value attributes
To specify an object that does not have a parent, type a vertical bar before
the object name:

setAttr |doughnutHole.scaleY 0.3;

You can specify the full pathname of an object by giving the names of all
the parents in an object hierarchy. Just separate each parent with a pipe
character.

group -name GroupB GroupA;

setAttr |GroupB|GroupA|doughnutHole.scaleY 1;

Getting and setting multi-value attributes

Some nodes have attributes that contain multiple values. The way Maya
stores the values does not correspond to a MEL datatype.

For example:

• Curve shape nodes have a cv attribute which contains multiple multi-
values representing CV positions.

• Surface shape nodes have a cv attribute which contains two
dimensions of multi-values representing CV positions along U and V.

• Transform nodes have a translate attribute which holds multiple
values for X, Y, and Z (mirroring the translateX, translateY, and
translateZ attributes).

In the online node documentation, the type of these attributes will be
listed as something similar to 3float, indicating the attribute stores 3 float
values.

Getting multi-values

You can get individual values from a multi-valued attribute using an
index similar to the way you get an individual element from an array:

getAttr nurbsSphere2.translate[1];

getAttr nurbsSphereShape2.cv[0][2];

You can also assign the multiple values to an array:

// Put the three values in the translate

// attribute in an array:

float $trans[] = getAttr("nurbsSphere2.translate");

// Result: -2.76977 0 0 //

// Put the X, Y, and Z positions of cv #1 of curveShape1

// in an array:

float $cvXYZ[] = getAttr("curveShape1.cv[1]");

// Result: -2.367282 0 2.491355 //

// Put the X, Y, and Z positions of cv U=1,V=2
MEL and Expressions

61

7 | Attributes
 > Getting and setting multi-value attributes
// of nurbsSphereShape2 in an array:

float $cvXYZ_2[] = getAttr("nurbsSphereShape2.cv[1][2]");

// Result: -2.367282 0 2.491355 //

Setting multi-values

Although you can get multi-values all at once as an array as shown above,
the reverse does not work: you cannot assign an array to a multi-value
attribute:

setAttr(“nurbsSphere2.translate”,{1.0, 1.2, 3.4});

// ERROR

Instead, you pass multiple arguments to setAttr:

setAttr("nurbsSphere1.translate", 1.0, 1.2, 3.4);

setAttr("curveShape1.cv[1]", 1.0, 1.2, 3.4);

setAttr("nurbsSphereShape1.cv[1][2]", 5.5, -2.3, 0);

To change only one part of a multi-value, you could put the multi-value
into an array, then modify the contents of the array and put them back
into the multi-valued attribute:

// Change only the second part of the translate multi-value

float $trans = getAttr("nurbsSphere.translate");

$trans[1] += 2;

setAttr("nurbsSphere.translate",$trans[0],$trans[1],$trans[2]

);

However this situation will not really arise in practice, since multi-valued
attributes have singular equivalents (such as translate and translateX,
translateY, and translateZ) as well as a simple command equivalent,
in this case:

move -relative 0 2 0 "nurbsSphere1";

Wildcards

You can use the string “*” in the index on a multi-value attribute to
represent every value.

For example:

// Get the translation of every CV along U=1

getAttr nurbsPlaneShape1.cv[1]["*"];

// Result: 0 0 0 0 0.456295 0 0 0.456295 0 0 0 0 //

// Get the translation of every CV.

getAttr nurbsPlaneShape1.cv["*"]["*"];

// Result: 0 -0.520965 0 0 0 0 0 0 0 0 -0.520965 0 0 0 0 0

0.456295 0 0 0.456295 0 0 0 0 0 0 0 0 0.456295 0 0 0.456295

0 0 0 0 0 -0.520965 0 0 0 0 0 0 0 0 0.702647 0 //
MEL and Expressions

62

7 | Attributes

 > Getting and setting multi-value attributes
// Select every CV of a surface:

select -r nurbsSphere1.cv["*"]["*"];

// Select every CV of a curve:

select -r curve1.cv["*"] ;
MEL and Expressions

63

7 | Attributes
 > Getting and setting multi-value attributes
MEL and Expressions

64

8 | Procedures

 > Procedures
8 Procedures

Defining and using procedures

Procedures

You can define your own functions that work like MEL’s built-in
functions. User defined functions are called procedures. Use procedures the
encapsulate a series of commands you use often into a reusable part.

Like any function in MEL, a procedure can take any number of arguments
(including no arguments), perform calculations, and return a value.

In other languages procedures are sometimes called subroutines.

Defining procedures

Global procedures

Once you define a global procedure, you can call it anywhere: from any
script file, within any function, or from the command line. The general
form of a global procedure declaration is:

global proc return_type procedure_name (arguments) {

MEL_statements

}

• the global keyword makes the new procedure available everywhere.

• The proc keyword indicates you are defining a procedure.

• After proc you can add a keyword for the return type of the
procedure. For example, if the procedure returns an integer, type int.
If the procedure does not return a value, you can leave this out.

• The name of the procedure.

• A list of arguments in brackets, separated by commas. Each argument
is a variable name (with the $ at the beginning) preceded by its type
(for example string).

• A block of code to execute when you call the procedure.
MEL and Expressions

65

8 | Procedures
 > Defining procedures
Return values

If you specify a return type for a procedure, then you must use a return
operator somewhere in the procedure’s code block to return a value.

global proc float square(float $x) {

return $float * $float;

}

square(5.0);

25

If you don’t specify a return type for a procedure (indicating that the
procedure will not return a value), then you can only specify the return
operator without a return value. Use of a return operator in this context
serves as a function break.

// This does not work.

global proc add5(int $x) {return $x+5;};

// Error: global proc cc(int $x) {return $x+5;}; //

// Error: This procedure has no return value. //

// This works.

global proc add5(int $x) {return;};"

Examples

Here are some example procedure declarations:

global proc string sayHi() {

return "Hello!\n");

}

global proc float square(float $x) {

return $float * $float;

}

global proc int max(int $a, int $b) {

if ($a > $b) {

return $a;

} else {

return $b;

}

global proc msg() {

print "This proc has no return value.\n";

}

Local procedures

If you leave the global keyword off the beginning of a procedure
declaration, the procedure is local to the file in which it is defined.

// This is a local procedure

// that is only visible to the code in this file.

proc red5() {print("red5 standing by...\n");}
MEL and Expressions

66

8 | Procedures

 > Calling procedures
This is very useful for making “helper” procedures that do work for other
procedures. You can expose just one or two global procedures, hiding the
helper code from other people using your scripts.

You cannot define a local procedure in the Script editor, they are only
available in external script files.

Calling procedures

Using a defined MEL procedure is the same as using any other MEL
command or function. To execute the above MEL procedure helloValue,
enter the name of the MEL procedure in a script, the Script editor, or the
Command Line.

helloValue(1, "Jake");

// Result: Hello Jake, number 1 //

The helloValue procedure requires an integer and a string argument in
order to be successfully called. Another way to execute a procedure does
not use parentheses or commas. For example, to execute the helloValue
procedure this way, enter the following:

helloValue 7 "Torq";

// Result: Hello Torq, number 7 //

Calling external procedures

If Maya encounters a command without a definition, it searches through
the script paths for a MEL script with the same name as the command
(minus the .mel extension on the file name).

If it finds the file, it declares all the global MEL procedures within that file,
and if the procedure you called exists in the file, it executes.

For example, you have a file sayWhat.mel in one of the script folders with
the following contents:

// This is a local procedure

// that is only visible to the code in this file.

proc red5() {print("red5 standing by...\n");}

// This is a global procedure. When this file

// is sourced, this procedure will become

// available.

global proc GoGo() {print("GoGo online\n");}

// This procedure has the same name as this file

// (without .mel on the end).

global proc sayWhat() {print("sayWhat online\n");}

Now if you try to call the function sayWhat on the command line:
MEL and Expressions

67

8 | Procedures
 > Global and local variables
1 Since there is no internal command sayWhat, Maya searches through
all its script paths for a file called sayWhat or sayWhat.mel.

2 If it finds the file sayWhat.mel script in one of the script directories, it
sources the contents of the file.

In this example, the global procedures sayWhat and GoGo are declared.

3 Maya checks whether a procedure with the name you tried to call
exists in the file. If it does, Maya calls the procedure. In this example, a
procedure named sayWhat exists in the file and so it executes and
prints:

sayWhat online

4 Since the GoGo global procedure has been declared, you could now
type GoGo in the Command Line or Script editor to execute the
procedure.

Global and local variables

• Variables you define outside of procedures are visible (able to be
accessed and changed) to all other top level MEL code.

• Variables you define inside a procedure are only visible within that
procedure. These variables are called local variables. For example:

float $counter

Variables that are local to a procedure are separate from global
variables and separate from variables in other procedures. A local
variable will override a global variable with the same name within the
procedure.

All this allows you to write procedures without worrying whether the
variable names you choose will conflict with Maya or other
procedures.

• You can make variables inside a procedure visible globally using the
global keyword.

If you want to create and maintain a variable in one procedure and
also use it outside of that procedure, you can declare it as a global
variable. For example:

global float $counter;

The $counter variable can be read or changed by any MEL code at the
top level, and in other procedures that also declare $counter to be
global. Also, if a global $counter variable already exists, this
procedure will use it instead of creating a new variable.

In general it is good programming practice to avoid using global variables
whenever possible. This makes it less likely that calling a procedure will
have unwanted side effects.
MEL and Expressions

68

8 | Procedures

 > Testing if a function is available in MEL
Testing if a function is available in MEL

Use the exists command to test the existence of a command or procedure.
It can be used to prevent runtime errors if you want to execute a script
that may not be available.

For example, to find out if a script named test.mel that defines a
procedure named test is in your script path, you can do this:

if (‘exists test‘) {

 test;

} else {

 warning "Test script not run";

}

Checking where a procedure comes from

The whatIs command returns a string indicating whether the argument is
a command, a procedure, a script, or is unknown. If you give it a script
name, it will return the path of the script.

This is useful if you suspect that Maya is using the wrong script and you
want to double-check.

For example:

whatIs test.mel;

// Result: Script found in: ./test.mel //
MEL and Expressions

69

8 | Procedures
 > Checking where a procedure comes from
MEL and Expressions

70

9 | Animation expressions

 > Animation expressions
9 Animation
expressions

Create and edit animation expressions

Animation expressions

Expressions are instructions you give Maya to control attributes over time.
An attribute is a characteristic of an object, for instance, X scale, Y
translate, visibility, and so on.

Though you can create an expression to animate attributes for any
purpose, they’re ideal for attributes that change incrementally, randomly,
or rhythmically over time.

Expressions are also useful for linking attributes between different
objects—where a change in one attribute alters the behavior of the other.
For instance, you can make the rotation of a tire dependent on the forward
or backward movement of a car.

Eric Saindon

An expression gives the
manta ray’s wings a
fluid, rhythmic motion.
MEL and Expressions

71

9 | Animation expressions
 > Creating animation expressions
Expressions offer an alternative to difficult keyframing tasks. In
keyframing, you set the values of attributes at selected keyframes in the
animation, and Maya interpolates the action between the keyframes. With
expressions, you write a formula, then Maya performs the action as the
animation plays.

Expressions are often as simple as a few words or lines. In the following
example expressions, note the variation in length and detail (rather than
their purpose).

Example

Ball.translateX = Cube.translateX + 4;

Example

if (frame == 1)

Cone.scaleY = 1;

else

{

Cone.scaleY = (0.25 + sin(time)) * 3;

print(Cone.scaleY + "\n");

}

You can use an expression to animate any keyable, unlocked object
attribute for any frame range. You can also use an expression to control
per particle or per object attributes. Per particle attributes control each
particle of a particle object individually. Per object attributes control all
particles of a particle object collectively.

Creating animation expressions

You create and edit an expression in the Expression Editor. There are
several ways to start the Expression Editor:

• Select Window > Animation Editors > Expression Editor.

• In the Channel Box, click an attribute name, then press the right mouse

button and choose Expressions from the pop-up menu.

• In the Attribute Editor, press the right mouse button on an attribute
box and select Create New Expression.

If you previously created an expression that assigns a value to the
attribute, select Edit Expression instead.
MEL and Expressions

72

9 | Animation expressions

 > Creating animation expressions
The expression text field expands as you type text, so you can write
expressions of unlimited length. You can also edit expressions with an
external text editor by launching it from the Editor pull-down menu above
the text field.

You can also create a new expression after you’ve been editing an existing
one.

To create a new expression in the expression editor

1 Make sure you click the Create or Edit button to compile the existing
expression.

2 Select Filter > By Expression Name.

3 Click the New Expression button.

This clears the Expression Name box and expression text field so you
can create a new expression.

When you create the expression, the Expression Editor associates the
object name with the expression. This means you can narrow your
search for the expression using the object’s name in addition to the
expression name.

Expression
text field
MEL and Expressions

73

9 | Animation expressions
 > Each attribute can only have one driver
You do not need to select an attribute in the Attributes list. You can
associate the expression with an object only.

For a particle shape node, you don’t need to select an attribute, as you
can create only one creation expression and two runtime expressions
(before and after dynamics calculations) per particle shape. For non-
particle shape objects, you can create one expression per attribute.

Each attribute can only have one driver

You cannot apply an expression to an attribute already animated with any
of the following techniques:

• keys

• set driven key

• constraint

• motion path

• another expression

• any other direct connection

If you do so, you’ll see an error message in the Script editor and the
Command Line’s response area.

Though you can’t control a single attribute with two of the preceding
techniques, you can control one attribute with keyframes, another with an
expression, another with a constraint, and so on.

Also, you can use a single expression to assign values to several attributes
of one or more objects.

time and frame keywords

In animation expressions two useful keywords are available that are not in
standard MEL:

• time returns the current time position along the timeline.

• frame returns the current frame position along the timeline.

You can use these keywords in animation expressions as if they were
variables:

persp.translateY = frame / 2;

persp.rotateY = time;
MEL and Expressions

74

9 | Animation expressions

 > Find an animation expression you created previously
Find an animation expression you created
previously

After you’ve created an expression, you might decide later to alter it to
create a different animation result. To edit an expression, you display it in
the Expression Editor. The following sections describe how to find and
display an expression for editing.

Find an expression by name

To find an expression, you can select from a list of all expressions in the
scene.

To search for an expression by name

1 From the Expression Editor, Select Filter > By Expression Name.

An Expressions list appears in the Expression Editor. This list shows
all expressions created for the scene.

2 Click the expression in the list.

The expression contents appear in the expression text field.

If you don’t remember the name of the expression, click each name on
the list until the desired expression appears in the expression text
field.

Note You can find and edit MEL script nodes in the Expression Editor.

List of expressions
MEL and Expressions

75

9 | Animation expressions
 > Find an animation expression you created previously
Find an expression by selected object

If you can’t remember the name you gave an expression, you can find it
by selecting the affected object. For a non-particle shape node, you can
also select an affected attribute from the Attributes list to narrow the
search for the expression.

To search for an expression by object and attribute name

1 Select the object or node in the Outliner, Hypergraph, or workspace.

2 In the Expression Editor (Window > Animation Editors > Expression
Editor), select Filter > By Object/Attribute Name.

This is the default search setting for the Expression Editor.

3 Select Object Filter > Selected Objects.

The selected object’s name and appropriate attributes appear in the
window.

4 For an object other than a particle shape node, click the name of the
attribute controlled by the expression.

If you’ve forgotten the name of the attribute controlled by the
expression, select Attribute Filter > Connected to Expressions. The
Attributes list displays only the attributes controlled by expressions
for the selected object. Click each attribute in the Attributes list until
you see the desired expression in the expression text field.

Note For a particle shape node, you can create a creation expression, a
runtime expression before dynamics execution, a runtime
expression after dynamics execution, or all three. All expressions
are listed under a single name—the name of the particle shape
node. You can’t name or rename such expressions.

To find such expressions, look for the particle shape node’s
name in the Expressions list.

Click the appropriate Runtime or Creation checkbox to display
the desired expression.

Object name

Object’s attributes
MEL and Expressions

76

9 | Animation expressions

 > Find an animation expression you created previously
You can’t write a different expression for each attribute of a particle
shape as you can for other types of objects. Because you can write
only one creation expression and two runtime expressions (before and
after dynamics calculations) per particle shape, you don’t need to
select an attribute from the Expression Editor’s Attributes list. See
”Particle expressions” on page 133 for details on particle expressions.

Find an expression by item type

You can find an expression based on the type of object or item the
expression affects. For example, if you can’t remember an expression’s
name but remember you applied it to a shader node, you can narrow your
search to expressions that control shader nodes in the scene.

To search for an expression by item type

1 In the Expression Editor, Select Filter > By Object/Attribute Name.

2 From the Object Filter menu, select the type of object or item the
expression affects.

3 Select Attribute Filter > Connected to Expressions.

4 Select the affected object or item from the Objects list.

5 Select the affected attribute from the Attributes list.

The expression that controls the attribute appears in the expression
text field.

Example

Suppose you’ve written an expression that controls the rotateZ
attribute of a spotlight transform node named Searchlight. Do this to
find the expression:

1 Select Filter > By Object/Attribute name.

2 Select Object Filter > Transforms.

Note that you don’t select Object Filter > Lights in this example. The
rotateZ attribute is an attribute of a light’s transform node, not of the
light object itself.

3 Select Attribute Filter > Connected to Expressions.

Note The Attributes list shows only unlocked, keyable attributes. You
can select whether an attribute is keyable or locked with
Window > General Editors > Channel Control.

To write an expression for any nonkeyable attribute not shown
in the list, enter object.attribute name in the Selected Obj & Attr
text box.
MEL and Expressions

77

9 | Animation expressions
 > Edit text in an animation expression
4 Select the object Searchlight from the Objects list.

5 Click rotateZ from the Attributes list.

The expression appears in the expression text field.

Edit text in an animation expression

There are various keyboard commands for editing text, and the
Expression Editor has buttons for clearing and restoring the entire text of
an expression.

Use keyboard commands

Important

If you close the Expression Editor window without successfully
compiling an expression with the Create or Edit button, Maya
discards any editing changes you’ve made.

Command Definition Platform

Ctrl+c

Command+c

Copy IRIX , Linux and
Windows

Mac OS X

Ctrl+x

Command+x

Cut IRIX, Linux and
Windows

Mac OS X

Ctrl+v

Command+v

Paste IRIX, Linux and
Windows

Mac OS X

Ctrl+k Delete to end of line IRIX, Linux only

Ctrl+d Delete next character IRIX, Linux only

Ctrl+a Move cursor to beginning of line IRIX, Linux only

Ctrl+e Move cursor to end of line IRIX, Linux only

Ctrl+a Select all the text in the edit box Windows only
MEL and Expressions

78

9 | Animation expressions

 > Edit an animation expression with a text editor
Clear the entire expression text field

Click the Clear button.

Undoing back to an expression’s previous contents

The Edit button compiles an expression. If you’ve made an editing change
and haven’t yet clicked the Edit button, you can click the Reload button to
retrieve the previous expression. This restores the expression to the
contents last present when you clicked the Create or Edit button.

Edit an animation expression with a text
editor

From the Expression Editor, you can start an external text editor to create
and edit an expression. Text editors have features useful for editing big
expressions.

When you start the text editor for an expression, you can edit only that
expression with that instance of the text editor. However, you can start the
text editor once for each of several expressions if you want to examine or
edit several expressions at the same time.

Once you start a text editor for an expression, the Expression Editor’s text
field dims to indicate you can’t work there while the text editor runs. You
can, though, work in the expression text field for another expression.

There is no file on disk you can edit independently of the Expression
Editor. When you use the text editor through the Expression Editor,
you’re working with a temporary file that’s linked to the expression stored
in the scene. You can, however, copy text from an independent text file
into the temporary file.

If you save an expression without specifying a filename, Maya reads the
saved expression and stores it with the scene. You’ll see it dimmed in the
expression text field while you’re working with the text editor.

When you close the text editor, the expression text field entry no longer is
dim. The text expression field becomes active after you close the text
editor.

If you quit the text editor without saving the expression, Maya does
nothing. Because the expression hasn’t changed, Maya’s copy of the
expression doesn’t need to change either.

ImportantTo erase an expression and make sure its previous contents no
longer control an attribute, click the Edit button after clicking the
Clear button.
MEL and Expressions

79

9 | Animation expressions
 > Edit an animation expression with a text editor
Select a text editor (Mac OS X)

Edit expressions by opening an editor such as TextEdit. Cut and paste
your text into the Expressions Editor.

Select a text editor (Windows)

You can edit expressions with the text editor you’ve associated with text
documents. For example, if you’ve associated Notepad with .TXT text
documents, Maya launches Notepad when you select Text Editor from the
Editor menu in the Expressions Editor. To use a different editor, associate
the editor of your choice with .TXT files. See Windows documentation for
details.

Select a text editor (IRIX, Linux)

By default, in Maya IRIX, Linux you can start one of these editors from the
Editor menu in the Expressions Editor:

• jot

• vi

• vim

• xemacs

To run a different editor, see ”Use an editor not listed in the Editor menu
(IRIX, Linux)” on page 81.

Start an editor listed in the menu

1 From the Editor pull-down menu in the Expression Editor, select an
editor.

2 Double-click an object name, expression name, or attribute name from
the Selection list.

The editor is displayed.

The editor’s title bar shows a filename that’s temporarily created
while you work on the expression. When you write or save the file, its
contents are copied to the Maya scene containing the expression.

The expression text field is inactive while the text editor is open. You
can optionally close the Expression Editor window.

Tip You can use a text editor to save an expression to a filename in
the directory of your choice. This gives you a way to archive an
expression you want to use in a different scene.
MEL and Expressions

80

9 | Animation expressions

 > Edit an animation expression with a text editor
If you single-click the name of an object, attribute, or expression, the
text editor doesn’t appear. You can single-click to browse the contents
in the expression text field without opening a text editor.

If you double-click an attribute that’s already been assigned a value in
an expression, the expression that controls that attribute appears in
the text editor. For non-particle expressions, you can assign to any
attribute in the scene, not just to the double-clicked attribute. In fact,
you don’t even need to work with the double-clicked attribute at all.

If you double-click an attribute that has not yet been assigned a value,
the text editor appears with no contents. If you double-click that
attribute again, a new instance of the editor appears. After you assign
a value to an attribute in an expression, you can start the editor only
once for the attribute.

3 Create or edit the expression with the editor.

4 Save the file.

5 Confirm that the Expression Editor detected no syntax errors.

6 Quit the editor.

Use an editor not listed in the Editor menu (IRIX,
Linux)

If your workstation has a text editor that’s not listed in the Editor menu,
you can use it after doing a few preliminary UNIX system administration
tasks.

Start an unlisted editor

1 In your IRIX, Linux .cshrc file, set the WINEDITOR environment
variable to specify the desired editor and options.

See ”Change an editor’s operation settings (IRIX, Linux)” on page 82
for examples.

You can select any valid options for the editor, but you must specify
that the editor runs in the foreground (if this option is relevant to the
editor).

Note If you’ve created a IRIX or Linux command alias for jot, vi, vim,
or xemacs, the Expression Editor tries to launch this command. If
the arguments provided in the command alias are unusable by
the Expression Editor, the editor might operate unexpectedly or
fail to launch.

Avoid using an alias to customize your editor’s operation
settings. Do the steps in ”Change an editor’s operation settings
(IRIX, Linux)” on page 82.
MEL and Expressions

81

9 | Animation expressions
 > Edit an animation expression with a text editor
If the editor normally appears in the shell where you launched it, you
must make the WINEDITOR setting display the editor in a shell.

2 Log out and log into your user account.

3 Restart Maya.

4 Select Other from the Editor pull-down menu.

5 Double-click an object name, expression name, or attribute name from
the Selection list.

The editor appears.

6 Create or edit the expression with the editor.

7 Save the file.

8 Confirm that the Expression Editor detected no syntax errors.

9 Quit the editor.

Change an editor’s operation settings (IRIX, Linux)

Maya launches the editors listed in the Editor menu with default
operation settings. You can change the operation settings with a few
preliminary system administration tasks.

Change an editor’s operation settings

1 Set the WINEDITOR environment variable to specify the desired
editor options.

You can select any valid options for the editor, but you must specify
that the editor runs in the foreground (if this option is relevant to the
editor). For example, jot requires the option -f, vim requires -g -f, and
xemacs requires the option -nw.

An example of setting WINEDITOR for vi follows:

setenv WINEDITOR “xwsh -name mayaEditor -e vi”

An example for vim follows:

setenv WINEDITOR “xwsh -geometry 80x57+350+130 -bg 97 -e vim”

2 Log out and log into your user account.

3 Restart Maya.

4 Select Other from the Editor pull-down menu.

5 Double-click an object name, expression name, or attribute name from
the Selection list.

The editor appears.

6 Create or edit the expression with the editor.

7 Save the file.

8 Confirm that the Expression Editor detected no syntax errors.
MEL and Expressions

82

9 | Animation expressions

 > Delete an animation expression
9 Quit the editor.

Select an editor for default startup (IRIX, Linux)

You can make an external text editor start by default each time you start a
text editor.

Start an editor by default

1 Select Window > Settings/Preferences > Preferences.

The Preferences window appears.

2 In the Categories list, click Interface to display general interface
preferences.

3 Select the editor in the Expression Editor menu.

To select an editor specified with the WINEDITOR environment
variable, select Other.

4 Click Save.

5 In the Expression Editor, double-click an object name, expression
name, or attribute name from the Selection list.

The editor appears. The next time you start the Expression Editor, the
editor’s name appears in the Editor pull-down menu by default.

If you’ve chosen different text editors in the Preferences window and
the Editor menu, the one chosen in Preferences appears.

Delete an animation expression

You can delete an expression to stop it from controlling attributes.

To delete an expression

1 Display it in the Expression Editor.

2 Click the Delete button.

Note that you can quickly delete all non-particle expressions from a
scene. From Maya’s main menu bar, select Edit > Delete All by
Type > Non-particle Expressions.

Note If you’ve specified a text editor through Preferences or with the
Expression Editor’s Editor menu, starting the Expression Editor
from the Channel Box or Attribute Editor displays the text editor
instead of the Expression Editor.

The text editor appears when you click the New Expression
button.
MEL and Expressions

83

9 | Animation expressions
 > Expression editor
MEL windows and editors

Expression editor

Menus

Select Filter

The items in this menu control how you select expressions to edit. You
can list all the expressions in the scene by name, objects and their
attributes, or all the script nodes in the scene.

Object Filter

When the Select Filter menu is set to Object/Attribute Name, this
menu controls which object types appear in the object list under
Selection.

Attribute Filter

When the Select Filter menu is set to Object/Attribute Name, you can
choose to show all attributes or only attributes that are driven by
expressions.
MEL and Expressions

84

9 | Animation expressions

 > Expression editor
Insert Functions

The items in this menu let you insert the names of useful MEL
functions into the expression edit box.

Creating Expression

To create a new expression, type a name for the expression in the
Expression Name box and click New Expression.

Selection lists

The Expression Editor displays a Selection list by default. This list
displays either a list of objects and attributes, or a list of expressions
you’ve created.

To display the list of objects and attributes, select Filter > By Object/
Attribute Name. This is the default display.

To display the list of expressions you’ve created in the scene, Select Filter
> By Expression Name.

• When the Select Filter menu is set to Objects/Attribute Name, the left
pane shows objects, and the right pane shows attributes on the
selected object from the left pane. You can use the Object Filter and
Attribute Filter menus to control which object types and attributes are
shown in the lists. Click an object and attribute to edit the expression
controlling to the attribute.

• When the Select Filter menu is set to Expression Name or Script Node
Name, the left pane shows all expressions or script nodes in the scene.
Click an expression or script node to edit it.

Expressions list

Selection list triangle
MEL and Expressions

85

9 | Animation expressions
 > Expression editor
For a particle shape node, you don’t need to select an attribute from the
Attributes list. You can create only one creation expression and two
runtime expressions (before and after dynamics calculations) per particle
shape node. The same expression appears for each attribute.

When you create a new expression, you can click an object from this list to
select the default object to which the expression applies.

When you select the default object in the Expression Editor, you can skip
omit the object name and period that’s part of a full attribute name.

Expressions list

The Expressions list shows all expressions you’ve created in the scene.
When searching for an expression to edit, click an expression from this list
to display and edit its contents.

Hide the Selection list

You can hide the Selection list to lessen clutter in the window. To do so,
click the triangle next to Selection (see previous figure).

Filter attributes from the Selection list

If a selected object has several attributes controlled by expressions but
you’re not sure which attributes, you can select a filter to list only
attributes controlled by an expression.

To filter attributes from the Attributes list

1 Select the object containing the attributes.

2 Select Filter > By Object/Attribute Name.

3 Select Object Filter > Selected Objects.

4 Select Attribute Filter > Connected to Expressions.

Only the object’s attributes controlled by expressions appear in the
Attributes list.

To see all attributes you can control with an expression again, select
Attribute Filter > All.
MEL and Expressions

86

10 | I/O and interaction

 > User interaction
10 I/O and interaction

I/O and interaction

User interaction

These commands let you pause your script to get input from the user. To
create complex custom user interfaces, see ”Creating user interfaces” on
page 111.

Asking a question with confirmDialog

The confirmDialog command creates a modal window with a message to
the user and any number of buttons.

The window is disappears when the user presses any button or clicks the
window’s close button.

• Use the message flag to set the text string that appears above the
buttons.

• Add a button flag with the title string of each button.

• Use the defaultButton flag to specify which button corresponds to
the enter key.

• Use the cancelButton flag to specify which button corresponds to the
esc key.

• If the user clicks a button, the name of the button is returned.

• If the user clicks the window’s close button, the string specified by the
dismissString flag is returned.

confirmDialog -title "Confirm" -message "Are you sure?"

-button "OK" -button "Cancel" -defaultButton "OK"

-cancelButton "Cancel" -dismissString "Cancel";

Letting the user choose a file with fileDialog

The fileDialog command shows a file open dialog window.
MEL and Expressions

87

10 | I/O and interaction
 > User interaction
• Use the directoryMask flag to specify the starting directory and a
filename filter. If you don’t use this flag, the file dialog starts in the
current working directory.

The string may contain a path name, and must contain a wildcard file
specifier. (for example "*.cc" or "/usr/u/*").

• The command returns the path of the file the user chose, or an empty
string if the user cancels the file dialog.

fileDialog -directoryMask "*.txt"

Getting a string with promptDialog

The promptDialog command creates a window with a message to the
user, a text box, and any number of buttons.

• Use the title flag to set the window title. Use the message flag to set
the string that appears above the text box and buttons.

• Use the text flag to set the inital contents of the text box. Use the
scrollableField flag to change the text box to a multi-line scroll
field.

• Add a button flag with the title string of each button.

• Use the defaultButton flag to specify which button corresponds to
the enter key.

• Use the cancelButton flag to specify which button corresponds to the
esc key.

• If the user clicks a button, the name of the button is returned.

• If the user clicks the window’s close button, the string specified by the
dismissString flag is returned.

• After the command returns, use the command again with query flag
and the text flag to get the text the user entered.
MEL and Expressions

88

10 | I/O and interaction

 > Reading and writing files
// Show the dialog box:

string $text;

string $result = `promptDialog

-title "Rename Object"

-message "Enter Name:"

-button "OK" -button "Cancel"

-defaultButton "OK" -cancelButton "Cancel"

-dismissString "Cancel"`;

// Use the command again in query mode to

// get the text:

if ($result == "OK") {

$text = `promptDialog -query -text`;

}

Reading and writing files

The fopen, fwrite, fprint, fread, and fclose commands let you work with
files.

Opening a file

Before you can read from or write to a file, you need to open the file using
the fopen function.

fopen takes two string arguments:

• A string containing a filename.

• An optional mode string indicating whether you want to open the file
to read (“r”), write (“w”), or append (“a”).

If you add a “+” character to the mode character, Maya opens the file
to both read and write.

If you omit this argument it defaults to read.

fopen returns a file handle. The file handle represents the open file. You
should save this value in a variable so you can work with the open file
using other commands such as fprint.

$fileId = fopen($exampleFileName,"r");
MEL and Expressions

89

10 | I/O and interaction
 > Reading and writing files
Reading from a file

Once you have opened a file to read, you can actually read data from the
file using one of the following commands:

For example:

// Read a file one line at a time

$fileId=fopen($exampleFileName,"r");

string $nextLine = `fgetline $fileId`;

while (size($nextLine) > 0) {

print ($nextLine);

$nextLine = `fgetline $fileId`;

}

Testing for the end of the file

The feof <fileID> function returns non-zero if you are at the end of the
file.

string $nextWord = `fgetword $fileId`;

while (!feof($fileId)) {

 print ($nextWord + "\n");

 $nextWord = fgetword($fileId);

}

If an empty file is opened, feof will not detect that it is at the end of the file
until at least one read is performed.

Writing to a file

Once you have opened a file to write or append, you can actually write
data to the file using one of the following commands:

To... Use this command

Read a line (read to the next newline). fgetline(fileID)

Read a word (read to the next
whitespace).

fgetword(fileID)

Read a single value. fread (fileID, type)

To... Use this command

Print to the file using an equivalent to
the print command.

fprint(fileID,string)
MEL and Expressions

90

10 | I/O and interaction

 > Testing file existence, permissions, and other properties
For example:

$fileId = fopen($exampleFileName,"w");

fprint($fileId,"Hello there\n");

fclose($fileId);

The fwrite command writes the data argument in binary format to a file. It
writes strings as ASCII terminating with a NULL character. You should
not use fwrite for writing to a text file or for writing raw bytes unless you
want a NULL character on the end.

Managing an open file

To flush the write buffer without closing the file, use fflush(fileID).

To reset the file position pointer to the beginning of the file, use
frewind(fileID).

Closing an open file

To close an open file, use fclose(fileID).

Testing file existence, permissions, and other
properties

Use the filetest command to test various properties of a file handle.

You must use filetest with command syntax because the command
requires a flag. Specify the flag you want to test, and give a file handle:

// Test whether the temp directory exists

//

string $tmpDir = `internalVar -userTmpDir`;

filetest -d $tmpDir;

// Result: 1 //

Refer to the MEL reference page for filetest for a full listing of the flags
you can test.

Manipulating files

Use the sysFile command to perform common filesystem operations on
files.

Write binary data. fwrite(fileID, value)

To... Use this command
MEL and Expressions

91

10 | I/O and interaction
 > Manipulating files
For example:

// Move a scene to the new directory (we can rename it at the same time).
sysFile -rename "C:/temp/mayaStuff/myScene.mb.trash"

"C:/maya/projects/default/scenes/myScene.mb"; // Windows
sysFile -rename "/tmp/mayaStuff/myScene.mb.trash"

"/maya/projects/default/scenes/myScene.mb"; // Unix

// Rename the scene to "myScene.will.be.deleted"
sysFile -rename "C:/temp/mayaStuff/myScene.will.be.deleted"

"C:/temp/mayaStuff/myScene.mb.trash"; // Windows
sysFile -rename "/tmp/mayaStuff/myScene.will.be.deleted"

"/tmp/mayaStuff/myScene.mb.trash"; // Unix

// Copy a scene to the new directory
string $destWindows = "C:/temp/mayaStuff/myScene.mb.trash";
string $srcWindows = "C:/maya/projects/default/scenes/myScene.mb";
sysFile -copy $destWindows $srcWindows; // Windows

string $destUnix = "/tmp/mayaStuff/myScene.mb.trash";
string $srcUnix = "maya/projects/default/scenes/myScene.mb";
sysFile -copy $destUnix $srcUnix; // Unix

// Delete the scene
sysFile -delete "C:/temp/mayaStuff/myScene.will.be.deleted"; // Windows
sysFile -delete "/tmp/mayaStuff/myScene.will.be.deleted"; // Unix

Manipulating the open scene file

The file command lets you perform various functions from the File menu,
functions for manipulating files and references and their contents, and
functions for testing files.

Refer to the MEL reference page for file for a full listing of its options.

To... Use this command

Delete a file sysFile -delete “filename”

Rename a file sysFile -rename “filename” “newname”

Move a file sysFile -move “filename” “newname”

(Identical to rename.)

Copy a file sysFile -copy “filename” “newname”
MEL and Expressions

92

10 | I/O and interaction

 > Working with directories
Working with directories

For example:

// List the contents of the user's projects directory

getFileList -folder `internalVar -userWorkspaceDir`;

// Store all MEL files in the user's script directory

// in an array variable

array $scripts = ‘getFileList -folder `internalVar -

userScriptDir` -filespec "*.mel"‘;

// Create a new directory path

sysFile -makeDir "C:/temp/mayaStuff"; // Windows

sysFile -makeDir "/tmp/mayaStuff"; // Unix

Executing system commands

Use the system command to pass a string to the operating system to be
executed. The operating system command’s output is returned.

For example:

system "ls -l";

On UNIX-based systems (not Windows) this will print the current
directory to the Script editor in long format. The Windows equivalent is:

system "dir";

Background processes (non-Windows only)

To run a command in the background (that is, do a non-blocking system
call), you must redirect all of the command’s output:

system("cmd >/dev/null 2>&1 &");

Of course, you can send output to somewhere other than /dev/null if
you like.

To... Use this command

Change the current working
directory.

chdir “path”

Return an array of filenames
in a directory.

getFileList

Make a new directory. sysFile -makeDir “dirname”
MEL and Expressions

93

10 | I/O and interaction
 > Reading from and writing to system command pipes
Filenames

You should always put pathnames in quotation marks. Especially on Mac
OS, filenames can contain characters which have meaning on the
command line, such as spaces, | (pipe), > (redirection), and & (run as
background).

For example, instead of this:

string $fileName = {get this from somewhere};

system ("some_command " + $fileName);

...use this instead:

system ("some_command \"" + $fileName + "\"");

This makes the code platform-independent.

Line ends

To apply a UNIX command to the contents of a mayaAscii scene file on
Mac OS X, convert the scene file to have UNIX line ends. You can do this
with the Mac OS X tounix command.

For example, if your MEL code looks like this on another platform:

string $fileName = {get this from somewhere};

string $result = system ("grep something" + $fileName);

...use this instead:

if ('about -mac') {

system("tounix \"" + $fileName + "\"");

}

string $result = system ("grep something \"" + $fileName +

"\"");

Reading from and writing to system
command pipes

You can use the popen and pclose commands to read and write data
through a pipe to a system command as if it were a file.

Like fopen, popen opens a pipe for reading or writing depending on the
second mode argument ("r" or "w") and returns a file handle representing
the pipe. You can then use the standard file functions for reading and
writing on the pipe’s file handle (fprint, fgetword, fgetline, etc.).

If popen returns 0 something went wrong with the system command.

For example:

// Unix specific example. Note: if you really want to get a directory
// listing, please use the "getFileList" command instead. This is just
MEL and Expressions

94

10 | I/O and interaction

 > Calling MEL from AppleScript and vice-versa
// used as a simple example.
//
$pipe = popen("ls -1", "r");
string $dirList[];
while (!feof($pipe)) {
 $dirList[size($dirList)] = fgetline($pipe);
}
pclose($pipe);

// Windows specific example. Note: if you really want to get a directory
// listing, please use the "getFileList" command instead. This is just
// used as a simple example.
//
$pipe = popen("DIR /B", "r");
string $dirList[];
while (!feof($pipe)) {
 $dirList[size($dirList)] = fgetline($pipe);
}
pclose($pipe);

Calling MEL from AppleScript and vice-versa

You can pass MEL commands to Maya in an Open Scripting Architecture
language (usually AppleScript) by telling Maya to execute a string. For
example:

// This is AppleScript code

tell application "Maya"

execute "sphere;"

end tell

The execute verb returns the MEL result.

You can call AppleScript from MEL indirectly using the Mac OS
osascript command.

// This is MEL code

system("osascript \"tell application finder to activate\"");

This method of calling AppleScript through the command line through
MEL’s system command can be tricky, because each level has its own
special characters and quoting rules. Use the osascript command’s -i
(include) flag to get the script from a file instead of the command line.

Read the osascript manual page (man osascript) or search Apple’s
Knowledge Base for more information on using the osascript command.

Also, search Apple’s Knowledge Base for the latest information regarding
AppleScripts support of HFS (:) and POSIX (/) path separators.
MEL and Expressions

95

10 | I/O and interaction
 > Calling MEL from AppleScript and vice-versa
MEL and Expressions

96

11 | Debugging, optimizing, and troubleshooting

 > Signaling with error, warning, and trace
11 Debugging,
optimizing, and
troubleshooting

MEL debugging features

Signaling with error, warning, and trace

error

The error command prints an error message in standard MEL format and
stops the script:

$l = `ls -lights`;

if (size($l) == 0) {

error "No lights in scene";

}

This will produce the following output and stop execution:

// Error: No lights in scene //

warning

The warning command prints a warning message in standard MEL
format but does not stop the script:

$l = `ls -lights`;

if (size($l) == 0) {

error "No lights in scene";

}

This will produce the following output:

// Warning: No lights in scene //

The error and warning commands have a flag -showLineNumber. Set the
flag to true to show the file and line number in which the warning or error
occurred. Set the flag to false to suppress line numbers.

warning -showLineNumber true "No lights";

// Warning: file: C:\test.mel line 2: No lights //
MEL and Expressions

97

11 | Debugging, optimizing, and troubleshooting
 > Handling errors with catch and catchQuiet
trace

The trace command prints a string to Maya’s standard error output.

trace “Entering the loop”;

while ($i < 10) {

setAttr(“nurbsSphere”+$i+”.translateX”,5);

}

trace “Exiting the loop”;

Use the -where flag to show the file and line number in which the trace
command occurred in the output.

Handling errors with catch and catchQuiet

The catch statement evaluates an expression and returns true if the
expression causes an error, but does not stop the script (as an error
outside a catch would).

This lets you test the execution of an assignment or command in an if
statement and run error handling code if catch returns true.

int $divisor = 0;

if (catch ($factor = 42/$divisor)) {

 print "Attempt to divide by zero caught\n";

}

When MEL encounters the divide by zero error inside the catch
statement, it automatically prints an error message but does not stop
execution. The catch statement returns true and so the if statement
executes the block.

To catch an error without having MEL automatically print an error, use
the catchQuiet statement instead of catch.

Showing error line numbers

If you have problems executing a long script because of an error, turn on
script line numbers so you can find the error more easily.

To display the line numbers of erring statements, select Edit > Show Line
Numbers from the Script editor.
MEL and Expressions

98

11 | Debugging, optimizing, and troubleshooting

 > Showing the calling stack when an error occurs
To turn line numbers off, select Edit > Show Line Numbers again from the
Script editor menu.

Maya saves the Show Line Numbers setting for future work sessions. If
you turn on line numbers, they appear in the Script editor the next time
you run Maya.

Showing the calling stack when an error
occurs

When you start creating complex and reusable scripts, you often get a
situation when various procedures defined in various scripts are calling
each other.

When an error occurs, it’s often very useful to know the calling stack: the
order of which procedure called which procedure called which procedure,
down to the procedure that caused the error. This can help identify the
conditions that give rise to the error.

To show the stack trace window, in the Script editor choose Script > Show
Stack Trace.

When an error occurs, Maya displays the file’s stack trace in a window
and an error message in the Script editor.

 The script line
number is listed
next to the error
message.
MEL and Expressions

99

11 | Debugging, optimizing, and troubleshooting
 > Optimize scripts
You can also turn stack tracing on or off in MEL using the stackTrace
command:

// Have the stack trace window show up on script errors

stackTrace -state on;

// No stack trace

stackTrace -state off;

Optimizing script and expression
speed

Optimize scripts

Specify the size of an array in a declaration whenever
it’s known

For example, use float $a[42]; instead of float $a[];. All arrays
grow as required, so if you know don’t know exactly how many elements
an array might hold, but you know a reasonable maximum, use it.
Without a size specified, MEL uses a default size of 16 elements for
allocating memory for arrays. For example, use

float $a[50]; $a=‘someCmd‘;

where someCmd would typically return less than 50 things. For the same
reason, use explicit size when initializing arrays. For example, use

float $a[15] = {1,2,3,4,5,6,7,8,9,10,11,12,13,14,15};
MEL and Expressions

100

11 | Debugging, optimizing, and troubleshooting

 > Optimize expressions
Using explicit declaration will produce faster
executables

When MEL has complete type information at compile time, it can produce
executables which use functions specific to these data types to run the
script. If MEL cannot determine a variable’s type at compile time, it must
defer the type checking to runtime. This is an overhead which is avoided
if type information is known at compile time.

Optimize expressions

Maya does calculations internally in centimeters, radians, and seconds. A
radian is an angular unit commonly used in mathematics. It equals 180
degrees divided by pi, or roughly 57.3 degrees.

When you assign a number to an attribute whose value is a measurement
unit, the expression interprets the number, by default, as the appropriate
unit selected in the Settings category of the Preferences window. By
default, the unit type selections are centimeters, degrees, and 24 frames
per second.

If a measurement unit you’ve chosen differs from the corresponding
internal unit, Maya converts the number to the appropriate internal unit
to do the assignment.

Example

Suppose you’ve selected degrees from the Angular menu in the Settings
part of the Preferences window. You then write this expression for an
object named Ball:

Ball.rotateZ = 10;

Maya reads the 10 as being 10 degrees, then converts the value to the
appropriate number of radians to make the assignment to Ball’s rotateZ
attribute. The conversion happens automatically. From your standpoint,
Maya is simply rotating Ball 10 degrees.

In non-particle expressions, these automatic conversions affect Maya
performance. Because the expression executes slower, Maya slows when
you play, rewind, or otherwise change the animation time. Saving,
opening, and other file operations on the scene containing the expression
are also slower.

To boost Maya performance, you can turn off conversion to internal units.
If you do so, you must convert units in expression statements.

To speed expression execution:

1 Display the Expression Editor.

2 Select one of these Convert Units options:
MEL and Expressions

101

11 | Debugging, optimizing, and troubleshooting
 > Optimize expressions
None

Converts no units. You must assign values to attributes as centimeters,
radians, or seconds, as appropriate. Execution is fastest with this
option.

Angular Only

Converts angular units, but no others. You must assign values to
attributes as centimeters, seconds, and degrees, as appropriate. (This
assumes you’re using the default degree setting in the Preferences. If
you’ve selected radians, you must enter radians.)

If you’re confused by converting degrees to radians, select this option.
Execution is fast with this option—unless the expression has many
angular values.

To return to default conversions:

1 Display the Expression Editor.

2 For the Convert Units option, select All.

This lets you enter all measurement numbers in the same units
specified in the Units preference settings. Execution is slowest with
this selection, but expression writing is simplest.

You can set a different conversion option for each expression.

Example

Suppose, in the Preferences window, you’ve set Linear units to
millimeters and Angular units to degrees. You then write the following
expression:

Ball.translateX = 5;

Ball.rotateZ = 10;

All causes Maya to read 5 as millimeters and 10 as degrees.

None causes Maya to read 5 as centimeters and 10 as radians.

Angular causes Maya to read 5 as centimeters and 10 as degrees.

To convert units in an expression statement:

You must convert the units mathematically in a statement.

Examples

Suppose, in the Preferences window, you’ve set Linear units to
millimeters and Angular units to degrees.

In the Expression Editor you set the Convert Units option to None and
enter this expression:
MEL and Expressions

102

11 | Debugging, optimizing, and troubleshooting

 > Optimize expressions
Ball.translateX = 5;

Ball.rotateZ = 10;

None causes Maya to read 5 as centimeters and 10 as radians, which is not
the result you’re seeking.

To assign 5 millimeters to Ball’s translateX attribute, you must convert 5 to
the appropriate number of centimeters. To assign 10 degrees to Ball’s
rotateZ attribute, you must convert 10 to the appropriate number of
radians.

The following statements do this:

Ball.translateX = 5.0 / 10.0;

Ball.rotateZ = 10.0 / 57.3;

There are 10 millimeters per centimeter. In other words, a millimeter is a
centimeter divided by 10. So 5 millimeters equals 5 centimeters divided by
10. You therefore use the operation 5.0 / 10.0.

There are 57.3 degrees per radian. In other words, a degree is a radian
divided by 57.3. So 10 degrees equals 10 radians divided by 57.3. You
therefore use the value 10.0 / 57.3.

If you need a more precise conversion to radians, divide a degree by
57.29578 instead of 57.3. You can instead use the deg_to_rad function as
follows:

Ball.rotateZ = deg_to_rad(10.0);

The deg_to_rad function converts 10.0 degrees to a precise radian
equivalent. See ”deg_to_rad” on page 239 for details.

Turning off unit conversion affects only expressions. It doesn’t affect other
Maya commands, options, or displays. For instance, the preceding
example expression assigns centimeters to translateX and radians to
rotateZ. The Channel Box still displays values for these attributes in
millimeters and degrees. It displays values in whatever units you select in
the Settings part of the Preferences window.

Note that you can’t turn off unit conversion for particle shape node
expressions. Maya handles unit conversion differently for such
expressions with little impact on performance.

ImportantWhen you divide floating point attributes or variables, enter the
floating point value 5.0 for an even number such as 5. This ensures
Maya won’t try to convert the result to int.
MEL and Expressions

103

11 | Debugging, optimizing, and troubleshooting
 > Reduce redundant expression execution
Reduce redundant expression execution

If your expression has redundant statement calculations, you can turn off
Always Evaluate to speed up scrubbing and playback of your animation.
To understand when this feature is useful, you must understand the
subtle details of expression execution.

An expression generally executes whenever the animation time changes.
An expression also executes whenever an attribute that’s read by the
expression changes value, and either of the following two actions occurs:

• Some other node in Maya uses the value of an attribute the expression
writes to. For example, a deformer or shader uses its value.

• Maya needs the value of an attribute to which it writes in order to
redraw the workspace contents.

In this context, the predefined variables time and frame are also
considered attributes the expression reads.

Suppose you write an expression that moves a NURBS sphere along the
Y-axis at twice the current value of its X-axis translation:

nurbsSphere1.translateY = 2 * nurbsSphere1.translateX;

If you use the Move tool in the workspace to drag the sphere in an X-axis
direction, Maya executes the expression for each incremental change to
the translateX attribute as you drag.

Dragging the sphere in the X direction changes the value of the translateX
attribute in the expression. As you drag the sphere and Maya updates the
workspace display, the value of the translateY attribute changes in the
expression. This makes the expression execute.

If you turn Always Evaluate off, an expression won’t execute if it contains
only print function statements, variable assignments, or assignments that
do not read attribute values.

Example

global float $BallHeight = 5;

print($BallHeight+"\n");

nurbsSphere1.tx = rand(1);

print(nurbsSphere1.tx+"\n");

The first statement declares and assigns a value to the variable
$BallHeight, which is not an attribute. The next statement prints the
$BallHeight but assigns no value to an attribute.

The next statement assigns an attribute a value, but the value is generated
by the random number function rand. This function doesn’t read an
attribute value. For details on the rand function, see ”rand” on page 246.
MEL and Expressions

104

11 | Debugging, optimizing, and troubleshooting

 > Accessing global variables
The last statement reads and prints the value of an attribute, but doesn’t
assign a value to an attribute.

None of these actions causes the expression to execute when Always
Evaluate is off.

Always Evaluate affects only the expression you’re creating or editing.
You can turn it on for one expression and off for another.

For most animations, expressions execute regardless of whether Always
Evaluate is on. If in doubt, leave it on.

Troubleshooting

Accessing global variables

To reference a global variable, you must explicitly declare it in the scope
in which it is used

This is necessary because MEL allows the implicit declaration of variables
through assignment. For example,

$flag = 42;

implicitly declares $flag to be an integer defined within the current
scope.

MEL can’t discern whether the you mean to reference a global variable
$flag or to define your own locally. Requiring you to explicitly declare
globals before referencing them relieves you from having to be aware of
all the global data that can exist within Maya’s system.

Initialization is different from assignment

This distinction is really only important for global data.

For non-global data, initialization works exactly the same as assignment
because it will get executed every time the script or procedure containing
it gets executed.

Global initialization occurs only once and takes places before any
execution occurs. For this reason, the initialized value must be a compile-
time constant.

Error: line <<XX>>: Cannot find procedure “<<proc
name>>”?

The error message

//// Error: line 1: Cannot find procedure "fred". //
MEL and Expressions

105

11 | Debugging, optimizing, and troubleshooting
 > Common expression errors
usually means that MEL cannot locate the procedure that the script or
command you are executing requires. In other words, either the procedure
has not been highlighted and executed in the Script editor, the name was
misspelled, or it doesn’t exist in any of the scripts in your script path.

It can also mean that there has not been enough information supplied to
the script or command in order for it to work properly.

The first thing to do is to make sure that the procedure exists either on
disk in your ~/maya/scripts directory (or script path). Check to make
sure the spelling of the procedure name matches the spelling that you are
executing.

If you have confirmed that it exists in a script or has been sourced into
memory via the Script editor. The next thing to check is the argument list
of the procedure that is reporting the problem.

Common expression errors

There are two types of errors you can make when writing expressions:
syntax errors and logic errors. Syntax errors include mistakes in spelling,
incomplete attribute names, omitted semicolons, and other oversights that
prevent the expression from compiling and executing. For syntax errors,
Maya explains the error in a message to the Script editor.

Logic errors are mistakes in your reasoning that cause unexpected
animation results. The syntax of your expression is valid, but errors in
your logic prevent Maya from doing what you intended. In the worst
cases, Maya might halt operation because your statements lock it into a
permanent loop.

Because Maya can’t detect logic errors, it can’t display error messages. As
such, these errors are harder to find and require more analysis to solve. To
resolve logic errors, it’s often helpful to display the contents of relevant
attributes and variables. See ”Display attribute and variable contents” on
page 198.

Executing MEL commands in an expression
can have unintended side effects

You can execute MEL commands and procedures in an expression.
However, if you make or break connections or add or delete nodes, your
scene might malfunction.

Rewinding your animation does not undo MEL command execution in an
expression. For instance, if your expression executes MEL commands to
create a pair of spheres, rewinding doesn’t delete the spheres. Moreover,
playing the scene again creates another pair of spheres.
MEL and Expressions

106

11 | Debugging, optimizing, and troubleshooting

 > Error message format
Though you can undo MEL commands by selecting Edit > Undo, this
might not work if your scene is malfunctioning. Note also that you can
undo only as many operations as is allowed by the Queue Size setting. To
set the Queue Size, select Window > Settings/Preferences > Preferences
and display the Advanced part of the Preferences window.

When you execute a command from the Command Line, status
information appears in the Script editor and the Command Line’s
response area. This information is not displayed when a command
executes in an expression.

Error message format

A syntax error displays one or more messages in the Script editor.

You’ll often need to scroll or increase the size of the Script editor to see an
entire message.

When the Script editor displays a syntax error, the response area of the
Command Line displays the same error with a red background.
MEL and Expressions

107

11 | Debugging, optimizing, and troubleshooting
 > Common error messages
If an expression executes a valid statement after the erring statement, the
error message with the red background flashes briefly. You won’t notice it
unless you’re looking directly at it and have quick eyes.

The best way to know when an error has occurred is to look for a new
message prefixed by // Error: in the Script editor.

Before clicking the Create or Edit button to create an expression, you
might want to select Edit > Clear History in the Script editor to remove
previous messages in the window. This makes it easier to see when a new
error message appears.

Common error messages

Here are some common syntax errors and their explanations:

Attribute not found or variable missing '$': Ball.goof.

You misspelled an attribute name, the attribute doesn’t exist in the scene,
or you forgot to prefix a variable name with $.

Attribute of a particle object can only be used with

dynExpression command: particleShape1.position

You used a particle array attribute in the expression, but a particle shape
node is not the Selected Object in the Expression Editor. A particle shape
node must be selected to use particle array attributes. A particle array
attribute is also called a per particle attribute.

Attribute already controlled by an expression, keyframe, or

other connection: Balloon.tx.

You tried to set the value of an attribute that has already been set by one
of these techniques:

• set driven key

• constraint

• motion path

• another expression

Command line’s response area turns red if error occurs
MEL and Expressions

108

11 | Debugging, optimizing, and troubleshooting

 > Common error messages
• any other direct connection

More than one attribute name matches. Must use unique path

name: Ball.tx.

You used an object.attribute name that exists in two or more parent objects.
Two objects in a scene can have the same object name if they have
different parent objects.

For example, a scene might have a child of GroupA named Ball.tx and a
different child of GroupB named Ball.tx. If you write a statement such as
“Ball.tx = time;”, Maya won’t know which Ball.tx to set.

To eliminate the error in this example, you must enter the full pathname
of the attribute as GroupA|Ball.tx. The pipe symbol (|) specifies that the
object to its left is the parent of the object on the right.

Cannot set 'time' or 'frame'

You can read the value of the predefined time and frame variables, but
you cannot set them.

Attributes must be of float, integer, or boolean types:

Ball.worldMatrix

You tried to set or read the value of an attribute that was a string or
matrix type. For instance, you might have tried to use an attribute named
translate rather than translateX, translateY, or translateZ attribute.

In the error message above, worldMatrix is an attribute that exists for
transforms, but you can’t use it. It’s for Maya’s internal use.

Cannot divide by zero

You tried to divide by an attribute or variable that equals 0. This typically
happens in an expression statement that divides by an object’s translateX,
translateY, or translateZ attribute when the Snap to grids button is on and
you drag the object to past the X-, Y- or Z-axis. When Snap to grids is on,
the translateX, translateY, or translateZ attribute becomes exactly equal to
0 at the point where you drag the object across the axis.

To prevent this error, turn Snap to grids off. With snapping off, the
attribute is unlikely to become exactly 0 as you drag across the axis.

Note If you compile an expression for a particle shape node and see
the same error message once for each particle in the object, it’s
likely that some attribute name, variable, or function is
undefined or misspelled.
MEL and Expressions

109

11 | Debugging, optimizing, and troubleshooting
 > Common error messages
MEL and Expressions

110

12 Creating Interfaces
Creating user interfaces

ELF commands

Most ELF commands create and modify UI elements. The commands that
create UI elements are named after the type of element that they create.
They accept optional flags with arguments and also accept as a final
argument the name that you want to assign to the element being created
(See the Naming section). For example:

window -visible true -title "Test Window" TestWindow1;

Note that ELF UI command flags are optional, however all flags default to
a particular value. In the example above you will notice that the window
does not contain a menu bar because the default value of the “-mb/
menuBar” flag is false. ELF UI commands also have other modes where
they are not creating new elements but changing or querying existing
elements. If the flags “-e/edit”, “-q/query” or “-ex/exists” are used then
the named element will be edited, queried or tested for existence. The
following example will return the title of the window created above.

window -query -title TestWindow1;

Note that for querying no arguments are required for the flag. Only one
flag may be queried at a time as only one result can be returned at a time.
Multiple parameters can be specified with the edit flag, and the exists flag
expects only the name of the element being tested.

window -edit -title "New Title" -maximizeButton false TestWindow1;
window -exists TestWindow1;

In almost all cases, to edit or query a UI element you need to know the
name and exact type of element that you are working with. There are a
couple of special commands that relax this restriction. The “control”
command can work on any type of control and the “layout” command can
work on any type of layout.

Windows

Windows are usually the first element created when building an interface.
They contain all the other UI elements. ELF commands allow control over
window size, position, and border elements such as minimize, maximize
buttons and resize handles. Windows can optionally contain a menu bar.
Below is illustrated a typical Motif window.
MEL and Expressions

111

12 | Creating Interfaces
 > Controls
By default, when a window is created Maya will remember its name, size
and position. The next time that window is shown its size and position are
restored, overriding any arguments you may have set with the “window”
command. You may find it convenient while creating your interface to
turn off this behavior via the “UI Preferences” window or by using the
“windowPref -remove” command.

Controls

Controls are the familiar elements in windows such as buttons, check
boxes, icons, fields and sliders. These are the elements that contain the
functionality of the window. When the user presses a button or drags a
slider they expect something to happen. Commands and scripts can be
attached to the controls to be executed on user actions. Attaching will be
described in a later section.

For a list of the controls that are available, see the “UI: Controls” section of
the Command List by Function.

Layouts

Layouts are UI elements that contain and arrange other UI elements. They
are the principle means of controlling formatting in ELF windows. There
are a number of different specialized layouts that arrange their contents in
particular ways. For example a column layout arranges its contents
vertically one after another in a single column, like a list, whereas a row
layout arranges its contents horizontally beside each other. There are other
layouts for other arrangement schemes. Layouts can contain other layouts
to achieve a wide variety of appearances. All commands that create
layouts end in “Layout” e.g., “gridLayout”.
MEL and Expressions

112

12 | Creating Interfaces

 > Layouts
For a list of the layouts that are available, see the “UI: Layouts” section of
the Command List by Function.

The “frameLayout”, “tabLayout”, and “menuBarLayout” commands have
extra capabilities not necessarily related to positioning their children.

Frame layout

A frame layout has an expand/collapse option in which it has a button
beside its title to toggle its state. When in the collapsed state the contents
of the frame layout are hidden and the layout collapses to take up very
little space. The frameLayout callbacks for expanding or collapsing layout
are only called if the layout is collapsed or uncollapsed through the visible
interface (for example, the small arrow icon the user can click on.) Using
code such as the following will not invoke the callback:

frameLayout -e -collapse true $theFrame;

Having callbacks work in this way is the only way we can allow things to
get set up correctly when the window is first being created without
getting into infinite loops. If a callback is needed and you know it is safe
then call it directly at the same time you do the collapse or expand.

Tab layout

A tab layout contains a number of other layouts, of which only one is
displayed at a time. Each of the child layouts have a file folder like tab that
can be selected to make that layout the visible one.

Menu bar layout

A menu bar layout allows you to insert a menu bar anywhere in your
window.
MEL and Expressions

113

12 | Creating Interfaces
 > Layouts
Form layout

One of the more powerful layouts is the “formLayout”. This layout
supports absolute and relative positioning of child controls. For example,
you may specify that a control’s position remains fixed while its
dimensions are relative to the size of the window. This concept is best
illustrated with the following example.

window -widthHeight 300 200 TestWindow2;
 string $form = ‘formLayout -numberOfDivisions 100‘;
 string $b1 = ‘button -label "A"‘;
 string $b2 = ‘button -label "B"‘;
 string $b3 = ‘button -label "C"‘;
 string $b4 = ‘button -label "D"‘;
 string $b5 = ‘button -label "E"‘;

 formLayout -edit
 -attachForm $b1 "top" 5
 -attachForm $b1 "left" 5
 -attachControl $b1 "bottom" 5 $b2
 -attachPosition $b1 "right" 0 75

 -attachNone $b2 "top"
 -attachForm $b2 "left" 5
 -attachForm $b2 "bottom" 5
 -attachForm $b2 "right" 5

 -attachOppositeControl $b3 "top" 0 $b1
 -attachPosition $b3 "left" 5 75
 -attachNone $b3 "bottom"
 -attachForm $b3 "right" 5

 -attachControl $b4 "top" 0 $b3
 -attachOppositeControl $b4 "left" 0 $b3
 -attachNone $b4 "bottom"
 -attachOppositeControl $b4 "right" 0 $b3

 -attachControl $b5 "top" 0 $b4
 -attachOppositeControl $b5 "left" 0 $b4
 -attachNone $b5 "bottom"
 -attachOppositeControl $b5 "right" 0 $b4

 $form;

showWindow TestWindow2;

The resulting window has button A fixed to the top left corner of the
window, while it’s bottom edge is attached to button B and it’s right edge
is attached such that its width is 75% of the window’s width. With these
MEL and Expressions

114

12 | Creating Interfaces

 > Layouts
attachments button A will grow or shrink as appropriate when the
window is resized. Also note the attachments on buttons D and E will
align their left and right edges to the button above.

Most of the formLayout attachment flags operate as you would expect
them to. AttachOppositeForm and attachOppositeControl require some
extra explanation. As child controls are added to the form they do not
have a position but do have an order and thus an implied position relative
to one another. In terms of the attachControl flag the “natural” place for
the top of the second child to connect to is the bottom of the first child.
The “natural” place for the left edge of the second child to connect to is
the right edge of the first one.

Thus the second child is, in a sense, right of and below the first, the third
is right of and below the second and so on.

Consider now that we want to make the second child attach beside the
first one and that it must be a relative attachment so that child 2 will stay
beside child 1 when the form’s size changes. The regular attachControl
lets us connect the left of child 2 to the right edge of child 1, attachControl
child2 “left” 0 child1; says to attach the left edge of child 2 to the edge of
child 1 that is “nearest” in the left-right direction with a spacing offset of 0
pixels. Remembering that the implicit order has child 2 positioned
immediately right of child 1 the “nearest” edge is then child 1’s right edge.

But attachControl can’t make the top of child 2 line up with the top of
child 1 because of the implied ordering that attachControl follows. That is
when attachOppositeControl is used.

attachOppositeControl child2 "top" 0 child1;

says to attach the top edge of child 2 to the edge of child 1 farthest from
child2, its top edge, with a spacing offset of 0 pixels. The form knows to
place two objects with the same top edge position side by side.

window TestWindow3;
string $form = ‘formLayout‘;
string $b1 = ‘button -label "AAAAAAAAA"‘;
string $b2 = ‘button -label "BBBBB"‘;
string $b3 = ‘button -label "CCCC"‘;

formLayout -edit
 -attachForm $b1 "top" 5
 -attachForm $b1 "left" 5

 -attachControl $b2 "top" 0 $b1
 -attachControl $b2 "left" 5 $b1
 -attachNone $b2 "right"
 -attachNone $b2 "bottom"

 -attachControl $b3 "top" 0 $b2
MEL and Expressions

115

12 | Creating Interfaces
 > Layouts
 -attachControl $b3 "left" 0 $b2
 -attachNone $b3 "right"
 -attachNone $b3 "bottom"
 $form;
showWindow TestWindow3;

Next we see the action of the attachOppositeControl flag on the position
of the second button. Note that as long as the first button is attached to the
top of the form this use of attachOppositeControl is the same as doing an
attachForm $b2 “top”. If button 1 was attached relative to a control that
could move the use of attachOppositeControl here would be essential
here.

window TestWindow4;
string $form = ‘formLayout‘;
string $b1 = ‘button -label "AAAAAAAAA"‘;
string $b2 = ‘button -label "BBBBB"‘;
string $b3 = ‘button -label "CCCC"‘;

formLayout -edit
 -attachForm $b1 "top" 5
 -attachForm $b1 "left" 5

 -attachOppositeControl $b2 "top" 0 $b1
 -attachControl $b2 "left" 5 $b1
 -attachNone $b2 "right"
 -attachNone $b2 "bottom"

 -attachControl $b3 "top" 0 $b2
 -attachControl $b3 "left" 5 $b2
 -attachNone $b3 "right"
 -attachNone $b3 "bottom"
 $form;
showWindow TestWindow4;

Now we use attachOppositeControl in the other direction to make the
third button fit directly under the second.

window TestWindow5;
string $form = ‘formLayout‘;
string $b1 = ‘button -label "AAAAAAAAA"‘;
string $b2 = ‘button -label "BBBBB"‘;
string $b3 = ‘button -label "CCCC"‘;

formLayout -edit
 -attachForm $b1 "top" 5
 -attachForm $b1 "left" 5

 -attachOppositeControl $b2 "top" 0 $b1
 -attachControl $b2 "left" 5 $b1
 -attachNone $b2 "right"
 -attachNone $b2 "bottom"
MEL and Expressions

116

12 | Creating Interfaces

 > Layouts
 -attachControl $b3 "top" 0 $b2
 -attachOppositeControl $b3 "left" 0 $b2
 -attachNone $b3 "right"
 -attachNone $b3 "bottom"
 $form;
showWindow TestWindow5;

And to have the third button line up below the first and extend over as far
as the left edge of the second we do the following:

window TestWindow6;
string $form = ‘formLayout‘;
string $b1 = ‘button -label "AAAAAAAAA"‘;
string $b2 = ‘button -label "BBBBB"‘;
string $b3 = ‘button -label "CCCC"‘;

formLayout -edit
 -attachForm $b1 "top" 5
 -attachForm $b1 "left" 5

 -attachOppositeControl $b2 "top" 0 $b1
 -attachControl $b2 "left" 5 $b1
 -attachNone $b2 "right"
 -attachNone $b2 "bottom"

 -attachControl $b3 "top" 0 $b2
 -attachForm $b3 "left" 5
 -attachControl $b3 "right" 0 $b2
 -attachNone $b3 "bottom"
 $form;
showWindow TestWindow6;

Note that now that the “attachForm $b3 “left” 5" places button 3 to the left
of button 2 the nearest side for the “-attachControl $b3 “right” 0 $b2” is
now button 2’s left edge. And finally, we want the third button to run
from the left edge of button 1 to the right edge of button 2.

window TestWindow7;
string $form = ‘formLayout‘;
string $b1 = ‘button -label "AAAAAAAAA"‘;
string $b2 = ‘button -label "BBBBB"‘;
string $b3 = ‘button -label "CCCC"‘;

formLayout -edit
 -attachForm $b1 "top" 5
 -attachForm $b1 "left" 5

 -attachOppositeControl $b2 "top" 0 $b1
 -attachControl $b2 "left" 5 $b1
 -attachNone $b2 "right"
 -attachNone $b2 "bottom"
MEL and Expressions

117

12 | Creating Interfaces
 > Groups
 -attachControl $b3 "top" 0 $b2
 -attachOppositeControl $b3 "left" 0 $b1
 -attachOppositeControl $b3 "right" 0 $b2
 -attachNone $b3 "bottom"
 $form;
showWindow TestWindow7;

Groups

Some controls often appear together in applications. For example a float
slider often has a field beside it to indicate its value, or an editable field
often has non-editable text beside it indicating the nature of the field.
Groups in ELF are collections of controls that are bundled together within
one command for convenience. Using groups is more efficient and they
also take advantage of ELF’s higher level formatting functions that will be
described later. Anything that a group command creates can be created
using the individual commands of its component elements. All commands
that create groups end in “Grp” e.g., “floatFieldGrp”.

Menus

Menus appear in a menu bar at the top of a window or in a menu bar
layout. They may also be attached to any control or layout by using the
“popupMenu” command. Menus contain menu items and can be
hierarchical i.e., a menu item can contain another sub-menu of its own.
Menus also have commands or scripts attached to them so that when
selected some action will occur. Note that while an option menu control
(see, the documentation for the “optionMenu” command) may look
similar to menus it is a control and behaves differently. Furthermore,
neither the “menu” or “menuItem” commands are required to construct
the contents of an option menu.

For a list of the menus that are available, see the “UI: Menus” section of
the Command List by Function.
MEL and Expressions

118

12 | Creating Interfaces

 > Collections
Collections

Collections are a grouping of toggle controls that are linked together so
that only one may be selected at a time. There are currently four controls
that support this behavior: radio buttons, icon/text buttons, tool buttons
and radio button menu items. The corresponding collection commands
are: radioCollection, iconTextRadioCollection, toolCollection and
radioMenuItemCollection, respectively. The collections themselves are
only a specification of a grouping and have no visual appearance.

Parents and children

You will see the terms’parent’ and ’child’ used in relation to UI elements
and ELF commands. In this context a parent is simply a UI element that
contains other UI elements, and a child is an element that is contained
within a parent. A child of one parent may also be the parent of other
children.

Windows are the top-most parent of the hierarchy. Other elements in the
hierarchy can be layouts, controls, menus, menu items etc. The hierarchy
can be arbitrarily deep as layouts can contain other layouts and menu
items can contain sub-menus.

Default parents

To simplify creation of windows and reduce clutter in scripts ELF
commands understand the idea of default parents. This means that it is
not necessary to explicitly specify the parent for each element created.
When a window is created it will become the default parent for any
subsequent menus or controls. New UI elements will appear inside that
window until the default parent is explicitly changed (with the setParent
command) or another window is created.

There are different default parents for layouts and menus. A window is
the initial default parent for controls and if the window is created with a
menu bar then it is also the initial default parent for menus. When a
layout is created it will become the new default parent for layouts and
controls. When a menu bar layout is created it will become the new
default parent for menus. When a menu is created it will become the
default parent for menu items.

The default parent is changed either implicitly by creating a new parent or
explicitly using the “setParent” command. To change the default parent
for menus the “-m/menu” flag is used. Setting a parent to either a
window or a menu bar layout will set the default parent for both menus
and layouts. The following is a small code example that illustrates the use
of default parents for layouts.
MEL and Expressions

119

12 | Creating Interfaces
 > Parents and children
Script 1. Example of default parent layout

window ExampleWindow1;
 columnLayout;
 button -label "Button 1";
 button -label "Button 2";
 rowColumnLayout -numberOfColumns 2;
 text -label "Name:";
 textField;
 text -label "City:";
 textField;
 setParent ..;
 checkBox -label "Lights ";
 checkBox -label "Camera ";
 checkBox -label "Action ";
showWindow ExampleWindow1;

The “text” elements and the “textField” elements are children of the row
column layout. They are arranged by the row column layout to be in two
columns. If the “setParent .." command wasn’t used then the default
parent would continue to be the row column layout and the check boxes
would be laid out in two columns also. To demonstrate, the following
example is identical to the previous except that the “setParent” command
is commented out.

Script 2. Effect of setParent command on default
parent layout

window ExampleWindow2;
 columnLayout;
 button -label "Button 1";
 button -label "Button 2";
 rowColumnLayout -numberOfColumns 2;
 text -label "Name:";
 textField;
 text -label "City:";
 textField;
 //setParent ..;
 checkBox -label "Lights ";
 checkBox -label "Camera ";
 checkBox -label "Action ";
showWindow ExampleWindow2;

Note that the “setParent” command accepts “-up” and “-top” as flags to
move up the hierarchy one level or to the top of the hierarchy respectively
similar You can also explicitly specify a new default parent e.g., “setParent
<windowOrLayoutName>;”. The “setParent” command can also be
queried for the current parent e.g., “setParent -query”.

The following is a brief example that illustrates the use of default parents
for menus.
MEL and Expressions

120

12 | Creating Interfaces

 > Naming
Script 3. Sample default parent menu

window -menuBar true ExampleWindow3;
 menu -label "File" TestFileMenu;
 menuItem -label "Open" menuItem1;
 menuItem -label "Close" menuItem2;
 menuItem -label "Quit" menuItem3;

 menu -label "Edit" TestEditMenu;
 menuItem -label "Cut" menuItem1;
 menuItem -label "Copy" menuItem2;
 menuItem -label "Paste" menuItem3;

 menu -label "Options" TestOptionsMenu;
 menuItem -label "Color" -subMenu true menuItem1;
 menuItem -label "Red";
 menuItem -label "Green";
 menuItem -label "Blue";
 setParent -menu ..;

 menuItem -label "Size" -subMenu true menuItem2;
 menuItem -label "Small";
 menuItem -label "Medium";
 menuItem -label "Large";
 setParent -menu ..;
showWindow ExampleWindow3;

All commands that create UI elements also accept the “-p/parent
parentName” flag for explicit specification of that element’s parent. This
flag will always take precedence over the default parent.

Collections are treated differently. They use the current layout as a default
parent and they also accept the “-p/parent” flag to be explicitly parented.
However, collections also have the ability to span windows and have a “-
g/global” flag to select this behavior. When the “-g/global” flag is used
the collection will have no parent. Collections are parented only to
facilitate their deletion. When the parent is deleted the collection will also
be deleted. Global collections must be explicitly deleted.

Naming

Every UI element created with an ELF command has a name. The name is
necessary so that the element can be referenced after it has been created.
For example the name of a control is required to query its current value or
state. When using an ELF command to create a control the name is the last
parameter in the command. If a name is not supplied then a unique name
for the control is generated.
MEL and Expressions

121

12 | Creating Interfaces
 > UI command templates
All ELF elements, with the exception of windows, have parents that they
exist within. To avoid name conflicts with existing UI elements names
need only be unique within the scope of the parent. For example in the
script to create menus (shown above) each menu has a menu item named
“menuItem1”. To distinguish between elements with the same name the
full hierarchical path name of the element is used. For these menu items
their full names would be
“ExampleWindow3|TestFileMenu|menuItem1”,
“ExampleWindow3|TestEditMenu|menuItem1” and
“ExampleWindow3|TestOptionsMenu|menuItem1”. With the window
from Script 3 still visible, execute the following commands one at a time to
query the respective labels.

menuItem -query -label ExampleWindow3|TestFileMenu|menuItem1;
menuItem -query -label ExampleWindow3|TestEditMenu|menuItem1;
menuItem -query -label ExampleWindow3|TestOptionsMenu|menuItem1;

ELF commands that create UI elements all return the full name of that
element. Using the full name of an element will guarantee that you are
referencing the right element. If the short name for an element is used e.g.,
“menuItem1” there is the possibility that you will not be referencing the
intended element if multiple elements with the same name exist. When
using the short name ELF will first look below the current default parent
for a match. If multiple matches are found then the first one is returned.

UI command templates

Command templates are a means of specifying default parameters for ELF
commands. They are intended to support a consistent appearance in an
application’s user interface. By specifying default arguments for text
alignments, border styles, indentations, etc. an application will have a
more coherent appearance. The look of the application can be modified in
one place by modifying the default arguments in the command templates.

A single template can hold the defaults for any number of ELF commands.
Multiple templates can exist holding different sets of default parameters.
During execution the default parameters are transparently added to the
argument list for the commands that are part of the current template. Any
parameters that are explicitly specified in the argument list will override
the default parameters in the template. The defaults are only parsed once
when the template is created, and thereafter are kept in the parsed state
for later use.

To create a new empty command template the “uiTemplate” command is
used. Each command can add its defaults to a template using the “-dt/
defineTemplate” flag along with the specific template that it is specifying
and the parameters that it wants to have as defaults. A template is made
current with the “setUITemplate” command.
MEL and Expressions

122

12 | Creating Interfaces

 > UI command templates
Each template is named and they can be pushed and popped to change
the current template for a certain section of script. Typically a script writer
will “push” their desired command template at the beginning of a
procedure and “pop” it at the end of the procedure to restore whatever
was the previous template. If no templates are desired then it is prudent to
set the current template to “NONE” (the keyword for indicating no
current templates). Whenever a new window is created the command
template stack is cleared so pushing templates must be done after window
creation to have an effect. Commands can also utilize any existing
template without changing the current one by using the “-ut/
useTemplate” flag.

Script 4. Command templates

// Create a new template object.
//
if (!‘uiTemplate -exists TestTemplate‘) {
 uiTemplate TestTemplate;
}

// Add the command default parameters to the template.
//
frameLayout -defineTemplate TestTemplate
 -borderVisible true -labelVisible true -labelAlign "center"
 -marginWidth 5 -marginHeight 5;

button -defineTemplate TestTemplate -width 150 -label "Default Text";

// Now make a window.
//
window -title "Test Window" ExampleWindow4;

 // Make our template current
 //
 setUITemplate -pushTemplate TestTemplate;

 frameLayout -label "Buttons" TestFrameLayout;
 columnLayout TestColumnLayout;
 button;
 button -label "Not Default Text";
 button;
 // Restore previous, if any template to clean up.
 //
 setUITemplate -popTemplate;

showWindow ExampleWindow4;
MEL and Expressions

123

12 | Creating Interfaces
 > Deleting UI elements
This window shows the results of the script. Notice how the default
parameters defined for the template were added to the subsequent
commands. For example we added the label text “Default Text” as a
default parameter for the button command, the first and third buttons had
that parameter applied as a default without explicitly specifying it.
However the second button overloaded the default argument by
specifying its own argument for the label text flag, “Not Default Text”.

The default parameters for a command can be changed at any time by
simply re-executing the command with the “-dt/defineTemplate” flag for
the specified template. Try changing the button command’s default label
string in the above template and then re-execute the window creation part
of the above example.

button -defineTemplate TestTemplate -label "New Default Text";

To prevent accidental use of a template that is still active, the “window”
command clears the current template when a window is created. Use the
“setUITemplate” command after the “window” command or it will have
no effect.

Deleting UI elements

UI Elements are deleted using the “deleteUI” command or when their
patent is deleted. For example, executing the command after running
Script 4 above will delete the column layout “TestColumnLayout” and its
button children.

deleteUI ExampleWindow4|TestFrameLayout|TestColumnLayout;

To avoid a build up of user created UI elements the default behavior for
windows is that they and their contents are deleted when they are closed.
Therefore closing a window with the Motif window menu or the “-vis/
visible false” flag will delete the window and its contents. A window can
be made persistent when it is not visible by using the “-ret/retain” flag on
creation.
MEL and Expressions

124

12 | Creating Interfaces

 > Attaching commands to UI elements
Attaching commands to UI elements

After creating a window containing all the elements that your require you
will want it to do something. Each control can execute MEL commands or
procedures triggered by user actions. The types of actions that are
supported for each control depend upon the nature of that control. For
example buttons only support the execution of a command when they are
pressed, whereas sliders support commands when they are dragged and
also when they change value. See the command documentation for the list
of callbacks supported by each control.

A simple example is to attach a command to a button. The following
command will change the button’s label text when the button is pressed.

Script 5. Simple Functionality

window -width 200 -title "Test Window" ExampleWindow5;
 columnLayout;

 // Create the button.
 //
 string $button = ‘button -label "Initial Label"‘;

 // Add the command.
 //
 string $buttonCmd;
 $buttonCmd = ("button -edit -label \"Final Label\" " + $button);
 button -edit -command $buttonCmd $button;

showWindow ExampleWindow5;

In this example a single command is attached to the button. It is equally
easy to attach procedures with arguments. The following example slightly
modifies the above example.

Script 6. Simple Functionality in a Procedure

window -title "Test Window" -widthHeight 200 100 ExampleWindow6;
 columnLayout;

 // Create the button.
 //
 string $button = ‘button -label "Initial Label"‘;

 // Add the command.
 //
 button -edit -command ("changeButtonLabel " + $button) $button;

showWindow ExampleWindow6;
MEL and Expressions

125

12 | Creating Interfaces
 > A simple window
proc changeButtonLabel (string $whichButton) {
 string $labelA;
 string $labelB;
 string $currentLabel;

 $currentLabel = ‘button -query -label $whichButton‘;
 $labelA = "New Label A";
 $labelB = "New Label B";

 if ($currentLabel != $labelA) {
 button -edit -label $labelA $whichButton;
 } else {
 button -edit -label $labelB $whichButton;
 }
}

Often the value of the control is needed as a parameter in the command
that it issues. To avoid querying the control each time its state changes, its
value can be symbolically embedded in the command as the string “#1”.
When the control changes value then the “#1” will be substituted with the
actual value of the control at the time the command is issued. Groups with
multiple values use “#2”, “#3”, etc. for the values of their different
components. For example, a float field group with three fields can
represent the values of each of those fields in its commands with “#1”,
“#2”, “#3” respectively.

Often you will want to have a control show the value of a node’s attribute
and update when that attribute changes. The easiest way to do this is to
use the ’attr’ versions of the controls. i.e. attrFieldGrp instead of
floatFieldGrp. If an ’attr’ command doesn’t exist then use the
connectControl command.

A simple window

The following is a sample window to illustrate some of the concepts
mentioned.

Script 7. A Simple Window

// Create the window.
//
window -title "Test Window" ExampleWindow7;
 columnLayout ColumnLayout;

 frameLayout -labelVisible false -marginWidth 5 -marginHeight 5;
 columnLayout;
MEL and Expressions

126

12 | Creating Interfaces

 > A simple window
 text -label "Overall Intensity";
 rowLayout -numberOfColumns 3;
 string $radioButton1, $radioButton2, $radioButton3;
 radioCollection;
 $radioButton1 = ‘radioButton -label "Low"‘;
 $radioButton2 = ‘radioButton -label "Medium"‘;
 $radioButton3 = ‘radioButton -label "High"‘;
 setParent ..;

 text -label "Light Switches";
 rowColumnLayout -numberOfColumns 2
 -columnWidth 1 130 -columnWidth 2 130;
 string $checkBox1, $checkBox2, $checkBox3, $checkBox4;
 $checkBox1 = ‘checkBox -label "Front Spot"‘;
 $checkBox2 = ‘checkBox -label "Center Spot"‘;
 $checkBox3 = ‘checkBox -label "Near Flood"‘;
 $checkBox4 = ‘checkBox -label "Sunlight"‘;

 setParent ExampleWindow7|ColumnLayout;
 textField -text "Ready" -editable false -width 278 StatusLine;

 // Set initial state.
 //
 radioButton -edit -select $radioButton1;
 checkBox -edit -value on $checkBox1;
 checkBox -edit -value off $checkBox2;
 checkBox -edit -value off $checkBox3;
 checkBox -edit -value on $checkBox4;

 // Add functionality.
 //
 radioButton -edit -onCommand "showStatus \"Low Intensity\"" $radioButton1;
 radioButton -edit -onCommand "showStatus \"Med Intensity\"" $radioButton2;
 radioButton -edit -onCommand "showStatus \"High Intensity\"" $radioButton3;

 checkBox -edit
 -changeCommand "showStatus \"Front Spot: #1\""
 $checkBox1;

 checkBox -edit
 -changeCommand "showStatus \"Center Spot: #1\""
 $checkBox2;

 checkBox -edit
 -onCommand "showStatus \"Near Flood On\""
 -offCommand "showStatus \"Near Flood Off\""
 $checkBox3;

 checkBox -edit
 -onCommand "showStatus \"Sunlight On\""
MEL and Expressions

127

12 | Creating Interfaces
 > Modal dialogs
 -offCommand "showStatus \"Sunlight Off\""
 $checkBox4;

showWindow ExampleWindow7;

// Procedure to update the status line.
//
global proc showStatus (string $newStatus) {
 textField -edit -text $newStatus ExampleWindow7|ColumnLayout|StatusLine;
}

Modal dialogs

ELF provides command support for two different pre-packaged modal
dialogs. Both dialogs allow user configurability of the message text,
number of buttons, and button label text. The enter and escape keys are
also supported.

A confirm dialog provides a message and user definable buttons through
the “confirmDialog” command. When the dialog is dismissed the
command returns which button was selected. For example the following
command will produce the dialog shown below.

confirmDialog -message "Are you sure?" -button "Yes" -button "No"
 -defaultButton "Yes" -cancelButton "No" -dismissString "No";

The “-defaultButton” flag indicates which button will be selected if the
enter key is pressed, and the “-cancelButton” flag indicates which button
will be selected if the escape key is pressed.

A prompt dialog works similarly to a confirm dialog except that it also
provides an editable scrolling field through which the end user can reply
to the prompted question. For example the following command will
produce the dialog shown below.

promptDialog -message "Enter name:" -button "Ok" -button "Cancel"
 -defaultButton "Ok" -cancelButton "Cancel" -dismissString "Cancel";
MEL and Expressions

128

12 | Creating Interfaces

 > Using system events and scriptJobs
After the dialog has been dismissed the you can query the
“promptDialog” command for the text that the user entered e.g.,
promptDialog -query; This will return any text typed into the scroll field
by the user.

Using system events and scriptJobs

It is possible to create scripts in MEL which will run whenever a particular
system event occurs. This is done using the scriptJob command. Maya
defines a number of system events that you can attach scripts to. These
events are triggered by the normal use of Maya. There are events that tell
you when the selection has changed, when a new file has been opened,
and when a new tool is picked.

You can get a complete listing of all the events using the scriptJob
command with the -listEvents flag: scriptJob -listEvents; The names of
these events is generally self-explanatory; detailed descriptions can be
found in the scriptJob documentation.

There is another kind of system event called a condition. A condition is
like an event, except that is also has a value of either true or false. For
example, there are conditions that tell you when something is selected, or
when an animation is playing back. You can get a complete list of all
conditions using the scriptJob command with the -listConditions flag:

scriptJob -listConditions;

A condition triggers its attached scripts whenever its state changes from
true to false, or from false to true. You can test its state at any time using
the isTrue command.

Finally, there is an event generated when the value of an attribute of an
object changes. When you attach a script to an event or a condition, it
doesn’t run right away. When the event or condition is triggered, the
script is added to a queue and is run the next time the system is idle. No
matter how many times the event or condition is triggered during a busy
time, the script will only run once the next time the system is idle.
MEL and Expressions

129

12 | Creating Interfaces
 > Using system events and scriptJobs
Important Note: scriptJobs only work when you are running Maya with
its graphic user interface.

They do not work in batch mode or prompt mode. They are meant to be
used to customize your user interface. Don’t try to use them to make
things happen during the running of an animation, because they will not
execute during playback or batch rendering. Use expressions instead.

Examples

Let’s say for example that you want to write a script which will select a
particular object whenever nothing else is selected. Here is a script to
select the object:

select -r myObject;

You want this to run whenever nothing is selected. There is a condition
called “SomethingSelected” which is true only when something is
selected. When this condition becomes false, you want to run your script.
Here is the command to do this:

scriptJob -conditionFalse "SomethingSelected" "select -r myObject";

For another example, let’s say instead that you want your object to always
be selected. You can have a scriptJob that runs every time the selection
changes and insures that your object is there:

scriptJob -event "SelectionChanged" "select -add myObject";

In this example, you want to warn yourself if an object in your scene goes
up too far. You can have a script that will check the translateY value of the
object whenever it changes:

global proc checkY(){
 float $y = ‘getAttr myObject.ty‘;
 if ($y > 10.0){
 window;
 columnLayout;
 text -l "Object is too far up!";
 showWindow;
 }
 }

 scriptJob -attributeChange "myObject.ty" "checkY";

Deleting jobs

When you use the scriptJob command to attach a script to an event or
condition, the command returns a unique “job number”. You can use this
number to delete (kill) the jobs you have created. Let’s say the example
above returned the number 17. To stop this script from running any more,
you can use the scriptJob command with the -kill flag, like this:

scriptJob -kill 17;
MEL and Expressions

130

12 | Creating Interfaces

 > Using system events and scriptJobs
To get a complete listing of all the scriptJobs running in the system, use
the -listJobs flag:

scriptJob -listJobs;

This returns a list of job numbers, followed by all the flags and arguments
used by the scriptJob command to create the job in the first place.

There are a number of ways you can cause jobs to kill (delete) themselves
automatically. If you create the job with the -runOnce flag set to true, the
job will only run one time, and then delete itself.

You can use the -parent flag to attach a job to a particular element of the
UI, so that when the UI element is deleted, the job is deleted with it. This
next example creates a window. A scriptJob is used to update the text in
the window, which says whether or not something is selected. When the
window is deleted, the job is killed automatically:

global proc updateSelWind(){
 if (‘isTrue SomethingSelected‘){
 text -edit -label "Something is selected." selText;
 } else {
 text -edit -label "Nothing is selected." selText;
 }
 }

 string $windowName = ‘window‘;
 columnLayout;
 text selText;
 updateSelWind;
 showWindow $windowName;
 scriptJob
 -parent $windowName // attach the job to the window
 -conditionChange "SomethingSelected" "updateSelWind";

Seeing your jobs run

Normally, running jobs are not displayed in the Script editor window.
You can get them to display, however, by turning on the “Echo All
Commands” options in the Edit menu of the Script editor.

See also

For more detailed information about using events and conditions, see the
documentation for scriptJob, isTrue, condition, and dimWhen.
MEL and Expressions

131

12 | Creating Interfaces
 > Using system events and scriptJobs
MEL and Expressions

132

13 | Particle expressions

 > Particle expressions
13 Particle expressions

Particle expressions
Particle expressions are more complex than other types of expressions. For
example, you can write an expression to control all particles in an object
the same way, or you can control each particle differently.

Execution of expressions differs for particles than for other types of
objects. To become proficient with particle expressions takes more study
than for other expressions, but the resulting effects are worth the effort.
This chapter guides you through the intricacies of working with particle
expressions.

Particle expressions

You can create particle expressions from the Expressions editor.

Claude Macri

An expression moves a particle
emitter in a corkscrew pattern
and changes the color of trailing
emitted particles as they age.
The particles are displayed as
Spheres render type.
MEL and Expressions

133

13 | Particle expressions
 > Creation expression execution
The particle radio buttons let you write two types of expressions: creation
and runtime (before or after dynamics calculation). You can use both
types for any attribute of a particle shape node.

A creation expression generally executes when you rewind an animation
or when a particle is emitted. A runtime expression typically executes for
each frame other than the rewind frame or the frame in which a particle is
emitted, before or after dynamics evaluation, as specified. By default,
either type of expression executes once for each particle in the object.

Creation and runtime expressions don’t execute at the same time. The age
of each particle in the object determines whether a runtime expression or
creation expression executes. Execution details are in ”Creation expression
execution” on page 134 and ”Write runtime expressions” on page 138.

The Default Object, Always Evaluate, and Convert Units options become
dim when you select a particle shape node, and you can’t use them.

Default Object is dim because a particle shape node’s attributes can be
controlled by only one creation expression and one runtime expression.
The particle shape node is always the default object when it’s the selected
object.

Always Evaluate is dim for particle shape node expressions because it has
no effect on particle shape node expressions. See ”How often an
expression executes” on page 194 for details on the checkbox.

Convert Units is not selectable because you can’t alter how Maya handles
unit conversions for particle shape node expressions. See ”Optimize
expressions” on page 101 for details on how Maya converts units for other
types of expressions.

Creation expression execution

For a particle you create with the Particle Tool, a creation expression
executes when you rewind the animation. For an emitted particle, a
creation expression executes in the frame where the particle is emitted.
However, there are exceptions to these rules as described in the following
topics.

ImportantYou can’t write a different expression for each particle shape
attribute as you can for other types of objects. Because you can
write only one creation expression per particle shape, you don’t
need to select an attribute from the Expression Editor’s
Attributes list.
MEL and Expressions

134

13 | Particle expressions

 > Runtime expression execution
Note that rewinding an animation two or more times in succession
without playing the animation doesn’t execute a creation expression.
Because no attribute value changes when you rewind several times in
succession, the expression doesn’t execute.

You might also notice that all expressions in your scene are compiled and
executed each time you open the scene. This occurs for architectural
reasons and is unimportant to your work with expressions.

Runtime expression execution

For a particle you’ve created with the Particle Tool, a runtime expression
typically executes in each frame after the frame that appears upon
rewinding, before or after dynamics calculation.

For an emitted particle, a runtime expression typically executes in each
frame after the first one where the particle was emitted. More specifically,
a runtime expression executes once for each particle whose age is greater
than 0, each time Maya evaluates dynamics.

Maya evaluates dynamics whenever the Time Slider time changes and the
time is greater than or equal to the particle object’s Start Frame value. To
set the particle object’s Start Frame, select the particle object and set the
Start Frame in the Attribute Editor. Time changes when you rewind, play,
or otherwise change the current frame displayed.

A runtime expression executes once per oversample level per frame as
you play or otherwise change the animation time. For example, if the
oversample level is 4, Maya executes a particle shape expression four
times per frame for each particle in the object.

From the Dynamics menu set, use Solvers > Edit Oversampling or Cache
Settings to set the Over Samples level. Maya’s default setting is 1.

In addition to executing when animation time changes, a runtime
expression executes when the value of an attribute it reads changes, and
when either of these actions occurs for an attribute the expression writes
to:

• Some other node in Maya uses its value.

• Maya needs the value to redraw the workspace contents.

In this context, the predefined variables time and frame are also
considered attributes the expression reads.
MEL and Expressions

135

13 | Particle expressions
 > Set the dynamics start frame
Set the dynamics start frame

A creation expression executes once for each particle whose age is 0 when
Maya evaluates dynamics. Maya evaluates dynamics whenever the
animation time or the particle’s current time changes, and it’s greater than
or equal to the particle object’s Start Frame setting—frame 1 by default.

The animation time changes when you rewind, play, or otherwise change
the current frame displayed.

An emitted particle’s age is 0 in the frame where it’s emitted.

Particles created with the Particle Tool have an age of 0 on and before the
Start Frame. With the default animation frame range and Start Frame,
rewinding an animation to frame 1 returns such particles to age 0.

If you set the Time Slider’s start frame higher than the Start Frame, be
aware that rewinding the animation might cause the age of particles to be
greater than 0. If this occurs, the creation rule for the particles won’t
execute.

Set attributes for initial state usage

If, at some frame, you’ve saved a particle shape’s attributes for its initial
state, rewinding an animation does not return the age of the particles to 0.

ImportantThere are no creation expressions for nodes other than particle
shape nodes. Such objects have only one type of expression. (It’s
similar to a runtime expression.)

For a particle shape node, you can write only one runtime
expression for all its attributes. You don’t need to select an
attribute from the Attributes list. You can create only one
runtime expression per particle shape.

Tip You can set options in the Attribute Editor to display the age of
an object’s particles in the workspace. Set the particle shape’s
Render Type to Numeric. Click Current Render Type next to
Add Attributes For, then enter age in the Attribute Name box.
The age appears next to each particle.

You can also examine the age of an object’s particles by entering
print(age+“\n”) in a particle expression. See ”print” on
page 262.
MEL and Expressions

136

13 | Particle expressions

 > Write creation expressions
Suppose you’ve created a particle grid having an opacity attribute that
fades gradually as the animation plays. You stop the animation at some
frame where you decide the grid’s opacity looks good as a starting point
for the animation. You then select the grid. From the Dynamics menu set,
select Solvers > Initial State > Set For Selected to cause the current value
of the object’s attributes—including age—to become the initial state
values.

If you rewind the animation, the age of the particles in the grid is equal to
age at the time you chose Set For Selected. The age of the particles
therefore is not equal to 0 when you rewind the scene.

See ”Understand initial state attributes” on page 145 for more details on
initial state attributes.

Write creation expressions

A creation expression is useful for attributes that don’t need to change
during animation. For example, you might want all particles in an object
to have a single velocity for the duration of an animation.

A creation expression is also useful for initializing an attribute’s value for
the first frame before a runtime expression takes control of the attribute
value in subsequent frames. See ”Write runtime expressions” on page 138
for an example of the interaction between a runtime and creation
expression.

Example

Suppose you’ve used the Particle Tool to place a collection of particles in
the workspace. You then create the following creation expression to
control their velocity:

particleShape1.velocity = <<0,1,0>>;
MEL and Expressions

137

13 | Particle expressions
 > Write runtime expressions
All the particles move in a Y-axis direction at one grid unit per second as
the animation plays.

Write runtime expressions

A runtime expression controls an attribute as an animation plays, before
or after dynamics calculation. Maya updates any attribute that’s assigned
a value in a runtime expression each time the expression executes. This
can be updated before dynamics evaluation or after dynamics evaluation,
as selected. This typically occurs once per frame.

If an attribute is not set by a runtime expression, the attribute uses the
creation expression value for subsequent frames of the animation.

Example

Suppose you’ve created a grid of particles, then create this runtime
expression for its velocity attribute:

particleShape1.velocity = <<0,1,0>>;

The expression moves the grid of particles up at 1 grid unit per second as
the animation plays.

ImportantTo use an expression to control particle attributes, make sure
the selected object in the Expression Editor is a particle shape
node, not the transform node of the particle object.

If a particle object’s transform node is selected rather than the
particle shape node, move the mouse pointer to the workspace
and press your keyboard’s down arrow. This selects the particle
shape node.

Constant upward velocity
MEL and Expressions

138

13 | Particle expressions

 > Write runtime expressions
With the default frame rate of 24 frames/second, the particles move 1/24
of a grid unit each frame. With the default oversampling level of 1, the
runtime expression executes once per frame. Maya calculates the runtime
expression once for each particle of an object.

Because the expression sets the velocity to <<0,1,0>> each frame, the
expression executes redundantly. This expression would therefore be
more appropriate for a creation expression. However, either type of
expression has the same effect in this example.

Example

Suppose you’ve created a grid of particles, and your animation’s starting
frame number is 0. You create this runtime expression for its velocity
attribute:

particleShape1.velocity = <<0,time,0>>;

The expression increases the Y component of velocity with the increasing
value of time as the animation plays. This makes all particles in the grid
rise with increasing velocity as the time increases. An increasing velocity
is the same as acceleration.

Note To make the illustrations of particles easier to see in this and
other chapters, we show them as small, shaded spheres rather
than points.

To display particles as spheres

1 Select the particle shape node.

2 In the Attribute Editor’s Render Attributes section, select Spheres for
the Render Type.

3 Click the Current Render Type button next to Add Attributes For.

A Radius slider appears below the button.

4 Adjust the Radius to set the size of the spheres.

5 Turn on Shading > Smooth Shade All (at the upper left of the
workspace).
MEL and Expressions

139

13 | Particle expressions
 > Write runtime expressions
You need to use the statement in a runtime expression rather than a
creation expression, because you’re increasing a value in the assignment
each frame.

Using the statement in a creation expression would instead set the velocity
to a constant value <<0,0,0>>, because time equals 0 when the creation
expression executes for the particle grid.

Example

The previous examples gave all particles the same value for the velocity
attribute. You can instead give each particle a different value for an
attribute.

Suppose you’ve created a grid of 121 particles.

Suppose further you create this runtime expression for its acceleration
attribute:

particleShape1.acceleration = sphrand(2);

The expression executes once for each of the 121 particles each time the
runtime expression executes.

Increasing upward velocity
MEL and Expressions

140

13 | Particle expressions

 > Write runtime expressions
The sphrand(2) function provides a vector whose randomly selected
components reside within an imaginary sphere centered at the origin and
with a radius of 2. Each particle receives a different vector value. For
details on the sphrand function, see ”sphrand” on page 247.

Because each particle receives a different random vector for its
acceleration each frame, the particles accelerate individually in a
constantly changing direction and rate as the scene plays. This gives the
acceleration abrupt changes in direction.

Example

Suppose you’ve set your animation’s starting frame to 0, and you’ve used
the Particle Tool to place a single particle at the origin:

ImportantTo give particles a constant acceleration, assign the
acceleration attribute a constant value in a runtime expression
rather than in a creation expression.

Maya simulates the physics of acceleration. It initializes
acceleration to <<0,0,0>> before each frame, or if the oversample
level is greater than 1, before each timestep.

If the oversample level is 2, there are 2 timesteps per frame. If
the oversample level is 3, there are 3 timesteps per frame, and so
on.
MEL and Expressions

141

13 | Particle expressions
 > Write runtime expressions
You then create a runtime expression to control its position:

particleShape1.position = <<3,time,0>>;

When you play the animation, the runtime expression takes control of the
attribute. In the first frame that plays, the particle jumps to <<3, time, 0>>.
At the default frame rate of 24 frames/second, the position is <<3, 0.0417,
0>>, because the value of time is 0.0417.

Each subsequent frame moves the particle upward at a rate set by the
incrementing value of time.

When you stop and rewind the animation, the particle moves back to the
origin, the particle’s original position when you created it with the Particle
Tool. When you created the particle, Maya stored its original position in
an internally maintained initial state attribute named position0. For
details, see ”Understand initial state attributes” on page 145.

Because the attribute has no creation expression controlling its value,
Maya sets the attribute to its initial state position0 value of <<0,0,0>>.

To prevent the particle from jumping back to the origin after rewinding,
you can write a creation expression that’s the same as the runtime
expression:

particleShape1.position = <<3,time,0>>;
MEL and Expressions

142

13 | Particle expressions

 > Work with particle attributes
When you rewind the animation, the particle moves to position
<<3,time,0>>. Because time is 0 at frame 0, the particle starts at position
<<3,0,0>> when you rewind the animation. In the second and following
frames, it moves upward synchronized with the increasing value of time.

Though this example showed how to initialize the position attribute with
a creation expression, you could have gotten almost the same result by
saving the object’s current attribute values for initial state usage:

To save the current attributes for initial state usage:

1 Select the particle shape node.

2 Advance the animation to frame 1.

Here the position of the particle is <<3, 0.0417, 0>>.

3 From the Dynamics menu set, select Solvers > Initial State > Set for
Selected.

When you rewind the animation, Maya positions the object at the
initial state setting of its position attribute. This setting is <<3, 0.0417,
0>> because you selected Set for Selected while the position was equal
to <<3, 0.0417, 0>>.

Work with particle attributes

When you create a particle object, it has two types of static attributes:

• attributes for its transform node

• attributes for its particle shape node

These attribute are permanently part of a particle object. You typically
won’t work with the static attributes that are part of its transform node,
for example, scaleX, translateX, and so on. These attributes control the
position and orientation of the transform node of the entire particle object,
not the position and orientation of the individual particles.

You’ll instead work with the static attributes of the particle shape node,
for example, position, velocity, acceleration, and age. These attributes
appear in the Attributes list of the Expression Editor’s when you select
Object Filter > Dynamics > Particles for the selected particle object.

Add dynamic attributes

You also use expressions to control dynamic and custom attributes you
add to a particle shape node. See ”Assign to a custom attribute” on
page 150 for details on working with custom attributes.

When you add a dynamic attribute to an object, the attribute names
appear in the Expression Editor’s Attributes list.
MEL and Expressions

143

13 | Particle expressions
 > Understand per particle and per object attributes
Understand per particle and per object
attributes

You can dynamically add two types of attributes to a particle shape node:

• per particle

• per object

A per particle attribute lets you set the value of the attribute individually
for each particle of the object. A per object attribute lets you set the
attribute value for all particles of the object collectively with a single
value.

For example, a per particle opacityPP attribute lets you set a unique
opacity value for each particle of an object. With a per object opacity
attribute, you must give all particles of the object the same opacity.

A per particle attribute holds the attribute values for each particle in the
object. For example, though there is only one opacityPP attribute in a
particle object, the attribute holds the value for each particle’s opacity
value. The attribute holds the values in an array. In simple terms, an array
is a list.

Though per particle attributes are best for creating complex effects, you
can’t keyframe them. You can keyframe per object attributes.

You can add per particle or per object attributes for opacity, color, and
other effects.

For a particle shape node attribute, you can tell whether it’s a per particle
or per object attribute by examining the Attribute Editor’s particle shape
tab. All per particle attributes appear in the Per Particle (Array) Attributes
section of the tab.

The per object attributes appear elsewhere in the tab. Most appear above
the Per Particle (Array) Attributes section, for example, in the Particle
Attributes and Render Attributes sections.

For many dynamically added attributes, you can also tell whether they are
per particle or per object by their names in the Expression Editor. If a
name ends with PP, it’s per particle. Otherwise, it’s usually per object.

Note that position, velocity, and acceleration are per particle attributes,
though their names don’t end with PP.

The most common way to create dynamic per object or per particle
attributes for a particle shape is by clicking the Opacity or Color buttons
in the Add Dynamic Attributes section of the Attribute Editor.

For example, if you click the Opacity button, a window appears and lets
you choose whether to add the opacity characteristic as a per object
attribute or a per particle attribute.
MEL and Expressions

144

13 | Particle expressions

 > Understand initial state attributes
If you choose per particle, the Attributes list of the Expression Editor
displays a new attribute for the selected particle shape node: opacityPP. If
you choose per object, an opacity attribute is displayed instead.

If you add both a per particle attribute and a per object attribute for a
characteristic, the per particle attribute takes precedence. For instance, if
you add opacity and opacityPP, the opacityPP attribute controls the
opacity of the particles of the specified object.

Understand initial state attributes

For all static per particle attributes, Maya keeps a corresponding attribute
with a name ending in 0. For example, the static attributes position,
velocity, and acceleration have counterparts position0, velocity0, and
acceleration0.

An attribute name that ends in 0 holds the initial state value of the
attribute. When you save a particle object’s current attribute values for
initial state usage, Maya assigns those values to the initial state attributes.

To save a particle object’s attribute values for initial state usage, use either
of these commands from the Dynamics menu set:

• Solvers > Initial State > Set for Selected

This saves all per particle attribute values for the selected particle shape
node or rigid body.

• Solvers > Initial State > Set for All Dynamic

This saves all per particle attribute values for all dynamic objects in the
scene—in other words, all particle shape nodes and rigid bodies.

ImportantYou can use per particle attributes only in particle
expressions. You can use per object attributes in particle or
nonparticle expressions.

If you use a runtime expression to read or write a per object
attribute of a particle object with many particles, you can speed
up expression execution by reading or writing the attribute in a
nonparticle expression.

Nonparticle expressions execute only once per object. Particle
expressions execute once for each particle in the object. Because
reading or writing a per object attribute more than once per
frame is redundant, you can save processing time by working
with them in nonparticle expressions.
MEL and Expressions

145

13 | Particle expressions
 > Understand initial state attributes
When you dynamically add a per particle attribute by clicking one of the
buttons in the Add Dynamic Attributes section of the Attribute Editor,
Maya also adds a corresponding initial state attribute with name ending in
0. For example, when you click the Opacity button in the Attribute Editor
and add a per particle opacity attribute, Maya also adds opacityPP0.

Though an initial state attribute doesn’t appear in the Expression Editor,
you can read its value, for example with a print statement, to retrieve the
initial state.

When you use the Add Attribute window to add a custom per particle
(array) attribute to a particle shape, you must choose whether you want to
add it with Add Initial State Attribute on or off. If you choose on, Maya
creates a corresponding initial state attribute for the added attribute.

If you choose off, Maya doesn’t create a corresponding initial state
attribute for the added attribute. Without this corresponding attribute,
you can’t save a particle object’s current attribute values for initial state
usage. You must write a creation expression if you decide to initialize the
custom attribute’s value upon rewinding the animation.

You can see whether a custom attribute was added with Add Initial State
Attribute on or off by using the MEL listAttributes command. (See the
MEL Command Reference for details.)

You might want to read the value of an initial state attribute in an
expression, for instance, to use its original (rewind) value for some
calculation. If you assign a value to an initial state attribute. Maya will
overwrite the value if you save the attribute value for initial state usage.

When you add a custom attribute to a particle shape, do not end the name
with a 0 character. You’ll subvert Maya’s naming scheme for the initial
state attribute associated with an attribute.

For any attribute, if you don’t initialize its value with a creation
expression or save its value for initial state usage, Maya gives the attribute
a default value at the animation’s first frame. It typically assigns the
attribute the value 0 or <<0,0,0>>, as appropriate for the data type. In
other cases, for instance, opacityPP and opacity, Maya assigns the
attribute a default value of 1.

Note A per particle attribute is called an array attribute in the Add
Attribute window. The two terms have the same meaning. See
”Assign to a custom attribute” on page 150 for details.
MEL and Expressions

146

13 | Particle expressions

 > Understand initial state attributes
If you know you’re going to write a creation expression for a custom
attribute, you can set Add Initial State Attribute off when you add the
attribute. Otherwise, set Add Initial State Attribute on whenever you add
a custom attribute.

When a creation expression assigns a value to an attribute, the value
overrides the attribute’s initial state value for all particles whose age is 0.

Example of assigning to a dynamic per particle
attribute

Suppose you’ve used the Particle tool to create a small number of red
particles surrounding a checkerboard cone. The particle object is named
Squares. It is displayed in the Points render type with a large point size, so
the particles look like large opaque squares.

The following steps show how to assign values to opacityPP so that each
particle has a different random opacity.

To use a per particle opacityPP attribute:

1 In the workspace, turn on Shading > Smooth Shade All.

2 Select the particle shape node of Squares in the Outliner or
Hypergraph.

3 In the Add Dynamic Attributes section of the Attribute Editor, click
the Opacity button.

A window appears that prompts you to choose whether to add the
attribute per object or per particle.

4 Select Add Per Particle Attribute, then click the Add Attribute button.
MEL and Expressions

147

13 | Particle expressions
 > Understand initial state attributes
This adds an opacityPP attribute to the particle shape node of Squares.
You can set the value of opacityPP to give each particle a different
opacity.

5 Select the particle shape node of Squares in the Expression Editor.

6 Turn on Creation in the Expression Editor.

7 Create the following expression:

SquaresShape.opacityPP = rand(1);

print("Hello\n");

8 Rewind the animation.

Because opacityPP is a per particle attribute and the object’s particle
shape node is selected in the Expression Editor, the expression does
an execution loop of both statements once for each particle in the
object.

Because the expression is a creation expression, it executes after the
expression compiles. It also executes when you rewind the animation
after playing it.

For each of the particles, the first statement assigns the opacityPP
attribute a random floating point number between 0 and 1. The rand
function returns a different random number each time it executes, so
each particle has a different opacityPP value between 0 and 1. Each
particle therefore has a different opacity at birth. For details on the
rand function, see ”Useful functions” on page 217 The second
statement displays Hello in the Script editor, once for each particle.

When you play the animation, the creation expression does not
execute. The particles therefore retain the opacity they received upon
rewinding.

A creation expression for
opacityPP gives these
particles random opacity.
MEL and Expressions

148

13 | Particle expressions

 > Understand initial state attributes
Every time you play then rewind the animation, each particle receives
a new random opacity. The creation expression executes the random
function each time you rewind.

If you were to use the preceding expression as a runtime expression
rather than creation expression, the opacity of each particle would
change each frame as the animation plays. In each frame, the runtime
expression would execute, assigning a different random value
between 0 and 1 to the opacityPP of each particle.

Example of assigning to a dynamic per object
attribute

Suppose you’ve used the Particle tool to create a new particle object
named Squares that’s similar to the one described at the beginning of the
previous example. The following steps show how to give all particles in
Squares a single opacity that changes from transparent to opaque in five
seconds animation time.

To use a per object opacity attribute:

1 In the workspace, turn on Shading > Smooth Shade All.

2 Select the particle shape node for Squares in the Outliner or
Hypergraph.

3 In the Add Dynamic Attributes section of the Attribute Editor, click
the Opacity button.

A window appears that prompts you to choose whether to add the
attribute per object or per particle.

4 Select Add Per Object Attribute, then click the Add Attribute button.

This adds the opacity attribute to the particle shape node for Squares.

5 In the Expression Editor, turn on Runtime (before dynamics or after
dynamics).

6 Create this runtime expression:

SquaresShape.opacity = linstep(0,5,age);

7 Play the animation.

The runtime expression executes each frame during playback. The
statement in the expression executes once for each particle and assigns
the opacity attribute an identical value between 0 and 1 according to
the linstep function (see ”linstep” on page 252 for details). The values
rise gradually from 0 to 1 for the first five seconds of the object’s
existence.
MEL and Expressions

149

13 | Particle expressions
 > Assign to a custom attribute
Assign to a custom attribute

You can add a custom attribute to a particle shape node and control its
value in an expression.

To add a custom attribute:

1 Select the object’s particle shape node rather than its transform node.

Use the Hypergraph or Outliner to select the shape node.

2 Select Modify > Add Attribute.

or

In the Add Dynamic Attributes section of the Attribute Editor, click
the General button.

The Add Attribute window appears:
MEL and Expressions

150

13 | Particle expressions

 > Assign to a custom attribute
3 Enter a name for the attribute in the Attribute Name box.

4 Make sure Make attribute keyable is on.

5 Select one of the following data types:

Vector

Creates a vector attribute consisting of three floating point values.

Float

Creates a floating point attribute.

Integer

Creates an integer attribute.

Boolean

Creates an attribute consisting of an on/off toggle.
MEL and Expressions

151

13 | Particle expressions
 > Assign to a custom attribute
6 Select one of the following attribute types:

Scalar

Creates a per object attribute that you can set to a single value that
applies to every particle in the object. A vector scalar is considered a
single value with three numbers.

Array

Creates a per particle attribute. You can set this type of attribute to
different values for each particle.

• If you select Scalar, you can specify Minimum, Maximum, and Default
values for a Float or Integer attribute.

Minimum and Maximum set the lowest and highest values you can
enter for the attribute in the Attribute Editor or Channel Box. Default
sets the default value displayed for the attribute. Because you’re going
to control the attribute’s value with an expression, you might want to
skip entering values for these options.

An expression isn’t bound by the Minimum and Maximum values.
The attribute receives whatever value you assign it in the expression.
The expression can read the attribute’s Default value or any other
value you give it in the Attribute Editor or Channel Box.

When you select Scalar, you can’t create a counterpart initial state
attribute by turning on Add Initial State Attribute.

• If you select Array, you can also create a counterpart initial state
attribute by turning on Add Initial State Attribute. See ”Understand
initial state attributes” on page 145 for details.

You can’t set Minimum, Maximum, or Default values for an Array
attribute.

7 Click Add if you want to add more attributes. Click OK to add the
attribute and close the Add Attribute window.

The new attribute appears under the Extra Attributes section of the
Attribute Editor. Although the attribute name is always spelled with
an uppercase first letter in the Attribute Editor, you must use the exact
spelling shown in the Expression Editor, whether lowercase or
uppercase.

To assign values to a custom attribute:

You can assign values to a custom attribute with the same techniques you
use to assign values to static or dynamic attributes.
MEL and Expressions

152

13 | Particle expressions

 > Assign to a custom attribute
Example

Suppose you’ve created a 10-particle object named sunspot, and you add
to its particle shape node a float scalar (per object) attribute named glow.
You assign the glow attribute a value in a creation expression as follows:

sunspotShape.glow = 11.5;

print (sunspotShape.glow + "\n");

When you rewind the animation, the glow attribute of sunspotShape
receives the value 11.5. The print statement displays the value in the Script
editor. The value appears 10 times because the expression executes once
for each particle in the object.

Example

Suppose you add a vector array (per particle) attribute named heat to the
10-particle sunspot shape node. You can give each particle a different
value as in this creation expression:

float $randomNumber = rand(1);

sunspotShape.heat = <<$randomNumber,0,0>>;

print(sunspotShape.heat + "\n");

When you rewind the animation, the expression loops through 10
executions, once for each particle.

The first statement sets the $randomNumber variable to a random
number between 0 and 1. The next statement assigns a vector to the heat
attribute of a single particle. The left component of the vector assigned to
heat is a different random number each time the statement executes. The
middle and right components are always 0.

One particle might have the value <<0.57, 0, 0>>, another <<0.32, 0, 0>>,
another <<0.98, 0, 0>>, and so on.

The print statement displays the values in the Script editor.

Note If you add a custom vector attribute to an object, Maya displays
the attribute in the Attribute Editor, but you can’t enter its value
there. You must enter a value for it in an expression or with the
Component Editor available from the Attribute Editor.
MEL and Expressions

153

13 | Particle expressions
 > Assign to a particle array attribute of different length
Assign to a particle array attribute of different
length

You can assign the array attribute of one particle shape node to another
node having a different number of particles. The assignment is affected by
which node you select in the Object Selection list in the Expression Editor.
The number of particles in the selected particle shape node sets the
number of statement executions, and, therefore, affects the assignment.

Example

Suppose your scene contains an object named TwoPts made of two
particles. The two particles in TwoPts are at these positions:

5 0 0

6 0 0

Suppose you create a five-particle object named FivePts with the Particle
Tool, and position the particles somewhere in the workspace. Suppose
further you select the particle shape node of FivePts in the Expression
Editor, then make this assignment in a runtime expression:

FivePtsShape.position = TwoPtsShape2.position;

The five particles move to these positions as soon as the runtime
expression executes for the first time:

5 0 0

6 0 0

5 0 0

6 0 0

5 0 0

Use creation expression values in a runtime
expression

A runtime expression can’t read a variable you’ve defined in a creation
expression unless you define the variable as global. However, you can
create a custom attribute, assign it a value in a creation expression, then
read or write its value in a runtime expression.

For example, suppose you assign a particle object’s position to a variable
named $oldposition in a creation expression:

vector $oldposition = particleShape1.position;

The runtime expression for the same particle shape node can’t read the
contents of the $oldposition variable. To solve this problem, you can
create an attribute for the object, assign it a value in the creation
expression, then use the attribute value in a runtime expression.
MEL and Expressions

154

13 | Particle expressions

 > Work with position, velocity, and acceleration
For example, suppose you create an attribute named oldpos, and assign it
the following position in a creation expression:

particleShape1.oldpos = particleShape1.position;

You can read the value of particleShape1.oldpos in a runtime expression.

Note that you don’t need to create an attribute to hold the object’s initial
position. The initial position already exists in its initial state attribute
named position0. This attribute doesn’t appear in the Expression Editor’s
Attributes List.

Work with position, velocity, and acceleration

To create various types of particle motion, you can assign vector values to
the position, velocity, or acceleration attribute. See ”Write runtime
expressions” on page 138 for examples of working with these attributes.

Unless you have a solid grasp of physics, avoid setting a combination of
the position, velocity, and acceleration attributes.

To give a smooth, random motion to particles with a runtime expression,
use a random number function such as sphrand to assign random
numbers to the particle shape’s acceleration attribute. A change in
acceleration always gives smooth motion no matter how abruptly its value
changes.

To give a jittery random motion to particles with a runtime expression,
use a random number function such as sphrand to assign random
numbers to the particle shape’s velocity or position attributes.

See ”Random number functions” on page 243 for details on how to use
random number functions.

If an expression and a dynamic field control an object’s position, velocity,
or acceleration, Maya calculates the expression’s effect first, then adds the
field’s effect.
MEL and Expressions

155

13 | Particle expressions
 > Work with position, velocity, and acceleration
Example

Suppose a particle drops under the influence of a gravity field with
default gravity options. Gravity accelerates the particle at 9.8 units per
second per second down the Y-axis. In other words, the default
acceleration of gravity is <<0,-9.8,0>>.

Suppose further you write the following runtime expression for the
particle:

velocity = velocity + <<1,0,0>>;

As each frame plays, Maya first calculates the particle’s velocity from the
expression statement. The velocity increases 1 unit per second in an X-axis
direction. Maya then adds the gravitational acceleration to the velocity.
Maya uses the combined result to compute the particle’s position.

Of course, you won’t see this calculation process. The frame displays the
particle in the appropriate position after all computation.

Note that the expression adds the constant <<1,0,0>> to the particle’s
velocity each frame as the animation plays. This makes the particle move
with increasing velocity in an X direction as the time increases. An
increasing velocity is the same as acceleration.

Note If dynamics and an expression influence position, velocity, or
acceleration the instant at which the expression executes, the
resulting object motion is affected. If the expression executes
before dynamics, Maya computes the dynamics using the value
assigned by the expression. If the expression executes after
dynamics, Maya calculates dynamics based on any attribute
values left over from the previous frame or values generated by
an input ramp.

To set whether expressions execute before or after dynamics,
select the particle object, display the Attribute Editor, and turn
Expressions After Dynamics on or off.
MEL and Expressions

156

13 | Particle expressions

 > Work with position, velocity, and acceleration
The acceleration attribute works differently than the position or velocity
attributes in an important way. Maya initializes its value to <<0,0,0>>
before each frame. If the oversample level is greater than 1, this
initialization occurs before each timestep.

Example

Suppose you write the following runtime expression for a five-particle
object unaffected by gravity:

acceleration = acceleration + <<0,1,0>>;

Rather than adding <<0,1,0>> to the acceleration value each frame,
acceleration remains a constant <<0,1,0>> for each of the particles. This
happens because Maya initializes the value of acceleration to <<0,0,0>>
before each frame.

Suppose you connect the particle object to gravity with default settings.
The acceleration of the particle becomes <<0,1,0>> plus <<0,-9.8,0>>,
which equals <<0,-8.8,0>>. The acceleration assigned in the expression
slows the downward acceleration of the gravity.

Suppose you change the previous expression to this:

acceleration = acceleration + sphrand(3);

Because Maya sets acceleration to <<0,0,0>> before each frame, the
statement has the same result as the following statement:

acceleration = sphrand(3);

Gravity alone Gravity in combination with
velocity = velocity + <<1,0,0>>

The ball represents the particle’s position after
several frames. The white squares represent
the particle’s position as time increases.
MEL and Expressions

157

13 | Particle expressions
 > Work with color
As each frame plays, Maya first calculates each particle’s acceleration from
the expression statement. Each particle receives the result of the
sphrand(3) function.

The sphrand(3) function provides a vector whose randomly selected
components reside within a spherical region centered at the origin with
radius 3. Each particle receives a different vector value.

Finally, Maya adds gravity’s acceleration to the expression acceleration
resulting from sphrand(3). The frame displays each particle in the
resulting position.

Because of the random values resulting from the expression, each particle
has an acceleration that differs slightly from gravity in direction and
magnitude. Because the sphrand(3) function executes for each particle
each frame, the acceleration of each particle varies each frame.

This example shows that you can take advantage of the additive effect of
fields and the acceleration attribute to create custom field effects.

Work with color

Coloring particles is a fundamental task for expression writers. As the
techniques for coloring particles are easiest to learn by example, see
“Controlling particle attributes” on page 178 of Getting Started with Maya.

Gravity in combination with
acceleration = sphrand(3)

Position at rewind

Position after one second

Gravity alone (shown for comparison)

Tip You can turn off the effect of all fields on a particle shape node
attribute by setting its dynamicsWeight attribute to 0.
MEL and Expressions

158

13 | Particle expressions

 > Work with emitted particles
Work with emitted particles

If you make an object emit particles, you can write a creation or runtime
expression for attributes of the emitted particles. For example, you can
assign the emitted particles a value for opacity and color.

To write an expression for emitted particles

1 Create the emitter.

2 Add the desired dynamic attribute to the shape node of the emitted
particles.

3 Select the shape node of the emitted particles in the Expression Editor,
then write the expression to control the attribute.

Example

Suppose you’ve created an emitter and added a per particle opacityPP
attribute to the shape node of the emitted particles. The following creation
expression gives each of the emitted particles a random opacity between 0
and 1:

particleShape1.opacityPP = rand(1);

Work with collisions

If you make a particle object collide with an object, you can write an
expression to trigger expression statements after the collision. For
example, you can change the color or opacity of the colliding particles.

To prepare for writing the expression:

1 Select the particle shape node of the particles in the Outliner or
Hypergraph.

ImportantAvoid assigning a per particle attribute to another object’s per
particle attribute if the particles of either object die (because
you’ve used a lifespanPP attribute). As particles die, the order of
expression evaluation changes for the object’s particles. This
causes unexpected results.

You can, though, assign from one attribute to another in the
same object with dying particles. The array indexes of the
different attributes are in synch with each other.

For example, if your particles have a lifespanPP of 2, don’t write
an expression like this:

emittedShape.rgbPP = otherParticleShape.rgbPP
MEL and Expressions

159

13 | Particle expressions
 > Work with collisions
2 Select Particles > Particle Collision Events from the Dynamics menu
bar.

The Particle Events window appears.

3 Click Create Event.

This adds an event attribute to the selected particle shape node. The
Expression Editor displays the added event attribute in the Attributes
list.

Close the Particle Events window.

To write the expression:

1 Select the particle shape node of the colliding particles.

2 Write the runtime or creation expression using the value of any of
these attributes of the colliding particle’s shape node:

The eventCount and eventTest are static attributes. A particle shape
node has them as soon as you create the particle object. Though they
don’t appear in the Expression Editor, you can use their values in an
expression. You must first create the event attribute as described
previously.

Example

Suppose you’ve created a five-particle object named Peas that falls with
gravity and collides with a plane.

Long name Short
name

Description Data
Type

event Contains the number of times
each particle in the object has
hit something (on a per
particle basis).

float array

eventCount evc Total number of events that
have occurred for all particles
of the object.

integer

eventTest evt True if an event has occurred
since the last time an
expression or MEL getAttr
command read the eventTest
value.

boolean
MEL and Expressions

160

13 | Particle expressions

 > Work with collisions
You can make the particles turn red when the first particle hits the plane.

1 Select Shading > Smooth Shade All.

This step is necessary to make the correct particle color appear when
you later use an expression to color particles.

2 Select PeasShape in the Outliner or Hypergraph.

3 From the Dynamics menu bar, select Particles > Particle Collision
Events.

4 In the Particle Events window, click Create Event, then close the
window.

This adds an event attribute to PeasShape.

5 In the Add Dynamic Attributes section of the Attribute Editor, click
Color.

The Particle Color window appears.

6 Select Add Per Particle Attribute, then click Add Attribute.

This adds a per particle attribute named rgbPP. This attribute controls
the red, green, and blue color scheme of each particle.

The particles turn black after you add the rgbPP attribute. Adding the
rgbPP attribute turns off the default coloring of the particles and gives
them a value of <<0,0,0>>.

7 With PeasShape selected in the Expression Editor, create this runtime
expression (before or after dynamics calculations):

if (event == 1)

rgbPP = <<1,0,0>>;

else if (event == 2)

rgbPP = <<0,1,0>>;
MEL and Expressions

161

13 | Particle expressions
 > Work with collisions
else if (event >= 3)

rgbPP = <<0,0,1>>;

else rgbPP = <<1,1,1>>;

8 Rewind the animation.

Upon rewind, the particles are black. The particles have the default
black rgbPP color because no creation expression exists for the object.

9 Play the animation.

The particles fall toward the plane. The runtime expression executes
as each frame plays. The event attribute is a per particle attribute. This
isn’t obvious because its name doesn’t have PP as the last two
characters.

Because event holds a running count of collisions for each particle,
event contains 0 for each particle until the first collision with the
plane. Until the first collision occurs, the final else statement executes:

else rgbPP = <<1,1,1>>;

This statement executes because event doesn’t equal 1, 2, 3, or a
number greater than 3. The vector <<1,1,1>> in the RGB color scheme
represents the color white.

When the first particle of PeaShape hits the plane, Maya sets the event
attribute for that particle to 1. This triggers execution of the first
assignment, which sets the colliding particle’s rgbPP value to
<<1,0,0>>. In the RGB color scheme, this vector value represents red.
(When red equals 1, green equals 0, and blue equals 0, the resulting
color is red.)

Note that the value of the event attribute reflects the collision count in
the frame after each collision. For example, if a particle collides with
the plane in frame 10, event is updated in frame 11.

Red particle after collision
MEL and Expressions

162

13 | Particle expressions

 > Work with collisions
When the other particles hit the plane for the first time, they also turn
red after they collide.

A particle stays red until it collides with the plane for the second time,
when event equals 2. After a second collision, the particle turns green.

After a third collision, when event is equal to or greater than 3, a
particle turns blue. Each particle stays blue for all subsequent
collisions as the animation plays.

10 Rewind the animation.

The particles turn black again because they receive the default rgbPP
value <<0,0,0>>. When you play the animation again, the particles
turn white, red, green, and blue in the same sequence as before.

You can refine the animation by giving the particles a color other than
black for the frame that appears upon rewinding. For example, you
can give the particles a white color upon rewinding with two
techniques:

• Write this creation rule for PeasShape:
MEL and Expressions

163

13 | Particle expressions
 > Work with lifespan
rgbPP = <<1,1,1>>;

This statement executes for each particle in the object, so they all
receive the same white color when you rewind the scene.

• Select PeasShape, rewind the animation, and play the animation to
frame 2. Then select Solvers > Initial State > Set for Selected.

This saves all PeasShape attribute values from the current frame for
the initial state of the attributes. The current value for rgbPP will be
used when you rewind the animation. Because you played the second
frame of the animation, this saves the white color of the particles at
that frame for use upon rewinding the animation.

Note that Set for Selected saves all attribute values, including position,
velocity, acceleration, and so on. In cases where you have several
changing attribute values during playback, Set for Selected might save
undesired attribute values in addition to the desired ones. In such
cases, use a creation expression.

Work with lifespan

Starting with release 3.0, Maya simplifies how you work with particle
lifespan. No longer do you need to use an expression to set random or
constant lifespans on a per particle basis. See “Set particle lifespan” in the
Dynamics book for details.

If you are using any lifespan mode other than lifespanPP only, you may
read but not assign to finalLifespanPP in expression statements. For
example, in past versions of Maya you might have written:

opacityPP = 1 - age/lifespanPP;

This works in Maya 3.0, but only if have you have lifespan mode set to
lifespanPP only. Now the way to write this expression is:

opacityPP = 1 - age/finalLifespanPP;

This works for all lifespan modes because finalLifespanPP always stores
the actual lifespan used for the particles in all modes.

Pre-Maya 3.0 expressions that refer to lifespanPP will work correctly now
as long as you select lifespanPP only as the lifespan mode. If you select
Constant or Random Range mode, you can read the value
finalLifespanPP, not lifespanPP. You need to use finalLifespanPP only if
you intend to make use of one of the other lifespan modes.

Work with specific particles

A per particle attribute holds the attribute values for each of an object’s
particles. For example, the rgbPP attribute holds the value for each
particle’s rgbPP value.
MEL and Expressions

164

13 | Particle expressions

 > Work with specific particles
Each particle has a unique numerical particle identifier. A particle’s
identifier is stored in a per particle particleId attribute for the particle
object. As you create the particles of a particle object, Maya assigns each
particle a particleId in sequential order starting at 0.

For example, suppose you use the Particle tool to create a five-particle
object by clicking positions in the workspace. The first click of the mouse
creates a particle with particleId 0, the second click creates a particle with
particleId 1, the third click creates a particle with particleId 2, and so on.

When an emitter emits particles, Maya assigns particleId numbers in
sequential order starting with the first particle emitted. The first emitted
particle has particleId 0, the second has particleId 1, the third has
particleId 2, and so on.

You can assign per particle attribute values to specific particles using the
particleId attribute.

Example

Suppose you’ve used the Particle tool to create a grid of nine particles
named ColorGrid. In the Attribute Editor, you’ve set the Render Type of
the particles to Spheres. You’ve chosen Shading > Smooth Shade All to
display the particles with shading.

You can give the particles different colors based on their particleId.

To color the particles based on particleId:

1 Select the ColorGrid.

2 In the Add Dynamic Attributes section of the Attribute Editor, click
Color.

The Particle Color window appears.

3 Select Add Per Particle Attribute, then click Add Attribute.

This adds a per particle attribute named rgbPP, which controls the
red, green, and blue color scheme of each particle.
MEL and Expressions

165

13 | Particle expressions
 > Work with specific particles
When the particles are not selected, they turn black after you add the
rgbPP attribute. Adding the rgbPP attribute turns off the default
coloring of the particles and gives them a value of <<0,0,0>>.

4 In the Attribute Editor, select Numeric from the Render Type menu.

The particleId of each particle is displayed instead of spheres:

5 With ColorGridShape selected in the Expression Editor, enter this
creation expression:

if (particleId <= 2)

rgbPP = <<1,0,0>>;

else if ((particleId > 2) && (particleId < 6))

rgbPP = <<1,1,1>>;

else rgbPP = <<0,0,1>>;

The creation expression executes whenever you rewind the animation.
The particles don’t show the color assignments yet. The Numeric
particle render type ignores color assignments to rgbPP.

6 In the Attribute Editor, set Render Type of the particles to Spheres
again.

The left, middle, and right columns of particles are red, white, and
blue:
MEL and Expressions

166

13 | Particle expressions

 > Work with specific particles
The expression’s first statement assigns a red color to all particles
whose particleId is less than or equal to 2. The value <<1,0,0>> is red
in the RGB color scheme.

The second statement assigns a white color to all particles whose
particleId is greater than 2 and less than 6. The value <<1,1,1>> is
white in the RGB color scheme.

The third statement assigns a blue color to all particles that don’t meet
the conditions in the prior two statements. In other words, all particles
whose particleId is greater than or equal to 6 become blue. The value
<<0,0,1>> is blue in the RGB color scheme.

The following steps show another common way to control an attribute
based on the particleId attribute.

To color half the particles red, and half the particles blue:

1 Enter the following runtime expression:

if ((particleId % 2) == 0)

rgbPP = <<1,0,0>>;

else rgbPP = <<0,0,1>>;

2 Play the scene.

The runtime expression executes each frame as the animation plays.
Particles with even-numbered particleIds are red. The odd-numbered
particles are blue.

The first statement uses a modulus operator (%) to calculate the
remainder of dividing a particleId by 2. It then compares the
remainder to 0. If the remainder equals 0, the statement assigns the
particle a red color. The value <<1,0,0>> is red.

The second statement assigns a particle a blue color if the remainder
of the modulus operation doesn’t equal 0. The value <<0,0,1>> is blue.
For example, dividing particleId 0 by 2 equals 0 with remainder 0.
Because the remainder is 0, the particle having particleId 0 receives a
red color.
MEL and Expressions

167

13 | Particle expressions
 > Assign to a vector variable
Dividing particleId 1 by 2 equals 0 with remainder 1. Because the
remainder is 1, the particle having particleId 1 receives a blue color.

Dividing particleId 2 by 2 equals 1 with remainder 0. With remainder
0, the particle having particleId 1 receives a blue color. The expression
executes for each particle in the object.

The result is that even-numbered particleIds become red, odd
numbered particles become blue.

3 Rewind the animation.

The creation expression executes. The particles become red, white, and
blue as described for the previous expression.

4 Play the animation.

The runtime expression executes each frame. The particles are red and
blue as the animation plays.

Assign to vectors and vector arrays
Previous topics in this chapter show general techniques for working with
vector array attributes. Vector array attributes are also called per particle
attributes. Subtle details of assigning to vector and vector array attributes
and variables follow.

Assign to a vector variable

You can assign a literal vector value or another vector variable to a vector
variable. Enclose a literal vector value in double angle brackets.

Examples

vector $top_velocity = <<2,2,5>>;

This assigns the vector $top_velocity the value <<2,2,5>>.

vector $temp;

$temp = $top_velocity;

Note to

programm

ers You cannot assign values to individual particles with the array
index notation commonly used in programming languages.

For example, suppose you’ve created an opacityPP attribute for
an object made of three particles. You can’t assign values as in
this example:

opacityPP[0] = 0.3;

opacityPP[1] = 0.5;

opacityPP[2] = 1;
MEL and Expressions

168

13 | Particle expressions

 > Use the vector component operator with variables
This assigns the value of vector variable $top_velocity to the vector
variable $temp.

Use the vector component operator with
variables

You can use a vector component operator (.) to read a component of a
vector variable or vector array variable.

Examples

float $temp;

vector $myvector = <<1,2,3>>;

float $temp = $myvector.z;

This assigns the right component of $myvector, 3, to the floating point
variable $temp.

Suppose you have a vector initialized as follows:

vector $myvector = <<1,2,3>>;

To replace the right component of $myvector, 3, with a new value such as
7, use this technique to preserve the other two components:

$myvector = <<$myvector.x,$myvector.y,7>>;

This statement is incorrect:

$myvector.z = 3;

An error occurs. A statement can read, but not directly assign, a
component of a vector variable.

Assign to a vector array attribute component

An expression can neither read nor assign a component of a vector or
vector array attribute. The following example shows a technique for
working around this limitation. For details on working with color
attributes, see ”Work with color” on page 158.

Format Meaning

$variable.x left component

$variable.y middle component

$variable.z right component
MEL and Expressions

169

13 | Particle expressions
 > Assign to a vector array attribute component
Example

Suppose you have a 100-particle Cloud of randomly positioned particles.
You turn on Shading > Smooth Shade All, add a per particle rgbPP
attribute. then enter the following creation expression:

CloudShape.position = sphrand(1);

vector $pos = CloudShape.position;

CloudShape.rgbPP = <<0,$pos.y,0>>;

The three statements execute once for each particle in Cloud.

The first statement gives a particle a random position within a spherical
region of radius 1. The sphrand(1) function gives the X, Y, and Z position
components a value no less than -1 and no greater than 1.

The second statement assigns a particle’s position to a vector variable
$pos.

The third statement assigns an RGB color to a particle’s rgbPP attribute.

The left, middle, and right vector components of CloudShape.rgbPP
represent red, green, and blue components of the RGB color scheme. The
third statement therefore assigns 0 (no color) to the red and blue
components of a particle’s colorRGB. It gives a particle’s green component
the value of its Y coordinate position.

Because a value of 0 or less results in a 0 green value, a particle is black if
it’s below the XZ plane. If a particle’s Y coordinate position is above the
XZ plane, it has a green component varying from nearly 0 to a fully
saturated green.

This colors the particles from black to green, depending on the position.

Increasingly green
MEL and Expressions

170

13 | Particle expressions

 > List of particle attributes
Example

particleShape1.rgbPP = <<1,0,CloudShape.position.z>>;

This causes an error. Maya interprets CloudShape.position.z as being an
attribute named z of an object named CloudShape.position.

You can get the intended result with these statements:

vector $temp = CloudShape.position;

particleShape1.rgbPP = <<1,0,$temp.z>>;

The first statement reads all three components of vector attribute
CloudShape.position and assigns it to the vector variable $temp. The
second statement reads the value of the right component of $temp, which
contains the right component of CloudShape.position. It then assigns this
component to the right component of particleShape1.rgbPP.

Example

particleShape1.rgbPP.y = 1;

This also causes an error. You can’t assign a value to a vector array
attribute component.

List of particle attributes

The following table gives a summary of the particle shape node attributes
you can set or examine in expressions or MEL. The attributes affect the
particle object within which they exist. For more details on the attributes,
use this book’s Index. Note these issues:

• The table shows attribute spellings required in expressions and MEL.
User interface spellings typically use capital letters and spaces
between words.

• Attributes with a data type of vector array or float array are per
particle attributes. All other attributes are per object attributes.

• Attributes marked by an asterisk (*) are dynamic attributes that exist
only if you or Maya add them to the object. Attributes that list the
attribute’s short name in parentheses exist in each particle object by
default.

• If you are an API developer, be aware that there are more attributes
described in Maya Help. Select Help > Node and Attribute Reference
and then search for Particle.

• The table omits the compound attributes centroid and worldCentroid.
Compound attributes consist of two or more component attributes.
The centroid attribute consists of centroidX, centroidY, and centroidZ
attributes. The worldCentroid attribute consists of worldCentroidX,
MEL and Expressions

171

13 | Particle expressions
 > List of particle attributes
worldCentroidY, and worldCentroidZ You can use compound
attributes with MEL commands such as setAttr. For details, see the
MEL Command Reference.

Attribute long
name
(and short
name)

Description Data
Type

acceleration
(acc)

Sets the rate of change of velocity on a
per particle basis.

vector
array

age
(ag)

Contains the number of seconds each
particle in the object has existed since
the first frame. This is a read-only
attribute.

float
array

attributeName* Specifies the name of the attribute
whose values are to be displayed at
particle positions. By default, particle
id numbers are displayed. Valid for
Numeric render type.

string

betterIllumination* Provides smoother lighting and
shadowing at the expense of increased
processing time. Valid for Cloud
render type.

boolean

birthPosition Stores the position at which each
particle was born in the particle’s local
space.

vector
array

birthTime
(bt)

Contains the Current Time value at
which each particle in the object was
created. This is a read-only attribute.

float
array

cacheData
(chd)

Turns on or off dynamic state caching
for the object.

boolean

castsShadows
(rsh)

Turns on or off the object’s ability to
cast shadows in software rendered
images. Valid for Cloud, Blobby
Surface, and Tube render types.

boolean
MEL and Expressions

172

13 | Particle expressions

 > List of particle attributes
centroidX,
centroidY,
centroidZ
(ctdx, ctdy, ctdz)

Contains the X, Y, and Z elements of
the average position of its particles.
These are read-only attributes.

float

collisionFriction
(cfr)

Sets how much the colliding particle’s
velocity parallel to the surface
decreases or increases as it bounces off
the collision surface. This attribute is
displayed as Friction in the user
interface. It works on a per geometry
basis.

float
(multi)

collisionResilience
(crs)

Sets how much rebound occurs when
particles collide with a surface. This
attribute is listed as Resilience in the
user interface. It works on a per
geometry basis.

float
(multi)

collisionU,
collisionV*

U and V positions of the NURBS
surface where a particle collided in the
current frame. For polygonal surfaces,
the values are always 0. The values are
reset to -1 at the start of each frame.
Values change only in frames where
collision occurs. These are read-only
attributes.

float

colorAccum* Adds the RGB components of
overlapping particles. Also adds
opacity values of overlapping
particles. Generally, colors become
brighter and more opaque as they
overlap. To see the effect of Color
Accum, you must add an opacity
attribute to particles displayed as
Points. Valid for MultiPoint,
MultiStreak, Points, and Streak render
types.

boolean

Attribute long
name
(and short
name)

Description Data
Type
MEL and Expressions

173

13 | Particle expressions
 > List of particle attributes
colorBlue* Sets blue component of RGB color.
Valid for all render types except
Numeric and Tube.

float

colorGreen* Sets green component of RGB color.
Valid for all render types except
Numeric and Tube.

float

colorRed* Sets red component of RGB color.
Valid for all render types except
Numeric and Tube.

float

conserve
(con)

Sets how much of a particle object’s
velocity attribute value is retained
from frame to frame.

float

count
(cnt)

Contains the total number of particles
in the object. This is a read-only
attribute.

integer

currentTime
(cti)

Sets the time value for the particle
object’s independent clock.

time

depthSort
(ds)

Turns on or off depth sorting of
particles for rendering. This prevents
unexpected colors when you
hardware render overlapping
colored, transparent particles. Valid
for MultiPoint, MultiStreak, Points,
Streak, and Sprites render types.

boolean

dynamicsWeight
(dw)

Scales the effect of fields, collisions,
springs, goals, and emission on
particles.

float

emissionInWorld
(eiw)

When on, emission occurs in the
world coordinate system. This is the
default setting. When off, emission
occurs in the emitted particle object’s
local space.

boolean

Attribute long
name
(and short
name)

Description Data
Type
MEL and Expressions

174

13 | Particle expressions

 > List of particle attributes
emitterRatePP* Sets the per particle emission rate. float
array

enforceCountFrom
History
(ecfh)

In a soft body, if you change the
original geometry’s construction
history in a way that alters the
number of CVs, vertices, or lattice
points, Maya updates the number of
particles of the soft body
correspondingly.

boolean

event* Contains the number of times each
particle in the object has hit
something. This is a read-only
attribute.

float
array

expressionsAfterD
ynamics
(ead)

Sets whether expressions are
evaluated before or after other
dynamics.

boolean

force
(frc)

Contains the accumulation of all
forces acting on the particle object.
This is a read-only attribute. If you use
this attribute in an expression, first
turn on expressionsAfterDynamics.

vector
array

forcesInWorld
(fiw)

Sets whether forces are applied to the
object in world space or in its local
space.

boolean

goalActive
(ga)

For a goal object, turns each goal on or
off. It has the same effect as setting the
corresponding goalWeight to 0,
except the animation processing is
more efficient. This attribute works on
a per object basis.

boolean
(multi)

goalOffset* Sets an offset to the world space
position of the goal object.

vector
array

goalPP* Sets how much the particles try to
follow the goal on a per particle basis.

float
array

Attribute long
name
(and short
name)

Description Data
Type
MEL and Expressions

175

13 | Particle expressions
 > List of particle attributes
goalSmoothness
(gsm)

Sets how smoothly goal forces change
as the goal weight changes from 0 to 1.
The higher the number, the smoother
the change.

float

goalU, goalV* Set the exact locations on a NURBS
surface where the particles are
attracted.

float
array

goalWeight
(gw)

Sets sets how much all particles of the
object are attracted to the goal.

float
(multi)

incandescencePP* Sets glow color in conjunction with a
software rendering Particle Incand
Mapper Node. Valid for Cloud and
Tube render types.

vector
array

inheritFactor
(inh)

Sets the (decimal) fraction of velocity
an emitted particle object inherits
from an emitter.

float

inputGeometrySpa
ce
(igs)

For a soft body, this sets the
coordinate space Maya uses to
position point data provided by the
input geometry to the particle shape.

integer

isDynamic
(isd)

Turns on or off dynamic animation of
the object.

boolean

isFull
(ifl)

Contains 1 if an emitted particle shape
is full, or 0 if not full. An emitted
particle shape is full when the number
of emitted particles equals the
maxCount. This is a read-only
attribute.

boolean

lifespan* Sets when all particles in the object
die.

float

lifespanPP* Sets when particles die on a per
particle basis.

float
array

Attribute long
name
(and short
name)

Description Data
Type
MEL and Expressions

176

13 | Particle expressions

 > List of particle attributes
levelOfDetail
(lod)

Scales the number of particles that can
be emitted into the emitted particle
object.

float

lineWidth * Sets the width of streaking particles.
Valid for MultiStreak and Streak
render types.

float

mass
(mas)

Specifies the physical mass of
particles. Mass values affect the
results of dynamic calculations. By
default, each particle of a particle
object has a mass of 1.

float
array

mass0
(mas0)

Initial state counterpart to mass. float
array

maxCount
(mxc)

Sets a limit on the number of particles
the emitted particle shape accepts
from an emitter.

int

multiCount* Sets number of points you want
displayed for each particle in the
object. Valid for MultiPoint and
Points render types.

float

multiRadius* Sets radius of spherical region in
which particles are randomly
distributed. Valid for MultiPoint and
MultiStreak render types.

float

needParentUV* Turns on or off the ability to read the
parentU and parentV attributes. If
you add a surface emitter to a NURBS
surface, parentU and parentV contain
the UV coordinates where each
particle was emitted. You can use
these attributes in expressions and
MEL scripts.

boolean

Attribute long
name
(and short
name)

Description Data
Type
MEL and Expressions

177

13 | Particle expressions
 > List of particle attributes
normalDir* Sets direction of normal for particles.
Use with useLighting. Valid for
MultiPoint, MultiStreak, Points, and
Streak render types.

integer
(1-3)

opacity* Sets amount of transparency for all
particles in the object. Valid for all
render types except Numeric and
Tube.

float

opacityPP* Sets amount of transparency on a per
particle basis. Valid for all render
types except Numeric, Tube, and
Blobby Surface.

float
array

particleId
(id)

Contains the id number of each
particle. Valid for Numeric render
type. This is a read-only attribute.

float
array

parentId* If you emit from a particle object, this
contains the id of all particles that emit
the particles. You can use the id to
query the emitting object’s attribute
values, for example, acceleration,
velocity, and lifespanPP. This is a
read-only attribute.

Note that if you use the MEL emit
command to create the particles that
emit, the parentId attribute of those
emitted particles is always 0.

float
array

parentU, parentV* If you add a surface emitter to a
NURBS surface, these attributes
contain the UV coordinates where
each particle was emitted. To use
these read-only attributes, you must
turn on Need Parent UV in the
emitter. You can use these attributes
in expressions and MEL scripts.

float
array

Attribute long
name
(and short
name)

Description Data
Type
MEL and Expressions

178

13 | Particle expressions

 > List of particle attributes
particleRenderTyp
e*

Sets render display type of particles,
for example, Streak.

integer

pointSize* Sets how large particles are displayed.
Valid for MultiPoint, Numeric, and
Points render types.

float

position
(pos)

Sets the object position in local space
coordinates on a per particle basis.

vector
array

position0
(pos0)

Initial state counterpart to position. vector
array

radius* Sets radius size of all particles. Valid
for Blobby Surface, Cloud, and Sphere
render types.

float

radius0* Sets starting point radius for Tube
render type.

float

radius1* Sets ending point radius for Tube
render type.

float

radiusPP* Sets radius size on a per particle basis.
Valid for Blobby Surface, Cloud, and
Sphere, render types.

float
array

rampAcceleration
(rac)

Controls acceleration with a ramp.
Any other animation of acceleration is
added to the ramp-controlled
acceleration.

vector
array

rampPosition
(rps)

Controls position with a ramp. Any
other animation of position is added
to the ramp-controlled position.

vector
array

rampVelocity
(rvl)

Controls velocity with a ramp. Any
other animation of velocity is added
to the ramp-controlled velocity.

vector
array

Attribute long
name
(and short
name)

Description Data
Type
MEL and Expressions

179

13 | Particle expressions
 > List of particle attributes
rgbPP* Sets color on a per particle basis. Valid
for MultiPoint, MultiStreak, Points,
Spheres, Sprites, and Streak render
types.

vector
array

seed
(sd)

Sets the id of the random number
generator of the associated emitter.
This attribute works on a per object
basis.

float
(multi)

sceneTimeStepSize
(sts)

Contains the value of the time
difference between the last displayed
frame and current frame. This
contains 1 if you’re simply playing the
animation or clicking the frame
forward or backward button. If you
click widely separated frames in the
Time Slider, the attribute contains the
difference in time between the two
frames. This is a read-only attribute.

time (in
current
units)

selectedOnly* Turns on or off display of id numbers
only for selected particles. Valid for
Numeric render type.

boolean

spriteNum* Sets the image number index for a
Sprite image sequence.

integer

spriteNumPP* Sets the image number index for a
Sprite image sequence on a per
particle basis.

integer
array

spriteScaleX,
spriteScaleY*

Sets the Sprite X- and Y-axis image
scale.

float

spriteScaleXPP,
spriteScaleYPP*

Sets the Sprite X- and Y-axis image
scale on a per particle basis.

float
array

spriteTwist* Sets the Sprite image’s rotation angle. float

spriteTwistPP* Sets the Sprite image’s rotation angle
on a per particle basis.

float
array

Attribute long
name
(and short
name)

Description Data
Type
MEL and Expressions

180

13 | Particle expressions

 > List of particle attributes
startFrame
(stf)

Sets the animation frame after which
dynamics (including emission) are
computed for the object.

float

surfaceShading* Sets how sharply the spheres of Cloud
render type are displayed. Use a value
between 0 and 1. A value of 1 displays
spheres more distinctly; a value of 0
creates a cloudier effect.

float

tailFade* Sets the opacity of tail fade. Valid for
MultiStreak and Streak render types.

float

tailSize* Sets the length of the tails for
MultiStreak, Streak, and Tube render
types.

float

targetGeometrySp
ace
(tgs)

For a soft body, sets the coordinate
space Maya uses to position point
data provided by the particle shape to
the target geometry.

integer

threshold* Controls surface blending between
Cloud or Blobby surface spheres. This
is a read-only attribute.

float

Attribute long
name
(and short
name)

Description Data
Type
MEL and Expressions

181

13 | Particle expressions
 > List of particle attributes
timeStepSize
(tss)

Contains the animation frame
increment in current units. For
example, if your animation is set to
Film (24 fps), timeStepSize has a value
of 1 (frame).

Keying or otherwise setting the
Current Time value alters the
timeStepSize. For instance, with a
frame rate of 24 frames per second,
suppose you set the Current Time to 0
at frame 0, and to 100 at frame 50.
Because you’re compressing twice as
much time between frames 0 and 50,
the timeStepSize is twice as large, in
other words, 2. This is a read-only
attribute.

time

totalEventCount
(evc)

Contains total events that have
occurred for all particles of the object.
This is a read-only attribute.

integer

traceDepth
(trd)

Sets the maximum number of
collisions Maya can detect for the
object in each animation time step.

integer

traceDepthPP* Sets the trace depth on a per particle
basis.

float
array

useLighting* Turns on or off whether scene lighting
lights up particles. Valid for
MultiPoint, MultiStreak, Points,
Sprites, and Streak render types.

boolean

userScalar1PP
userScalar2PP
userScalar3PP
userScalar4PP
userScalar5PP

Predefined outputs for user-defined
attributes used in Particle Sampler
Info node.

float
array

Attribute long
name
(and short
name)

Description Data
Type
MEL and Expressions

182

13 | Particle expressions

 > List of particle attributes
userVector1PP
userVector2PP
userVector3PP
userVector4PP
userVector5PP

Predefined outputs for user-defined
attributes used in Particle Sampler
Info node.

vector
array

velocity
(vel)

Sets speed and direction on a per
particle basis.

vector
array

velocity0
(vel0)

Initial state counterpart to velocity vector
array

visibleInReflection
s
(rrl)

Turns on or off whether the object is
visible in reflections when software
rendered. Valid for Cloud, Blobby
Surface, and Tube render types.

boolean

visibleInRefraction
s
(rrr)

Turns on or off whether the object is
visible in refractions when software
rendered. Valid for Cloud, Blobby
Surface, and Tube render types

boolean

worldBirthPosition

Stores the position at which each
particle was born in world space.

vector
array

worldCentroidX,
worldCentroidY,
worldCentroidZ
(wctx, wcty, wctz)

Contains the world space X, Y, and Z
elements of the average position of its
particles. These attributes are a read-
only attributes.

float

worldPosition
(wps)

Contains the world space counterpart
to position. This is a read-only
attribute.

vector
array

worldVelocity
(wvl)

Contains the world space counterpart
to velocity. This is a read-only
attribute.

vector
array

worldVelocityInO
bjectSpace
(wvo)

Contains the local space equivalent to
the object’s world space velocity. This
is a read-only attribute.

vector
array

Attribute long
name
(and short
name)

Description Data
Type
MEL and Expressions

183

13 | Particle expressions
 > List of particle attributes
MEL and Expressions

184

14 | Script nodes

 > Script nodes
14 Script nodes

Script nodes

Script nodes

Script nodes are a way of storing a MEL script in a Maya scene file.

You can set a script node to execute its “payload” in response to various
events:

• When the node is read from a file.

• Before or after rendering a frame.

• Before or after rendering an animation.

• When a file is closed or de-referenced.

A script node has three attributes: Before, After, and Type. Depending on
the Type of script, the Before and After attributes specify when the script
executes.

Create or edit a script node

A script node is a node that is saved with the scene and runs when a
configurable event occurs.

To create a script node

1 Open the expression editor (Window > Animation Editors >
Expression Editor).

2 In the expression editor, choose Select Filter > By Script Node Name.

Any existing Script Nodes are displayed in the Script Nodes list.

3 Enter a name for the node in the Script Node Name box.

4 Type the script in the Script box.

Click Test Script to try out the script. The results appear in the Script
editor.

5 Click Create.

6 Choose what event triggers the node. Use the chart under “Events”
below for how to set the Execute On and Script options.

7 Click Edit.
MEL and Expressions

185

14 | Script nodes
 > Create or edit a script node
8 If you want to create another script node, first click New Script Node
to clear the form.

To edit a script node

1 Open the expression editor (Window > Animation Editors >
Expression Editor).

2 In the expression editor, choose Select Filter > By Script Node Name.

3 Click the script node you want to edit in the Script Nodes list.

4 Edit the script in the Script box.

If you need to undo your changes, click Reload.

To delete a script node

1 Open the expression editor (Window > Animation Editors >
Expression Editor).

2 In the expression editor, choose Select Filter > By Script Node Name.

3 Click the script node you want to edit in the Script Nodes list.

4 Click Delete.

Events

To trigger the script
when...

Set...

You open the scene in
Maya.

Execute On pull-down menu to GUI
Open/Close.

Script to Before.

You close or de-reference
the scene in Maya, or when
the node is deleted.

Execute On to GUI Open/Close.

Script to After.

You open the scene in
batch mode.

Execute On to Open/Close.

Script to Before.

You close or de-reference
the scene in batch mode, or
when the node is deleted.

Execute On to Open/Close.

Script to After.

Before or after an
animation is rendered.

Execute On to Software Render.

Script to Before or After.
MEL and Expressions

186

14 | Script nodes

 > Prevent script nodes from executing when you open a file
Internals

UI Configuration event

The before script contains the user interface configuration information. It
is automatically generated either by Maya or a plug-in to save the panel
layout and editor state information. This script node executes its script
when you open a file. After execution, the node is deleted. The after script
is never executed. This node will not exist if a file is referenced or
imported.

Prevent script nodes from executing when
you open a file

1 Select File > Open Scene > �.

2 Turn off Execute Script Nodes.

3 Click Open.

Remember to turn the setting back on if you want the next scene you open
to run script nodes.

Before or after each
animation frame is
rendered.

Execute On to Software Frame Render.

Script to Before or After.

You specifically call it with
a scriptNode command.

Execute On to Demand.

To trigger the script
when...

Set...
MEL and Expressions

187

14 | Script nodes
 > Prevent script nodes from executing when you open a file
MEL and Expressions

188

15 | Advanced

 > Automatic type conversion
15 Advanced

Advanced programming topics

Automatic type conversion

Automatic conversion

Maya’s automatic type conversion lets you convert types without
explicitly stating them. It also automatically converts the data type for you
if the type specified is not acceptable.

Occasionally unexpected automatic type conversions can create a
problem. Knowing the rules for type conversion can help you fix these
types of errors:

• Strings dominate all other types.

• Vectors dominate floats.

• Floats dominate ints.

• If one operand is an int type and the other is a float type, MEL
converts the int to a float.

• Between vector and matrix types, the type on the left-hand side
dominates.

• In assignment, the type on the left-hand side dominates.

In an assignment operation, the type of the right-hand side is
converted to the type of the left-hand side. The first four rules apply
for sub-expressions during the computation of the right-hand side; a
final conversion takes place when assigning to the left-hand side.

The following table demonstrates the rules for automatic conversions.

Operation Resulting data type

int operator float float

float operator int float

int operator vector vector

vector operator float vector
MEL and Expressions

189

15 | Advanced
 > Limits
$var1 = 7 + 1.3; // Type: float (8.3)

$var2 = 7.9 + 2; // Type: float (9.9)

$var3 = 2 + <<4, 5, 6>>; // Type: vector <<6, 7, 8>>

$var4 = 0007 + " Lives!"; // Type: string ("7 Lives!")

In the last example, 0007 is an int of value 7, which is converted to a string
and concatenated with “Lives!”. The result is a string which implicitly
declares var4 to be of type string with value “7 Lives!”.

Explicit conversion

There are two ways to explicitly convert a value of one type to another
type. The most common way is to specify the type in parentheses before
the value. For example:

$Z = (vector) "<<1, 2, 3>>"; // Type: vector (<<1, 2, 3>>)

$cools = (float) 7; // Type: float (7)

$ools = (string) 47.554; // Type: string ("47.554")

You can also explicitly convert a value to another type by specifying the
type followed by the value in parentheses. For example:

$ly = vector("<<1, 2, 3>>"); // Type: vector (<<1, 2, 3>>)

$ooly = int(3.67); // Type: int (3)

Limits

Integer division truncation

When Maya executes arithmetic operations on constants and variables
without a declared data type, it guesses the data type based on the values
present. For instance, in this statement:

float $where = 1/2; // Result: 0

Maya treats 1 and 2 as integers because they have no decimal points. The
expression divides integer 1 by integer 2. The integer result is 0 with a
remainder of 1. Maya discards the remainder.

vector operator matrix vector

matrix operator vector matrix

matrix operator string string

string operator int string

Operation Resulting data type
MEL and Expressions

190

15 | Advanced

 > Limits
Because where is a float variable, Maya converts the integer value 0 to
floating point value 0 (which is the same value), then assigns this value to
where. To get the fractional component of the value, one of the integer
operands needs to be converted to a float:

float $there = 1/2.0; // Result: 0.5

Maya treats 2.0 as a floating point number because it has a decimal point.
The number 1 is converted to a float and a float division takes place
resulting in the value 0.5 which is then assigned to there. Another way to
retain the fractional part of the division is as follows.

float $youGo = float(1)/2;

Here the 1 value is converted to a float which causes the 2 value to also be
converted to a float. This creates a float division, preserving the fractional
part of the division.

Precision and maximum numerical sizes

For a string, matrix, or array, the maximum size is dependent only on the
amount of memory available on your computer. Floats and ints, however,
have limits on their precision and maximum size.

The maximum size of an int is the same as in the C language and is
machine dependent. On most computers this range is from -2,147,483,648
to 2,147,483,647.

The maximum precision and range of a float is the same as a double in the
C language and is machine dependent. Floats have limited precision, and
round-off errors can accumulate in long calculations. However, since the
precision for the float type is so high (about fifteen digits of accuracy),
round-off errors usually do not become a problem.

Range wrap-around

Variables have limited ranges. When these ranges are exceeded, undesired
results can occur.

int $mighty = 2147483647 + 1; // Result: -2147483648

int $radical = -2147483648 - 1; // Result: 2147483647

int $buddy = 2147483648; // Result: -2147483648

int $man = 2147483647 + 2; // Result: -2147483647

When the maximum range of a variable is exceeded, the value of the
variable wraps around to the minimum range of the variable. Also, when
the minimum range of a variable is exceeded, the value of the variable
wraps around to the maximum range of the variable.

float $GG = 1.5 + 1000000000 * 3; // Result: -1294967294.5
MEL and Expressions

191

15 | Advanced
 > Local array collection
In this example, the multiplication is done first due to operator
precedence. The multiplication is performed on two ints, so the result type
is an int. Because the value of this multiplication is over the maximum
range of an int, the value wraps around.

The following calculation illustrates what is occurring internally:

$GG = 1.5 + 1000000000 * 3;

$GG = 1.5 + 3000000000; // Maxumum int range exceded

$GG = 1.5 + 3000000000 + (2147483648) - (2147483648.0);

$GG = 1.5 + 3000000000 + (-2147483648) - (2147483648.0);

$GG = 1.5 + 3000000000 - 4294967296;

$GG = 1.5 + -1294967296;

$GG = -1294967294.5;

Local array collection

Arrays and other variables are freed when you leave the scope in which
they were defined. So, if an array is stored in a local variable, it will be
automatically freed when leaving the procedure, loop, or if statement in
which it was defined.

Array arguments are passed by reference

Arrays are passed by reference. If you pass an array as an argument to a
procedure and modify that argument within the procedure, the array will
have the modified values upon return from the procedure call. For
example:

proc fred(string $myArray[]) {

 for ($i=0; $i<size($myArray); ++$i) {

 $myArray[$i] = "fred";

 }

 $myArray[$i] = "flintstone"; // add to the end of

the array.

 }

 string $a[] =‘ls -geometry‘;

 print("Before call to fred\n");

 print $a;

 fred($a);

 print("After call to fred\n");

 print $a;

produces this output:

Before call to fred

nurbConeShape1

nurbConeShape2

nurbSphereShape1

nurbSphereShape2

After call to fred

fred
MEL and Expressions

192

15 | Advanced

 > Changing the user script locations with MEL
fred

fred

fred

flintstone

Changing the user script locations with MEL

Maya maintains a list of directories that it searches when it is looking for a
script. Maya will search this path when an unknown global procedure is
called, or when the "source" command is used.

The search path is stored in an environment variable called
MAYA_SCRIPT_PATH. You may set this environment variable in the
Maya.env file where your preferences are stored. Or, you may set the
environment variable some other way appropriate to the system you are
working on.

The value that is stored in MAYA_SCRIPT_PATH is a list of directories,
separated by semi-colons on Windows, and by colons on other platforms.
For example, you might have the following in your Maya.env file
(Mac OS X example):

USER_SCRIPT_PATH = /Volumes/Sapphire/render/scenes/lego pov

library/Library:/Volumes/Sapphire/render/scenes/maya/scripts

MAYA_SCRIPT_PATH=$USER_SCRIPT_PATH:$MAYA_SCRIPT_BASE/

scripts/test:$MAYA_SCRIPT_BASE/scripts/unsupported

You can also set the script path temporarily for a session of Maya using
the putenv command directly from MEL. For example:

putenv "MAYA_SCRIPT_PATH" "<explicit path>";

It is important to note that the Maya script search path is cached. Maya
only scans the path for scripts once on startup, and whenever the
MAYA_SCRIPT_PATH variable changes. This means that if a script is
added to a directory on the search path while Maya is running, Maya will
not automatically find the file. There is a command in MEL called
"rehash" that can be used to tell Maya to rescan the script path and look
for new scripts. Caching of the script path improves Maya's performance,
especially if parts of the search path are located on network drives.

There is a user directory which Maya always searches for scripts. One can
install a script there to have Maya find it, without having to change
Maya's script path. This directory's location differs according to your
system, but you can always find this directory using the following MEL
command:

internalVar -usd

Note You cannot modify the location of this directory.
MEL and Expressions

193

15 | Advanced
 > How often an expression executes
Advanced animation expressions
topics

How often an expression executes

After you’ve typed an expression in the Expression Editor, you click the
Create or Edit button to compile the expression. Compiling the expression
checks it for syntax errors and converts it to a form Maya can execute
when you rewind or play the animation. After being compiled, the
expression executes for the current frame.

When you select an object other than a particle shape node, the Expression
Editor displays an Always Evaluate checkbox that affects when an
expression executes. If you select a particle shape node, the Expression
Editor dims this checkbox. For details on particle shape node expressions,
see ”Particle expressions” on page 133.

Generally an expression executes whenever the current animation time or
frame changes. For example, an expression executes when you rewind or
play the animation. The expression executes once for each time the
animation frame or time changes.

An expression also generally executes when your interaction with Maya
makes use of an attribute in the expression. For example, if your
expression assigns a sphere’s translateX attribute to another attribute and
you move the sphere in an X-axis direction, the expression executes upon
each increment of the sphere’s movement.

Occasionally, it’s useful to turn off Always Evaluate to diminish
redundant expression execution and speed Maya operation. Before doing
this, it’s best to understand the subtle details of expression execution.

Use custom attributes in expressions

It’s often helpful to add a custom attribute to an object and use it in an
expression. You can use a custom attribute to control a combination of
other attributes. You can also use a custom attribute as a variable—a place
to store a value temporarily to be read by other attributes.

Custom attributes have no direct effect on any characteristic of an object.

See “Assign to a custom attribute” in Chapter 13 for details on how to add
and use a custom attribute with particles.

Example

Suppose you’ve given a NURBS sphere named Planet a circular, orbiting
motion in the XY plane with this expression:

Planet.tx = sin(time);
MEL and Expressions

194

15 | Advanced

 > Use custom attributes in expressions
Planet.ty = cos(time);

Planet orbits the origin at a radius of 1 unit.

In the following steps, you’ll create a custom attribute named distance to
increase the radius of Planet’s orbit over time.

To add a custom attribute to alter the orbit:

1 Select Planet.

2 Select Modify > Add Attribute.

Note The small balls in the preceding figure show the circular path of
Planet. They’re in the figure only to help you visualize the
motion. They aren’t part of the animation or expression.
MEL and Expressions

195

15 | Advanced
 > Use custom attributes in expressions
3 In the Add Attribute window, enter distance in the Attribute Name
text box.

4 Make sure Make attribute keyable is on.

5 Set Data Type to Float, and Attribute Type to Scalar.

6 Set Minimum to 1, Maximum to 10, and Default to 4.

Minimum and Maximum set the lowest and highest values you can
enter for the attribute in the Attribute Editor or Channel Box.

Default sets the default value displayed for the attribute.

An expression isn’t bound by the Minimum and Maximum values.
The attribute receives whatever value you assign it in the expression.

The expression can read the Default value or any other value you set
in the Attribute Editor or Channel Box.

7 Click Add to add the attribute, then close the Add Attribute window.

The distance attribute appears in the Attributes list of the Expression
Editor for Planet. You can now set or read the value of the attribute in
any expression.

8 Edit the expression to this:

Planet.tx = distance * sin(time);

Planet.ty = distance * cos(time);
MEL and Expressions

196

15 | Advanced

 > Use custom attributes in expressions
Multiplying the sin(time) and the cos(time) by the distance attribute
makes Planet circle the origin at a distance specified by the value of
the distance attribute. See ”Useful functions” on page 217 for details
on the sin and cos functions.

Because you gave the distance attribute a default value of 4 when you
added it to Planet, playing the animation makes Planet circle the
origin at a distance of 4 grid units from the origin.

You can make the expression control the distance attribute over time.

9 Edit the expression to this:

distance = time;

Planet.tx = distance * sin(time);

Planet.ty = distance * cos(time);

By setting distance to the value of time, Planet’s orbiting distance
increases as playback time increases. Planet moves in a steady
outward spiral as the animation plays.
MEL and Expressions

197

15 | Advanced
 > Display attribute and variable contents
Instead of using an expression to control distance, you can keyframe
its value over time.

For example, by keyframing a distance value of 1 at frame 1 and a
value of 10 at frame 200, Planet moves in a steady outbound spiral as
you play the 200 frames. Planet’s distance increases in a linear
interpolation from 1 to 10 as the animation plays.

You can animate the distance attribute with keyframes or with an
expression, not with both.

Display attribute and variable contents

The predefined print() function displays attribute contents, variable
contents, and other strings in the Script editor. This is often helpful for
debugging an expression. See ”print” on page 262 for more details.

Note that for a non-particle expression consisting of only print statements,
Always Evaluate must be on in the Expression Editor for the expression to
execute.

Reproduce randomness

If you execute the rand, sphrand, and gauss functions repeatedly in an
expression, Maya returns a sequence of random numbers. (See ”Random
number functions” on page 243 for details on these functions.) Each time
you rewind and play your animation, the sequence of random numbers is
different. Often, you’ll want to generate a sequence of random numbers
that repeats each time your animation plays.

For instance, suppose you use the rand function to assign a random radius
to each particle in a stream of emitted particles rendered as Spheres. By
default, Maya gives the particles a different sequence of random radius
values each time your animation plays.

Tip If an expression controls an attribute and you want to control it
with keyframes instead, delete all statements that assign values
to the attribute, then click the Edit button. Use the Channel Box
to reset the attribute’s value to an initial value, then set
keyframes as desired.

If keyframes control an attribute and you want to control it with
an expression instead, click the attribute’s text box in the
Channel Box, then select Channels > Delete Selected. Assign
values to the attribute name in an expression as desired.
MEL and Expressions

198

15 | Advanced

 > Reproduce randomness
To create the same radius values each time the animation plays, you can
use the seed function in an expression before the rand, sphrand, or gauss
functions execute. There’s no need to execute the seed function more than
once per animation unless you need to generate several different
repeating sequences of random numbers as your animation plays.

Example

Suppose you use the rand function to position several marbles at random
translateX positions in your scene at frame 1:

if (frame == 1)

{

marble1.tx = rand(-10,10);

marble2.tx = rand(-10,10);

marble3.tx = rand(-10,10);

marble4.tx = rand(-10,10);

}

The rand(-10,10) returns a random number between -10 and 10 each time
it executes. When you rewind the animation to frame 1, Maya might
assign these values to the translateX attributes of the marbles:

ImportantWhen you set a seed value in an expression or MEL script, the
seed value affects the rand, sphrand, and gauss functions in
other expressions and MEL scripts. Such functions are affected
by this seed value in all scenes you open subsequently in the
current work session.

This seed value is unrelated to the Seed attribute available in the
particle shape node. The seed function therefore doesn’t affect
randomness created with dynamics.

Attribute Value

marble1.tx 2.922

marble2.tx 5.963

marble3.tx -4.819

marble4.tx 7.186
MEL and Expressions

199

15 | Advanced
 > Reproduce randomness
The next time you rewind the animation to frame 1, each marble’s
translateX attribute receives a different random value. Maya might assign
these values:

You might prefer the marbles’ translateX values to stay the same when
you rewind, for instance, so you can composite the marbles correctly
among a foggy backdrop.

You can use the seed function to keep the sequence of random values
returned by the rand function consistent when you rewind the animation.

if (frame == 1)

{

seed(10);

marble1.tx = rand(-10,10);

marble2.tx = rand(-10,10);

marble3.tx = rand(-10,10);

marble4.tx = rand(-10,10);

Attribute Value

marble1.tx -3.972

marble2.tx 9.108

marble3.tx -7.244

marble4.tx -3.065
MEL and Expressions

200

15 | Advanced

 > Reproduce randomness
}

By setting the seed value to an arbitrary number, for instance, 10, the
subsequent executions of the rand function return a repeating sequence of
random numbers.

When you rewind the animation the first time, Maya might assign these
values to the translateX attributes of the marbles:

Each time you rewind the animation thereafter, Maya assigns these same
values to the translateX attributes of the marbles. The marbles don’t move.

Each time a statement sets the seed value to 10, the subsequent executions
of the rand function return numbers from the sequence starting at the
beginning number. In other words, resetting the seed value to 10 restarts
the random number generation process to the first value in the sequence.

Suppose you alter the expression to this:

if (frame == 1)

{

seed(10);

}

marble1.tx = rand(-10,10);

marble2.tx = rand(-10,10);

marble3.tx = rand(-10,10);

marble4.tx = rand(-10,10);

Attribute Value

marble1.tx 8.020

marble2.tx -2.973

marble3.tx -7.709

marble4.tx 0.741
MEL and Expressions

201

15 | Advanced
 > Remove an attribute from an expression
When you rewind the animation to frame 1, the expression sets the seed to
10. Maya assigns values to the marbles’ translateX attributes as in the
previous expression.

Because the expression doesn’t set the seed value in frames other than
frame 1, playing the animation causes the rand function to return a new,
yet repeating, sequence of random numbers each frame. If you play the
animation several times, the translateX values will constantly change
during animation, but the sequence of values will be identical each time
you play the animation.

You can assign the seed a different value to generate a different sequence
of returned values. See ”seed” on page 249 for details.

Remove an attribute from an expression

If you do any of the following actions, an expression no longer sets or
reads an attribute:

• Delete all occurrences of the attribute name in the expression.

• Convert to comments all statements that use the attribute name in the
expression.

• Delete the expression that contains the attribute.

Following these actions, the attribute keeps its value from the last time the
expression executed and set its value.

The attribute doesn’t return to the value it had before the expression set it.
To return the attribute to its original value, use the Channel Box or
Attribute Editor to set the attribute.

Disconnect an attribute

If you disconnect an attribute from an expression, the expression no
longer reads or set its value. You might want to disconnect an attribute,
for example, so you can keyframe the attribute rather than control it with
an expression.

These actions disconnect an attribute from an expression:

• Delete from the scene an object with an attribute that exists in the
expression.

• Use the Window > General Editors > Connection Editor to disconnect
the attribute from the expression.

• Use the MEL disconnectAttr command.

• Use the MEL choice command.
MEL and Expressions

202

15 | Advanced

 > Disconnect an attribute
Display disconnected attributes in expressions

The Expression Editor displays a disconnected attribute with a symbolic
placeholder representing the attribute’s former existence in the expression.

Example

Suppose your scene has two objects, Ball and Cone, and you’ve written
this expression:

Ball.translateX = Cone.translateX;

Ball.translateY = Cone.translateY;

Ball.translateZ = Cone.translateZ;

If you delete Cone from the scene, Cone.translateX, Cone.translateY, and
Cone.translateZ attributes no longer exist for the expression to read and
assign to Ball’s translateX, translateY, and translateZ attributes.

If you display the expression again, it appears as follows:

Ball.translateX = .I[0];

Ball.translateY = .I[1];

Ball.translateZ = .I[2];

The .I[0], .I[1], and .I[2] characters indicate you’ve disconnected Cone’s
translate attributes from the expression. These symbols represent
placeholders for the former use of the attributes in the expression.

The .I means the placeholder represents an input to the expression. An
input to an expression is an attribute with a value the expression reads for
assignment to another attribute or variable. The number in brackets
indicates the order in the expression the attribute was read.

For example, .I[0] indicates the input is the first attribute read in the
expression, .I[1] indicates the input is the second attribute read, and .I[2]
indicates the input is the third attribute read.

A floating point or integer attribute placeholder has a value of 0. A
particle shape node’s vector attribute placeholder has a value of
<<0,0,0>>. In the example, the placeholders .I[0], .I[1], and I[2] have the
value 0. When the expression executes, it assigns Ball.translateX,
Ball.translateY, and Ball.translateZ the value 0.

Tip The MEL choice command lets you control an attribute
alternately with two or more techniques in different frames. For
example, you can keyframe an attribute for frames 1-48, control
it with an expression for frames 48-96, and control it with a
motion path for subsequent frames.
MEL and Expressions

203

15 | Advanced
 > Disconnect an attribute
Note that if you disconnect an attribute from an expression but the
attribute still exists in the scene, the attribute keeps its value from the last
time the expression executed and set its value.

Example

Suppose you’ve written these statements among others:

Ball.translateX = Cone.translateX;

Ball.translateY = Cone.translateY;

Ball.translateZ = Cone.translateZ;

If you delete Ball from the scene, Ball.translateX, Ball.translateY, and
Ball.translateZ attributes no longer exist. The expression can no longer
assign Cone’s translateX, translateY, and translateZ values to the
corresponding Ball attributes.

Symbolic placeholders replace Ball attributes in the expression. If you
display the expression again, the statements appear as follows:

.O[0] = Cone.translateX;

.O[1] = Cone.translateY;

.O[2] = Cone.translateZ;

The .O[0] characters indicate you’ve disconnected the attribute
Ball.translateY from the expression. The .O indicates that the placeholder
represents an output from the expression.

An output from an expression is an attribute assigned a value by the
expression. The number in brackets, for example, [0], indicates the order
in which the attribute was assigned a value in the expression.

Because Ball.translateX was the first output from the expression, the
expression replaces it with .O[0]. The expression replaces Ball.translateY
and Ball.translateZ with .O[1] and .O[2] because they were the second and
third outputs from the expression.

Note If an expression assigns values to the attributes of only one
object, deleting the object deletes the expression also. If your
expression assigns values to attributes of several object
attributes, deleting all those objects deletes the expression.

To avoid deleting the expression in the preceding example, you
would need have some statement that sets an attribute of an
object other than the deleted Ball. For example, you might
include this statement:

Cone.visibility = 1;
MEL and Expressions

204

15 | Advanced

 > Disconnect an attribute
When the expression executes, it continues to assign values to the
placeholder, though the placeholder has no effect on any object or
component of scene.

The expression assigns the placeholders .O[0], .O[1], and .O[2] the value of
Cone.translateX, Cone.translateY, and Cone.translateZ, but these
placeholders don’t control anything in the scene. The statements have no
effect.

Connect an attribute to a symbolic placeholder

After you’ve disconnected an attribute from an expression, a symbolic
placeholder replaces it in the expression as described in the preceding
topic. You can replace the placeholder with the attribute of your choice.

The most obvious way to do this is to type the desired attribute name in
every occurrence of the symbolic placeholder in the expression.

If you have a lengthy expression that has lots of symbolic placeholders,
you can use a single MEL connectAttr command to connect the new
attribute to all occurrences of the same symbolic placeholder. You can also
use Window > General Editors > Connection Editor.

Example 1

Suppose you have these statements among others in an expression named
HorseController:

WhiteHorse.translateX = Car.translateX;

BlackHorse.translateX = Car.translateX;

BrownHorse.translateX = Car.translateX;

Deleting the Car and reloading the expression shows this:

WhiteHorse.translateX = .I[0];

BlackHorse.translateX = .I[0];

BrownHorse.translateX = .I[0];

.I[0] is the symbolic placeholder for what was the Car.translateX attribute.
You can connect a different attribute to this placeholder to assign its
contents to the translateX attributes of WhiteHorse, BlackHorse, and
BrownHorse.

Suppose you want to control these attributes with the translateX attribute
of an object named Cow. You can enter the following MEL command at
the Command Line:

connectAttr Cow.tx HorseController.input[0]

This command connects the attribute Cow.tx to the expression’s input[0].
The expression is named HorseController. The input[0] is abbreviated as
.I[0] in the expression. You can see the spelled-out input name input[0] in
the Graph > Input and Output Connections display of the Hypergraph.
MEL and Expressions

205

15 | Advanced
 > Rename an object
Reloading the expression shows the new attribute connection:

WhiteHorse.translateX = Cow.translateX;

BlackHorse.translateX = Cow.translateX;

BrownHorse.translateX = Cow.translateX;

Example 2

You can also reconnect an expression’s output with the connectAttr
command. Suppose you have these statements among others in an
expression named HorseController:

WhiteHorse.translateX = Car.translateX;

BlackHorse.translateX = Car.translateX;

BrownHorse.translateX = Car.translateX;

Deleting the BrownHorse object and reloading the expression displays
this:

WhiteHorse.translateX = Car.translateX;

BlackHorse.translateX = Car.translateX;

.O[2] = Car.translateX;

.O[2] is the symbolic placeholder for what was the BrownHorse.translateX
attribute. It received the placeholder .O[2] because it’s the third output
from the expression. (The first and second outputs from the expression are
.O[0] and .O[1] .) You can connect a different object attribute to this
placeholder to control it with the value in Car.translateX, as shown in the
third statement.

Suppose you want to control the attribute of a new object named
RedHorse.translateX with the Car.translateX value. You can enter the
following MEL command in the Command Line:

connectAttr HorseController.output[2] RedHorse.tx

This command connects the HorseController expression’s output[2] to the
attribute RedHorse.tx. The output[2] is abbreviated .O[2] in the
expression.

Reloading the expression shows the new attribute connection:

WhiteHorse.translateX = Cow.translateX;

BlackHorse.translateX = Cow.translateX;

RedHorse.translateX = Cow.translateX;

Rename an object

If you rename an object whose attributes were used in an expression, the
Expression Editor continues to read or set the attributes. Maya doesn’t
disconnect the attribute from the expression. The Expression Editor
converts to the new name of the object the next time you click the Reload
button in the Expression Editor.
MEL and Expressions

206

15 | Advanced

 > Executing MEL commands in an expression
When you reload an expression, the Expression Editor converts any short
attribute names to their long attribute name equivalents. For example, if
you originally type the attribute name Ball.ty, reloading the expression
renames it as Ball.translateY.

If you rename an object and the name is used in a MEL command within
an expression (see the following section), you must change the name
manually in the expression. The Expression Editor doesn’t convert object
names that exist in MEL statements. For example, suppose you use the
following statements in an expression successfully:

Cube.translateX = 'getAttr Ball.translateX';

setAttr Ball.translateX 0;

If you later rename Ball as Sphere, the Expression Editor won’t change the
name Ball to Sphere, and the expression will fail. You must change the
name manually in the expression.

In the following statements, the Expression Editor will change the name
Ball to Sphere and the expression will execute without error. This occurs
because the statements use standard expression syntax rather than MEL
command syntax.

Cube.translateX = Ball.translateX;

Ball.translateX = 0;

Executing MEL commands in an expression

You can execute MEL commands in an expression with several
techniques:

• MEL command alone in a statement

• MEL command within left-hand single quote marks

• MEL command used as an argument to an eval function

• MEL procedure call to a procedure in a MEL script

• MEL script node

Understand path names

If two objects in a scene have different parents, they can have the same
object name. If you refer to an attribute of such an object in an expression,
you must use a more complete name that includes the object’s path name.

An object’s path name has this format:

pathname|objectname.attributename

where pathname is the parent node’s name, objectname is the object’s name,
and attributename is the attribute’s name of the attribute.
MEL and Expressions

207

15 | Advanced
 > Unexpected attribute values
A vertical bar (|) symbol divides the pathname from the object name.
Don’t type spaces before or after the | symbol.

For example, a scene might have a child of GroupA named Ball.tx and a
different child of GroupB named Ball.tx. If you write this statement:

Ball.tx = time;

Maya generates an error because it doesn’t know which Ball.tx to set.

To eliminate the error, you must enter the pathname of the attribute as in
this example:

GroupA|Ball.tx = time;

The | symbol between GroupA and Ball.tx indicates that the object to the
left of the symbol is the parent of the object to its right. Use no spaces
before or after the | symbol.

Note that the Expression Editor displays pathnames for such objects. For
example, the Objects list displays GroupA|Ball.

Unexpected attribute values

As you work with expressions, you’ll sometimes see attribute values you
didn’t expect. The following topics describe a few common causes of
confusion.

Values after rewinding

When you rewind a scene, an expression executes with the last settings
made for attribute values. This sometimes gives unexpected results.

Example

Ball.tx = $distance;

$distance = time;

Assume for this example you’ve set the starting frame of the animation to
frame 0.

The first statement sets Ball.tx to the variable $distance. The second
statement sets $distance to the value of time.

ImportantAlways examine the Script editor for error messages after you
edit an expression and click the Create button. If you alter a
previously successful expression and a syntax error occurs,
Maya executes the previous successful expression when you
play the animation. This might lead you to believe your editing
changes took effect.
MEL and Expressions

208

15 | Advanced

 > Unexpected attribute values
When you play the animation, Ball moves along the X-axis with the
increase in time. Ball’s X-axis position is 4 grid units, for example, when
animation time equals 4 seconds.

When you rewind the animation, Ball’s position along the X-axis doesn’t
return to 0 as you might assume. The previous execution of the expression
at time equals 4 set the $distance variable to 4. So rewinding sets Ball.tx to
4, then sets the value of $distance to 0, the value of time upon rewinding.

If you rewind again, Ball’s position along the X-axis returns to 0 as
desired. Because the previous execution of the expression upon rewinding
set the $distance to 0, the expression now correctly sets Ball.tx to 0.

To fix this problem, reverse the order of the statements and compile the
expression:

$distance = time;

Ball.tx = $distance;

After you play and rewind the expression, the first statement executes and
assigns the time to $distance. The next statement assigns Ball.tx the value
of $distance, which the first statement set to the value of time. Because
$distance is set to 0 as the first statement after rewinding, Ball returns to
the desired translateX position.

Increment operations

If you increment an attribute or variable during animation, you might be
confused by its behavior.

Example

Ball.ty = 0;

Ball.ty = Ball.ty + 1;

Ball’s translateY position stays at 1 unit along the Y-axis. Ball’s translateY
position doesn’t increase by 1 each frame as the animation plays.

Example

Ball.ty = Ball.ty + 1;

Ball’s translateY position increases by 1 each frame as you play the
animation. When you rewind the animation, translateY increases by 1
again.

When you play the animation again, the translateY position increases by 1
each frame. If you rewind the animation or drag the current time
indicator, the translateY position continues to move up the Y-axis. The
attribute never returns to its original position.
MEL and Expressions

209

15 | Advanced
 > Data type conversions
To return Ball to a starting position each time you rewind, you must
initialize the attribute to a starting value. For example, you could use the
following expression:

Ball.ty = Ball.ty + 1;

if (frame == 1)

Ball.translateY = 0;

This returns Ball to a Y position of 0 when you rewind to frame 1. When
you drag the current time indicator, though, Ball doesn’t return to its Y
position of 0.

The if statement resets the value of translateY to 0 only when frame 1
plays. Frame 1 is the default frame that plays when you rewind an
animation. You would need to use a different frame number in the if
statement if you’ve set your animation to start at a different frame.

Data type conversions

Maya is flexible in its handling of data types. If you do assignment or
arithmetic operations between two different data types, Maya converts
data type as necessary and doesn’t report a syntax error.

The following topics describe the conversions that occur in such instances.
Understanding these details might help you troubleshoot unexpected
attribute and variable values.

Unless you have programming experience, don’t intentionally convert
data types. You might be confused by unexpected attribute and variable
values.

Assign to a floating point attribute or variable

If you assign a vector to a floating point attribute or variable, Maya
converts the vector to a floating point value according to this equation:

The x, y, and z numbers in the formula represent the three components in
the vector. The resulting value is the magnitude of the vector.

Example

Ball.scaleY = <<1,2,0>>;

Maya assigns the floating point scaleY attribute the converted vector:

x
2

y
2

z
2

+ +

1
2

2
2

0
2

+ + 5 2.236= =
MEL and Expressions

210

15 | Advanced

 > Data type conversions
If you assign an integer to a floating point attribute or variable, Maya
makes no conversion. None is necessary.

Example

Ball.scaleY = 1;

Maya assigns the value 1 to Ball.scaleY.

Assign to an integer attribute or variable

If you assign a floating point value to an integer attribute or variable,
Maya deletes the decimal part of the number.

If you assign a vector to an integer attribute or variable, Maya converts the
vector to an integer using the square root equation in the previous topic.
However, it deletes the decimal component of the result.

Example

int $pi = 3.14;

Maya assigns the integer variable $pi the value 3.

int $temp = <<1,2,0>>;

Maya assigns the integer variable $temp this vector value:

It deletes the decimal component .2360607. The $temp variable receives
the truncated value 2.

Assign to a vector attribute or variable

If you assign an integer or floating point value to a vector attribute or
variable, Maya puts the integer or floating point value into each
component of the vector.

Example

vector $speed = 1.34;

Because $speed is a vector, Maya assigns it <<1.34,1.34,1.34>>.

Use mixed data types with arithmetic operators

The following table lists how Maya converts data types when you use
arithmetic operators between different types in an expression.

1
2

2
2

0
2

+ + 5 2.236 2≈= =
MEL and Expressions

211

15 | Advanced
 > Data type conversions
Example

Suppose you multiply a vector variable named $velocity by a floating
point number 0.5 as follows:

$race = $velocity * 0.5;

If $velocity is <<2,3,0>> when the preceding expression executes, the
$race variable is assigned the resulting vector value <<1,1.5,0>>.

Operation Resulting data type

integer operator float float

integer operator vector vector

vector operator float vector

ImportantWhen Maya does arithmetic operations on literal constants
and variables without a declared data type, it guesses the data
type based on the values present.

In the statement Ball.scaleY = 1/3;, for example, Maya treats 1
and 3 as integers because they have no decimal points. The
expression divides integer 1 by integer 3. The integer result is 0
with a remainder of 1. Maya discards the remainder.

Because Ball.scaleY is a floating point attribute, Maya converts
the integer 0 result to floating point 0 (which is the same value),
then assigns it to Ball.scaleY.

To get the intended result of 1/3, you must type Ball.scaleY =
1.0/3.0;

Maya treats 1.0 and 3.0 as floating point numbers because they
have decimal points. The number 1.0 divided by 3.0 results in
0.33333333333.
MEL and Expressions

212

16 | Style

 > Style
16 Style

Good MEL style

Style

This section contains tips on coding MEL with good style. Good style is
not a requirement: your MEL code will still run if you don’t follow the
tips in this section. However using good style will make your scripts more
readable, understandable, and easier to debug.

Using a good scripting style can help you clarify your own ideas while
you create a script, making complicated scripts easier to create as well as
understand.

Using white space

You can improve the format of your MEL scripts with proper use of white
space and comments. Both make the script easier to read and understand.

You must insert at least one space between keywords and variables. Other
than that, white space is used only to organize your script into a readable
format.

White space includes spaces, tab characters, and blank lines. When you
add white space to a script, the execution of the script is not affected.
However, use of white space can greatly increase the readability of your
script.

For example, consider the following problematic MEL script:

int $scale = 0;
string
$text; if (rand(10) <

 1){ $scale =
10; $text = "Exceptional scaling";} else $text =
"Default scaling";

Technically, the above example is correct. However, the format makes it
difficult to read. You can use spaces, tabs, and blank lines to make the
script more understandable. Here is the same script with better use of
white space:
MEL and Expressions

213

16 | Style
 > Adding comments
int $scale = 0;
string $text;
if (rand(10) < 1) {
 $scale = 10;
 $text = "Exceptional scaling";
}
else
 $text = "Default scaling";

Adding comments

Adding comments for each MEL file, procedure, or logical segment
enhances the readability of the script. This is important because someone,
including yourself, may need to understand or modify your script after it
is written. The comments can act as explanations, reminders, or
descriptions in your script.

Naming variables

Use descriptive variable names

To keep your MEL script clear and understandable to yourself and future
users, use a variable name that describes the variable’s function.

Variable names such as x, i, and thomas are not as informative as
carIndex, timeLeft, and wingTipBend. However, do not be too verbose.
For example, indexForMyNameArray, is overly descriptive. Be clear,
descriptive, and terse.

Avoid global variables

Global variables are dangerous to use for the exact reason that people use
them: they are visible outside of the specific procedures and MEL scripts
where they were declared. This visibility also makes them susceptible to
being modified by any other MEL script that tries to use a global variable
with the same name. This can create a problem that can be very difficult to
find.

Example

proc int checkVisibility(int $value)
{
 global int $myIndex = 0;
 $myIndex = $myIndex + $value;
 return $myIndex;
}

proc iSeeYou()
{

MEL and Expressions

214

16 | Style

 > Procedures and scripts
 global int $myIndex = 0;
 int $value = checkVisibility(1);
 $myIndex = $myIndex + $value;
 print($myIndex);
}
iSeeYou; // Result is 2.

When the procedure iSeeYou is executed, the myIndex global variable
becomes 2. This is because both procedures increment myIndex.

However, when you need to use a global variable, create a unique name
so you do not overwrite the data of an existing global variable. You
should also avoid global variables in procedures.

Procedures and scripts

Avoid global procedures

Like global variables, global procedures are susceptible to being modified
by any other MEL script that tries to use a global procedure with the same
name. If you use global procedures, be sure to use a unique name so that
you do not overwrite an existing procedure.

Another potential problem with global procedures is memory
requirements. Maya stores in memory every global procedure it
encounters. The more global procedures you have loaded, the more
memory Maya uses to store them.

Limit procedures and command scripts to 50 lines

To keep your procedures and MEL command scripts tractable, limit them
to 50 lines. Exclude any comments or blank lines from your 50-line limit.
Procedures and MEL scripts may become too complex when they are over
50 lines.

Limit files to 500 lines

Many MEL scripts contain multiple procedures. For these larger script
files, it is a good idea to limit their length to 500 lines. If a file exceeds this
length, consider splitting it into multiple files. This keeps your MEL script
files manageable.

Bullet-proof scripting

When composing MEL scripts, keep the user in mind (even if you are the
only user). Make sure that the MEL script considers user errors and
handles these errors gracefully.
MEL and Expressions

215

16 | Style
 > Bullet-proof scripting
Think about the errors and boundary conditions that your MEL script
might encounter. After checking for an error and finding that it is present,
have a reasonable contingency action in your MEL script for that error.

proc burn(string $items[]) {print("Burning all items!\n");}
proc burnSelected() {
 string $selected_s[] = ‘ls -sl‘;
 if (size($selected_s) > 10)
 burn($selected_s);
 else
 print("Need more than ten items to burn.");
}

In this example, if the burnSelected procedure lacks what it needs to
perform, it creates an error message rather than failing. It assumes that the
burn procedure would fail if given less than ten items. Of course, in this
example, the burn procedure would not fail since all it does is print a
string.
MEL and Expressions

216

17 | Useful functions

 > abs
17 Useful functions

Useful functions

Limit functions
The limit functions are math functions that impose limits on numbers.

abs

Returns the absolute value of number. The absolute value of an integer or
floating point number is the number without its positive or negative sign.
The absolute value of a vector is a vector with components stripped of
negative signs.

int abs(int number)

float abs(float number)

vector abs(vector number)

number is the number for which you want the absolute value.

Examples

abs(-1)

Returns the value 1.

abs(1)

Returns the value 1.

abs(<<-1,-2.43,555>>)

Returns <<1, 2.43, 555>>.

abs(Ball.translateY)

If Ball.translateY contains -20, this returns 20.

ceil

Returns a number rounded to the smallest integer value greater than or
equal to a floating point number.

float ceil(float number)
MEL and Expressions

217

17 | Useful functions
 > floor
number is the number you want to round.

Examples

ceil(2.344)

Returns 3.

ceil(3.0)

Returns 3.

ceil(Rock.scaleY)

If Rock.scaleY contains -2.82, this returns -2.

floor

Returns a number rounded to the largest integer less than or equal to a
floating point number.

float floor(float number)

number is the number you want to round.

Examples

floor(2.344)

Returns 2.

floor(3.0)

Returns 3.

floor(Head.height)

If Head.height is -2.8, this returns -3.

clamp

Returns a number within a range. You can use the clamp function to
confine an increasing, decreasing, or randomly changing number to a
range of values.

float clamp(float minnumber, float maxnumber, float parameter)

minnumber and maxnumber specify the range of the returned value.

parameter is an attribute or variable whose value you want to clamp within
the range.

If parameter is within the numerical range of minnumber and maxnumber,
the function returns the value of parameter.

If parameter is greater than the range, the function returns the maxnumber.

If parameter is less than the range, the function returns the minnumber.
MEL and Expressions

218

17 | Useful functions

 > min
Examples

clamp(4,6,22)

Returns 6, because 22 is greater than 6, the maximum number of the
range.

clamp(4,6,2)

Returns 4, because 2 is less than 4, the minimum number of the range.

clamp(4,6,5)

Returns 5, because it’s within the range.

Ball.scaleY = clamp(0,3,time);

Returns a value between 0 and 3 each time the expression executes.

When you rewind the animation to frame 1, the above expression executes
and Ball’s scaleY attribute receives the value of time—a number slightly
above 0. The clamp function returns the value of time because time is
within the range 0 to 3.

When you play the animation, time increments slightly with each frame.
The expression executes with each frame and Ball’s scaleY attribute
receives the value of time until time exceeds 3. When time exceeds 3, the
clamp function returns the value 3.

min

Returns the lesser of two floating point numbers.

float min(float number, float number)

number is a number you want to compare.

Examples

min(7.2,-3.2)

Returns -3.2.

Desk.height = -2;

Lamp.height = 9;

$Mylight = min(Desk.height,Lamp.height);

Sets $Mylight to -2.

max

Returns the larger of two floating point numbers.

float max(float number, float number)

number is a number you want to compare.
MEL and Expressions

219

17 | Useful functions
 > sign
Examples

max(7.2,-3.2)

Returns 7.2.

Desk.height = -2;

Lamp.height = 9;

$Mylight = max(Desk.height,Lamp.height);

Sets $Mylight to 9.

sign

Returns one of three values representing the sign of a number. Returns -1
if the number is negative, 1 if positive, 0 if 0.

float sign(float number)

number is the number whose sign you want to determine.

Examples

sign(-9.63)

Returns -1.

sign(0)

Returns 0.

sign(10)

Returns 1.

sign(Ball.translateX)

If Ball.translateX is 5, this returns 1.

trunc

Returns the whole number part of a floating point number.

float trunc(float number)

number is the number you want to truncate.

Examples

trunc(2.344)

Returns 2.

trunc(0.3)

Returns 0.

trunc(-2.82)
MEL and Expressions

220

17 | Useful functions

 > exp
Returns -2.

trunc(time)

If time equals 3.1234, this returns 3.

Exponential functions
The following functions work with exponential values.

exp

Returns e raised to the power of a number, enumber. The predefined
variable e is the base of the natural logarithm, which is 2.718.

float exp(float number)

number is the exponent to which you want to raise e.

Examples

exp(1)

Returns 2.718, the value of e.

exp(2)

Returns 7.389, the value of e2.

log

Returns the natural logarithm of a number, logenumber. The natural
logarithm uses the constant e, which is 2.718.

float log(float number)

number is the positive number for which you want the natural logarithm.

Examples

log(10)

Returns 2.303.

log(2.718282845904)

Returns 1.000.

log10

Returns the log base 10 of a number.

float log10(float number)

number is the positive number for which you want the log base 10.
MEL and Expressions

221

17 | Useful functions
 > pow
Examples

log10(100)

Returns 2.

log10(10)

Returns 1.

pow

Returns a base number raised to an exponent.

float pow(float base, float exponent)

base is the base number you want to raise to the exponent. A negative base
number with a decimal component causes an error message.

exponent is the exponent.

Examples

pow(2,3)

Returns 8.

pow(-2,3)

Returns -8.

pow(2,-3)

Returns 0.125.

sqrt

Returns the square root of a positive number.

float sqrt(float number)

number is the positive number of which you want the square root.

A negative number displays an error message.

Examples

sqrt(16)

Returns 4.

sqrt($side)

If $side is 25, this returns 5.
MEL and Expressions

222

17 | Useful functions

 > cos
Trigonometric functions
The following functions return trigonometric values. Each function has
two formats that let you choose the type of angular unit you work with:
degrees or radians. For example, the cos function expects an argument in
radians, while cosd expects an argument in degrees.

A radian equals 180 degrees divided by pi, or roughly 57.3 degrees. Note
that pi equals 3.1415927, which is also 180 degrees.

cos

Returns the cosine of an angle specified in radians.

float cos(float number)

number is the angle, in radians, whose cosine you want.

For any right triangle, the cosine of an angle is the following ratio:

The cosine ratio depends only on the size of the angle and not on the size
of the triangle. This constant ratio is called the cosine of the measure of the
angle.

The cosine ratio is a value between -1 and 1.

With a steadily increasing or decreasing argument, the cos function
returns steadily increasing or decreasing values between 1 and -1. This is
useful for creating rhythmic, oscillating changes in attribute values.

If θ is between 1/2 pi radians and
3/2 pi radians (90 to 270 degrees),
cos θ is a value between 0 and -1.

If θ is less than 1/2 pi radians and
more than 3/2 pi radians (from 270
to 90 degrees), cos θ is a value
between 0 and 1.

θ

C
A

B X

Y

θ

C
A

B

X

Y

C

θcos
adjacent

hypotenuse

B

C
----= =
MEL and Expressions

223

17 | Useful functions
 > cos
The cos function works like the sin function except its return values are 90
degrees, or pi/2, out of phase.

See page 225 for ideas on how to use the cyclical characteristics of the sin
and cos functions.

Example 1

cos(1)

Returns 0.5403, the cosine of 1 radian.

Example 2

To animate the motion of Ball in a cosine wave pattern, use this
expression:

Ball.translateX = time;

Ball.translateY = cos(Ball.translateX);

Ball starts at the origin and moves in the X direction at a rate set by the
incrementing animation time. Its Y translation moves cyclically up and
down according to the return values of the cos function. The cos function
uses translateX, and therefore indirectly, time, as its argument.

As time increases from 0 to 6.283 seconds, the cos function returns values
that change in fine increments from 1 to -1 and back to 1. The value 6.283
is 2 times the value of pi.

As time increases beyond 6.283 seconds, the same cycle repeats for each
span of 6.283 seconds.

Compare the same expression using the sin function:

time = 6.283 (2 * pi

Ball.translateY = cos(Ball.translateX);
MEL and Expressions

224

17 | Useful functions

 > cosd
The cosine curve is 1.571 (pi/2) seconds ahead of (or behind) the sine
curve, and vice versa.

cosd

Returns the cosine of an angle specified in degrees.

float cosd(float number)

number is the angle, in degrees, whose cosine you want.

For more details on the cosd function, see the cos function in the
preceding topic. The cosd and cos functions do the same operation, but
cosd requires its argument in degree measurement units.

Example

cosd(45)

Returns 0.707, the cosine of 45 degrees.

sin

Returns the sine of an angle specified in radians.

float sin(float number)

number is the angle, in radians, whose sine you want.

For any right triangle, the sine of an angle is the following ratio:

time = 6.283 (2 * pi seconds)

Ball.translateY = sin(Ball.translateX);
MEL and Expressions

225

17 | Useful functions
 > sin
The sine ratio depends only on the size of the angle and not on the size of
the triangle. This constant ratio is called the sine of the measure of the
angle.

The sine ratio is a value between -1 and 1.

With a steadily increasing or decreasing argument, the sin function
returns steadily increasing or decreasing values between -1 and 1. This is
useful for creating rhythmic, oscillating changes in attribute values.

For example, you can use the sin function to manipulate:

• an object’s translate attributes to create snake-like motion

• a body’s scale attributes to create a breathing cycle

• a particle object’s opacity or color attributes to cycle a color or opacity
pattern

Example 1

float $pi = 3.1415927;

sin($pi/2)

Returns 1, the sine of pi/2 radians.

Example 2

Ball.translateY = sin(Ball.translateX);

θ

C
A

B X

Y

θ

C
A

B

X

Y

C

If θ is from 0 to pi radians (0 to
180 degrees), sin θ is a value
between 0 and 1.

If θ is from pi to 2 pi radians (180
to 360 degrees), sin θ is a value
between 0 and -1.

θsin
opposite

hypotenuse

A

C
----= =
MEL and Expressions

226

17 | Useful functions

 > sin
This statement sets Ball’s translateY attribute equal to the sine of its
translateX attribute. If you drag Ball along the X-axis, Ball’s translateY
position moves up and down in a cyclical pattern:

Example 3

To animate Ball to the path of the preceding example, use this expression:

Ball.translateX = time;

Ball.translateY = sin(Ball.translateX);

Ball starts at the origin and moves in the X direction at a rate set by the
incrementing animation time. Its Y translation moves cyclically up and
down according to the return values of the sin function. The sin function
uses translateX, and therefore indirectly, time, as its argument.

As time increases from 0 to 6.283 seconds, the sin function returns values
that change in fine increments from 0 to 1 to -1 to 0. The value 6.283 is 2
times the value of pi. The resulting motion resembles a horizontal S-shape:

As time increases beyond 6.283 seconds, the same S-shaped cycle repeats
for each span of 6.283 seconds.

Example 4

This expression animates Ball with larger up and down swings:

time = 6.283 (2 * pi
MEL and Expressions

227

17 | Useful functions
 > sin
Ball.translateX = time;

Ball.translateY = sin(Ball.translateX) * 2;

By multiplying sin(Ball.translateX) by a number greater than 1, you
increase the amplitude of the sine wave pattern. The amplitude is half the
distance between the minimum and maximum values of the wave.

You can decrease the amplitude of the sine wave by multiplying by a
number less than 1, for example, 0.5.

Example 5

This expression increases how often the sine wave completes a cycle:

Ball.translateX = time;

Ball.translateY = sin(Ball.translateX * 2);

By multiplying Ball.translateX by a number greater than 1, you increase
the frequency of the sine wave pattern. The frequency is how long it takes
the wave to make a complete cycle.

You can decrease the frequency of the sine wave by multiplying by a
number less than 1, for example, 0.5. This number is known as a frequency
multiplier because it multiplies (or divides) the frequency of the sine
pattern.

Example 6

This expression offsets the wave pattern higher up the Y-axis:

Ball.translateX = time;

Ball.translateY = sin(Ball.translateX) + 2;

Amplitude

Frequency
MEL and Expressions

228

17 | Useful functions

 > sin
By adding 2 to sin(Ball.translateX), the wave pattern starts further up the
Y-axis. You can, of course, also subtract a number to offset the wave
pattern lower on the Y-axis.

Example 7

The following expression sets a frequency multiplier, amplitude, and
offset of a sine pattern in a single statement:

Ball.translateX = time;

Ball.translateY = (sin(Ball.translateX * 2) * 2) + 2;

The following diagram shows which values set the frequency multiplier,
amplitude, and offset.

A general equation showing the factors you can use to create a sine wave
pattern follows:

Offset of 2

Frequency multiplier

Amplitude

Offset

Y = (sin(Ball.translateX * 2) * 2) + 2;

attribute = (sin(frequency * frequency multiplier) * amplitude) +
MEL and Expressions

229

17 | Useful functions
 > sind
sind

Returns the sine of an angle specified in degrees.

float sind(float number)

number is the angle, in degrees, whose sine you want.

For more details on how to use the sind function, see the sin function in
the preceding topic. The sind and sin functions do the same operation, but
sind requires its argument in degree measurement units.

Example

sind(90)

Returns 1, the sine of 90 degrees.

tan

Returns the tangent of an angle specified in radians.

float tan(float number)

number is the angle, in radians, whose tangent you want.

For any right triangle, the tangent of an acute angle is the following ratio:

The ratio depends only on the size of the angle and not on the size of the
triangle. This constant ratio is called the tangent of the measure of the
angle.

Example

tan(1)

θ

C
A

B X

Y

θ

C
A

B

X

Y

C

θtan
opposite

adjacent

A

B
---= =
MEL and Expressions

230

17 | Useful functions

 > tand
Returns 1.557.

tand

Returns the tangent of an angle specified in degrees.

float tand(float number)

number is the angle, in degrees, whose tangent you want.

For more details on the tand function, see the tan function in the
preceding topic. The tand and tan functions do the same operation, but
tand requires its argument in degree measurement units.

Example

tand(45)

Returns roughly 1, the tangent of 45 degrees.

acos

Returns the radian value of the arc cosine of a number. The arc cosine is
the angle whose cosine is the specified number. The returned value is
from 0 to pi.

float acos(float number)

number is the cosine of the angle, and must be from -1 to 1.

Example

acos(1)

Returns 0.

acos(-0.5)

Returns 2.0944 radians.

acosd

Returns the degree value of the arc cosine of a number. The arc cosine is
the angle whose cosine is the specified number. The returned value is
from 0 to 180.

float acosd(float number)

number is the cosine of the angle, and must be from -1 to 1.

Example

acosd(1)

Returns 0 degrees.
MEL and Expressions

231

17 | Useful functions
 > asin
acosd(-0.5)

Returns 120 degrees.

asin

Returns the radian value of the arc sine of a number. The arc sine is the
angle whose sine is the specified number. The returned value is from -pi/
2 to pi/2.

float asin(float number)

number is the sine of the angle, and must be from -1 to 1.

Example

asin(0.5)

Returns 0.525 radians.

asind

Returns the degree value of the arc sine of a number. The arc sine is the
angle whose sine is the specified number. The returned value is from -90
to 90.

float asind(float number)

number is the sine of the angle, and must be from -1 to 1.

Example

asind(0.5))

Returns 30 degrees.

atan

Returns the radian value of the arc tangent of a number. The arc tangent is
the angle whose tangent is the specified number. The returned value is
from -pi/2 to pi/2.

float atan(float number)

number is the tangent of the angle and can be any value.

Example

atan(1)

Returns 0.785.
MEL and Expressions

232

17 | Useful functions

 > atand
atand

Returns the degree value of the arc tangent of a number. The arc tangent is
the angle whose tangent is the specified number. The returned value is
from -90 to 90.

float atand(float number)

number is the tangent of the angle and can be any value.

Example

atand(1)

Returns 45 degrees.

atan2

Returns the radian value of the arc tangent of specified X and Y
coordinates. The arc tangent is the angle from the X-axis to a line passing
through the origin and a point with coordinates X,Y. The returned angle is
in radians, from -pi to pi, excluding -pi.

float atan2(float Y, float X)

X is the X coordinate of the point.

Y is the Y coordinate of the point.

Example

atan2(1,1)

Returns 0.785 radians.

atan2d

Returns the degree value of the arc tangent of specified X and Y
coordinates. The arc tangent is the angle from the X-axis to a line passing
through the origin and a point with coordinates X,Y. The returned angle is
in degrees, from -180 to 180, excluding -180.

float atan2d(float Y, float X)

X is the X coordinate of the point.

Y is the Y coordinate of the point.

Example

atan2d(1,1)

Returns 45 degrees.
MEL and Expressions

233

17 | Useful functions
 > hypot
hypot

Returns the magnitude of two-dimensional vector from the origin to a
point with coordinates X, Y.

As shown in the preceding figure, the hypot function returns the radius of
a circle whose center is at one end of a right triangle’s hypotenuse and
perimeter is at the other end of the hypotenuse.

The following equation gives the magnitude of the vector:

float hypot(float x, float y)

X is the X coordinate of the point.

Y is the Y coordinate of the point.

Example

hypot(3,4)

Returns 5.

Vector functions
The following functions do operations with vectors. The functions take
vector arguments and return floating point numbers or vectors.

angle

Returns the radian angle between two vectors.

(X,Y)

hypot

X

Y

x
2

y
2

+

MEL and Expressions

234

17 | Useful functions

 > cross
float angle(vector vector1, vector vector2)

vector1 is one of the vectors.

vector2 is the other vector.

The returned angle is the shortest angle between the two vectors. The
measurement is always less than 180 degrees.

Example

angle(<<2,-1,1>>,<<1,1,2>>)

Returns 1.0472 radians, which equals 60 degrees.

cross

Returns the cross product of two vectors.

For two vectors, the cross product returns the vector that’s normal to the
plane defined by the two vectors.

vector cross(vector vector1, vector vector2)

If the cross product is 0, the two vectors are parallel or colinear. If one or
both vectors are <<0,0,0>>, the cross product returns <<0,0,0>>.

vector1 is one of the vectors.

Angle

Vector1

Vector2

Vector1

Vector2

Cross product
MEL and Expressions

235

17 | Useful functions
 > dot
vector2 is the other vector.

Example

cross(<<1,2,-2>>,<<3,0,1>>)

Returns <<2, -7, -6>>.

dot

Returns the floating point dot product of two vectors. The dot product
takes two vectors as arguments and returns a scalar value.

float dot(vector vector1, vector vector2)

If the dot product returns 0, the two vectors are perpendicular.

vector1 is one of the vectors.

vector2 is the other vector.

Example

dot(<<1,2,-2>>,<<3,0,1>>)

Returns 1. The dot product of this example is (1 * 3) + (2*0) + (-2*1), which
equals 1.

mag

Returns the magnitude of a vector. This is the length of the vector.

float mag(vector vector)

vector is the vector whose magnitude you want.

The mag function converts a vector into a floating point number using the
following formula.
MEL and Expressions

236

17 | Useful functions

 > rot
Example

mag(<<7,8,9>>)

Returns 13.928.

rot

Returns a vector that represents the position of a point after it’s rotated a
specified number of radians about a specified axis. Rotation is counter-
clockwise as viewed downward from the axis end position.

vector rot(vector point, vector axis, float angle)

point is the position of a point in the world coordinate system.

axis is the axis around which the point rotates. The axis is a line that
passes through the origin and the specified axis position.

angle is the number of radians the point rotates.

Example 1

rot(<<3,3,0>>,<<1,0,0>>,0.5)

Returns <<3, 2.633, 1.438>>. This is a vector representing the position of
point <<3,3,0>> after rotating it 0.5 radians around the axis represented by
<<1,0,0>>.

x
2

y
2

z
2

+ +

7
2

8
2

9
2

+ + 13.928=

Angle

Position of point
after rotation

Position of point
before rotation

Axis
MEL and Expressions

237

17 | Useful functions
 > unit
Example 2

particleShape1.position = rot(position,<<0,1,0>>,0.1);

Suppose your scene has a single-particle object at position <<4,6,0>>, and
you wrote the above runtime expression for its particle shape node. When
you play the scene, the particle rotates in a circular pattern around the Y-
axis (the axis represented by <<0,1,0>>).

In each frame, the particle’s position rotates 0.1 radian, roughly 5.7
degrees.

unit

Returns the unit vector corresponding to a vector.

The unit vector has the same direction as the specified vector, but with a
magnitude of 1.

vector unit(vector vector)

vector is the vector whose unit vector you want.

Example

unit(<<1,1,1>>)

Returns <<0.577, 0.577, 0.577>>.

Motion

Particle
MEL and Expressions

238

17 | Useful functions

 > deg_to_rad
Conversion functions
The following functions convert color scheme values or angle
measurements.

deg_to_rad

Returns the radian equivalent of a degree value. One radian equals
roughly 57.29578 degrees.

float deg_to_rad(float degrees)

degrees is the degree angle you want to convert to radians.

Example

deg_to_rad(90)

Returns 1.571, which is the same as pi/2.

rad_to_deg

Returns the degree equivalent of a radian value. One radian equals
roughly 57.29578 degrees.

float rad_to_deg(float radians)

radians is the radian angle you want to convert to degrees.

Examples

rad_to_deg(1)

Returns 57.296.

float $pi = 3.1415927;

rad_to_deg($pi)
MEL and Expressions

239

17 | Useful functions
 > hsv_to_rgb
Returns 180.

hsv_to_rgb

Converts an HSV vector to an RGB vector.

vector hsv_to_rgb(vector hsv)

hsv is a vector representing the hue, saturation, and value components.

Example

hsv_to_rgb(<<1,0.5,0.6>>)

Returns <<0.6, 0.3, 0.3>>.

rgb_to_hsv

Converts an RGB vector to an HSV vector.

vector rgb_to_hsv(vector rgb)

rgb is a vector representing the red, green, and blue components.

Note that the Hue value in the Color Chooser has a range of 0 to 360,
while the H component of an HSV vector has a corresponding range of 0
to 1. To convert the rgb_to_hsv function’s return value to the
corresponding Color Chooser value, multiply it by 360.

Example

rgb_to_hsv(<<0.6,0.6, 0.6>>)

Tip To see the relationship between HSV and RGB color
components, enter the MEL command colorEditor at the
Command Line. This displays the Color Chooser window.

In the window’s hexagonal color wheel, drag the pointer to a
color of interest. The edit boxes in the window list the color’s
values for hue, saturation, and value—and their counterpart red,
green, and blue values.

Note that the Hue value in the Color Chooser has a range of 0 to
360, while the H component of an HSV vector has a
corresponding range of 0 to 1. To convert a Color Chooser value
to the value required by the hsv_to_rgb function, divide it by
360.

When you launch the Color Chooser by entering colorEditor, it’s
useful only for learning about color. You can’t use it to change
the color of objects in your scene.
MEL and Expressions

240

17 | Useful functions

 > clear
Returns <<0, 0, 0.6>>.

Array functions
The following functions work with integer, floating point, and vector
arrays. If you need more information, see a reference book on the C
programming language.

clear

Empties the array’s contents, freeing all memory reserved for the array.
After you clear an array, its size is 0. When you no longer need to use an
array, use the clear function to free memory.

int clear(array array)

array is the name of the array you want to clear.

The clear function returns 1 if the function succeeds, 0 if it fails. The return
value is not typically used in expressions.

Example

int $myInts[] = {1,2,3,4,5,6};

print("size of $myInts is: "+size($myInts)+"\n");

clear($myInts);

print("size of $myInts is: "+size($myInts)+"\n");

The third statement above clears the array $myInts.

The second and fourth statements display the following text in the Script
editor:

size of $myInts is: 6

size of $myInts is: 0

size

Returns the number of elements in an array or the number of characters in
a string.

int size(array array)

int size(string string)

array is the name of the array whose size you want.

string is the string whose number of characters you want.

Example 1

string $s = "Hello";

$stringlen = size($s);
MEL and Expressions

241

17 | Useful functions
 > sort
The size($s) function returns 5, then the statement assigns 5 to $stringlen.

Example 2

int $myInts[] = {1,2,3,4,5,6};

$numInts = size($myInts);

The size($myInts) function returns 6, then the statement assigns 6 to
$numInts.

sort

Returns an array sorted in alphabetical or ascending numerical order. The
returned array has the same number and type of elements as the original
array.

array sort(array array)

array is the name of the array to be sorted.

Example 1

int $myInts[] = {3,6,1,4,2,5};

int $afterSorting[] = sort($myInts);

print("After sorting, the array contains:\n");

for ($i = 0; $i < 6; $i = $i + 1)

{

print($afterSorting[$i]+"\n");

}

The sort function sorts the elements of $myInts in ascending order. The
following appears in the Script editor:

After sorting, the array contains:

1

2

3

4

5

6

Example 2

string $myName[] = {"Peewee","Michael","Kennedy"};

string $afterSorting[] = sort($myName);

print("After sorting, the array contains:\n");

for ($i = 0; $i < 3; $i = $i + 1)

{

print($afterSorting[$i]+"\n");

}

The sort function sorts the elements of $myName in alphabetical order.
The following appears in the Script editor:

After sorting, the array contains:
MEL and Expressions

242

17 | Useful functions

 > gauss
Kennedy

Michael

Peewee

Random number functions
The following functions generate random numbers. Random numbers are
useful when you want the position, motion, or color of an object’s particles
or vertices to have a random appearance.

gauss

Returns a random floating point number or vector. The number returned
falls within a Gaussian (bell curve) distribution with mean value 0.

float gauss(float stdDev)

vector gauss(float XstdDev, float YstdDev)

vector gauss(vector stdDevVector)

stdDev specifies the value at which one standard deviation occurs along
the distribution. This gives a one-dimensional Gaussian distribution.

XstdDev and YstdDev specify the values for one standard deviation. This
gives a two-dimensional Gaussian distribution in the XY plane. The right
component of the vector returned is 0.

stdDevVector specifies the vector component values for one standard
deviation. This gives a three-dimensional distribution.

To control the random values returned by this function, see ”seed” on
page 249.

Example

gauss(5)

Returns a random floating point value such as 0.239.

If you were to execute gauss(5) repeatedly and chart the values returned,
they would occur roughly with this frequency:
MEL and Expressions

243

17 | Useful functions
 > noise
If you were to execute gauss(2) repeatedly, return values would occur
with this frequency:

noise

Returns a random number from -1 to 1 according to a Perlin noise field
generator.

float noise(float number)

float noise(float xnum, float ynum)

float noise(vector vector)

number specifies a number that generates a random number. This gives a
one-dimensional distribution of return values.

xnum and ynum specify numbers for generating a random number. This
gives a two-dimensional distribution of return values.

Number of
occurrences

-5 50

Value returned

One standard deviation

About 2/3 of returned values will
be within one standard deviation.

Mean

Number of
occurrences

-2 20

Value returned

About 2/3 of returned values will
be within one standard deviation.

One standard deviation

Mean
MEL and Expressions

244

17 | Useful functions

 > noise
vector specifies a vector for generating a random number. This gives a
three-dimensional distribution of return values.

If you execute this function with the same argument value repeatedly, the
function returns the same random value each time it executes.

If you execute this function with an argument value that steadily increases
or decreases in fine increments over time, the function returns random
values that increase and decrease over time.

Example 1

noise(time)

Returns a value between -1 and 1 each time the expression executes as an
animation plays. Because time increases in fine increments, the values
returned increase and decrease in smooth, yet random, patterns. If you
were to chart the values returned over a period of time, they might occur
as in this figure:

Example 2

noise(frame)

Returns a value between -1 and 1 each time the expression executes as an
animation plays. Because frame increases in larger increments, the values
returned increase and decrease in rougher patterns. If you were to chart
the values returned over a period of time, they might occur as in this
figure:

noise(time) as animation plays
-1

0

1

Return
value

noise(frame) as animation plays
-1

0

1

Return
value
MEL and Expressions

245

17 | Useful functions
 > dnoise
The value returned by noise(frame) and noise(time) is the same when
frame contains the same number as time. For example, when frame equals
10, noise(frame) returns the same value that noise(time) returns when time
is 10.

dnoise

Returns a vector with each component containing a random number from
-1 to 1. It works like the noise function except it expects and returns a
vector argument. The returned vector represents the gradient of the noise
field in three dimensions.

vector dnoise(vector argument)

argument specifies a vector for generating a random number. This gives a
three-dimensional distribution of return values.

See the noise function for more details on dnoise operation.

Example

dnoise(<<10,20,-30>>)

Returns <<-0.185, 0.441, 0.686>>.

rand

Returns a random floating point number or vector within a range of your
choice.

float rand(float maxnumber)

float rand(float minnumber, float maxnumber)

vector rand(vector maxvector)

vector rand(vector minvector, vector maxvector)

maxnumber specifies the maximum number returned (in the first syntax
format listed above). The minimum number returned is 0. In other words,
the returned value will be a random number between 0 and maxnumber.

minnumber and maxnumber specify the minimum and maximum numbers
returned.

maxvector specifies the maximum value for each component of the vector
returned. The minimum value is 0. Each component returned is a different
random number.

minvector and maxvector specify the minimum and maximum value for
each component of the vector returned.

To control the random values returned by this function, see ”seed” on
page 249.
MEL and Expressions

246

17 | Useful functions

 > sphrand
Example 1

rand(5)

Returns a random floating point number between 0 and 5, for example,
3.539.

Example 2

rand(-1,1)

Returns a random floating point number between -1 and 1, for example,
0.452.

If you were to execute rand(-1,1) repeatedly as an animation plays, its
return values might occur as in this figure:

Example 3

rand(<<1,1,1>>)

Returns a random vector in which each component is between 0 and 1, for
example, <<0.532, 0.984, 0.399>>.

Example 4

rand(<<1,1,1>>,<<100,200,300>>)

Returns a random vector in which the left component is between 1 and
100, the middle component is between 1 and 200, and the right component
is between 1 and 300. An example is <<81.234, 49.095, 166.048>>.

sphrand

Returns a random vector value that exists within a spherical or ellipsoidal
region of your choice. An ellipsoid is a sphere scaled along its X-, Y- or Z-
axes.

vector sphrand(float radius)

vector sphrand(vector vector)

radius is the radius of a sphere in which the returned vector exists.

vector is the radius of an ellipsoid along the X-, Y-, and Z-axis.

rand(1,-1) as animation plays
-1

0

1

Return
value
MEL and Expressions

247

17 | Useful functions
 > sphrand
To control the random values returned by this function, see ”seed” on
page 249.

Example 1

sphrand(1)

Returns a vector whose randomly selected coordinates reside within an
imaginary sphere centered at the origin and with a radius of 1. An
example returned vector is <<0.444, -0.427, 0.764>>.

Example 2

sphrand(<<2,1,1>>)

Returns a vector whose coordinates reside within an ellipsoid centered at
the origin and with a radius of 2 along the X-axis, 1 along the Y-axis, and 1
along the Z-axis.

To create a particle ellipsoid:

You can use the sphrand function, for example, to create a cluster of
500 particles randomly positioned within an ellipsoid having a radius
of 2 in the X-axis, 1 in the Y-axis, and 1 in the Z-axis.

1 Select Particles > Particle Tool > �.

2 Enter 500 for Number of Particles, and 1 for Maximum Radius.

radius

Origin

Outer boundary of returned value

1

Radius in X

Outer bound of
returned value

2

Radius in Y

1

1

Radius in Z
MEL and Expressions

248

17 | Useful functions

 > seed
3 Click the mouse somewhere in the workspace to position the particles.

4 Select the particle shape node of the particle object in the Expression
Editor.

5 Turn on Creation.

6 Enter this expression:

position = sphrand(<<2,1,1>>);

Maya executes the expression once for each particle. It gives each
particle a different random position around the origin within the
ellipsoid specified by <<2,1,1>>.

seed

Sets a seed value the gauss, rand, and sphrand functions use to generate
random numbers. If you assign a value to the seed then execute the gauss,
rand, or sphrand function repeatedly, an identical sequence of random
numbers is generated. For clarification, see the example below and
”Reproduce randomness” on page 198.

int seed(int number)

number sets an arbitrary number to be used as the seed value.

Example

Suppose you create a NURBS sphere named Ball then enter this
expression:

Ball.translateX = rand(5);

When you rewind the animation, Ball’s translateX attribute receives a
random value between 0 and 5, for example, 1.392. When you play the
animation, the translateX attribute receives a different random value
between 0 and 5 each frame.

When you rewind the animation again, the translateX attribute receives a
value that’s different from the value it received the first time you
rewound, for example, 3.223.
MEL and Expressions

249

17 | Useful functions
 > seed
When you play the animation again, the translateX attribute receives a
value each frame that’s different from the values it received the first time
you played the animation. In short, every time the rand(5) executes, it
gives a different random value.

Suppose you change the expression to this:

if (frame == 1)

seed(1);

Ball.translateX = rand(5);

Rewinding the scene to frame 1 executes the seed(1) function. It then
assigns translateX a random value between 0 and 5, for example, 4.501.

When you play the animation, the rand(5) function executes each frame
and returns a different value. Example returned values follow:

Each time you rewind and play the animation, translateX receives the
same sequence of random values.

For different seed values, the sequence of numbers returned will differ.
You can’t predict the values in the number sequence based on the value of
the seed.

Suppose you change the expression to this:

if (frame == 1)

seed(500);

Ball.translateX = rand(5);

The rand(5) function returns these values as you rewind and play the
animation:

Frame Value

1 4.501

2 3.863

3 3.202

4 3.735

5 2.726

6 0.101
MEL and Expressions

250

17 | Useful functions

 > seed
By changing the seed function’s value, you change the sequence of
random numbers generated.

A common mistake while using the seed function follows:

seed(1);

Ball.translateX = rand(5);

When you rewind the animation, Ball’s translateX attribute receives the
value 4.501. When you play the animation, the translateX attribute
receives 4.501 each time the expression executes.

Because you assign a value (1) to the seed before each execution of
rand(5), you initialize the random number sequence. The rand(5) function
therefore returns the first value of the number sequence each time it
executes.

Curve functions
The step functions let you make smooth, incrementing transitions between
values.

Frame Value

1 4.725

2 2.628

3 0.189

4 0.004

5 4.834

6 0.775

ImportantWhen you set a seed value in an expression or MEL script, the
seed value affects the rand, sphrand, and gauss functions in
other expressions and MEL scripts. Such functions are affected
by this seed value in all scenes you open subsequently in the
current work session.
MEL and Expressions

251

17 | Useful functions
 > linstep
linstep

Returns a value from 0 to 1 that represents a parameter’s proportional
distance between a minimum and maximum value. This function lets you
increase an attribute such as opacity from 0 to 1 linearly over a time range.

float linstep(float start, float end, float parameter)

start and end specifies the minimum and maximum values.

parameter is the value you want to use to generate the proportional
number.

If parameter is less than start, linstep returns 0.

If parameter is greater than end, linstep returns 1.

Example

Suppose you’ve used the Particle Tool to create a collection of particles
named Cloud:

Suppose further you’ve added a dynamic per object opacity attribute to
Cloud (see ”Work with particle attributes” on page 143). You then write
this runtime expression for Cloud’s particle shape node:

CloudShape.opacity = linstep(0,5,age);

This expression increases the per object opacity attribute of CloudShape in
equal steps from 0 to 1 for the first 5 seconds of the object’s existence.
Because you created the object with the Particle Tool, the particles
existence begins in the first frame of the animation.

All particles in the object fade in from transparent to opaque for the first 5
seconds of animation.

At the first frame that plays, the age of the particles is 0, so the linstep
function returns 0 for the opacity. An opacity of 0 is transparent.
MEL and Expressions

252

17 | Useful functions

 > linstep
In each subsequent frame, the linstep function returns a proportionally
larger opacity value. When the age of the object reaches 5, the linstep
function returns 1 for the opacity. An opacity of 1 is 100% opaque.

When the age exceeds 5, the linstep function returns 1. The opacity stays
100% opaque. Here are some values returned for the object’s opacity:

As the table shows, the opacity increases in linear increments for the first 5
seconds of the object’s age. At the midpoint of the specified 0 to 5 second
age range, the opacity is 0.5. At 3/4 of the way between 0 and 5 seconds,
the opacity is 0.75. At 5 seconds of the object’s age, opacity is 1. After 5
seconds, the opacity stays at 1.

Age Opacity

0.0417 0.0083

0.0833 0.0166

0.125 0.025

0.1667 0.0333

0.2083 0.0417

2.5 0.5

1.0 0.2

3.75 0.75

5 1

5.041 1

5.083 1

10 1
MEL and Expressions

253

17 | Useful functions
 > linstep
Suppose you edit the runtime expression as follows:

CloudShape.opacity = linstep(5,10,age);

This increases the opacity attribute linearly from 0 to 1 as the object’s age
increases from 5 to 10 seconds.

Suppose you edit the runtime expression as follows:

particleShape1.opacity = 1-linstep(0,5,age);

This decreases the opacity attribute linearly from 1 to 0 for the first 5
seconds of the object’s age. Subtracting linstep(0,5,age) from 1 causes the
opacity to fade out rather than fade in.

0

opacity

age (in seconds)

5

1

0

opacity

age (in seconds)
5

1

10

0

opacity

age (in seconds)
5

1

MEL and Expressions

254

17 | Useful functions

 > smoothstep
smoothstep

Returns a value from 0 to 1 that represents a parameter’s proportional
distance between a minimum and maximum value. The smoothstep
function lets you increase an attribute such as opacity from 0 to 1
gradually, but nonlinearly, over a time range.

The smoothstep function works like the linstep function, except it
increases values more quickly near the middle values between the
minimum and maximum value. The function uses hermite interpolation
between minimum and maximum values.

float smoothstep(float start, float end, float parameter)

start and end specifies the minimum and maximum values.

parameter is the value you want to use to generate the smoothstep number.

If parameter is less than start, linstep returns 0.

If parameter is greater than end, linstep returns 1.

The following figure compares values returned by smoothstep and linstep
over time:

Example

Suppose you’ve used the Particle Tool to create a collection of particles
named Cloud:

start end

parameter

smoothstep linstep
MEL and Expressions

255

17 | Useful functions
 > hermite
Suppose also you’ve added a dynamic per object opacity attribute to
Cloud (see ”Work with particle attributes” on page 143). You then write
this runtime expression for Cloud’s particle shape node:

CloudShape.opacity = smoothstep(0,5,age);

This increases the opacity attribute of CloudShape in steps from 0 to 1 for
the first 5 seconds of the object’s age. This makes the object fade in from
transparent to opaque. The fade in and fade out of the opacity occurs
more quickly around 2.5, the midpoint between 0 and 5.

See the linstep function for details on similar examples.

hermite

Returns values along a hermite curve. You can use the hermite function,
for instance, to move a particle object’s position smoothly along a curve.
As the examples in the following pages show, you can create various
curve shapes by altering the arguments to the hermite function.

vector hermite(vector start, vector end, vector tan1, vector tan2, float parameter)

float hermite(float start, float end, float tan1, float tan2, float parameter)

start is the start point of the curve.

end is the end point of the curve.

0

opacity

age (in seconds)

5

1

MEL and Expressions

256

17 | Useful functions

 > hermite
tan1 is the tangent vector that guides the direction and shape of the curve
as it leaves the start point of the curve. The vector’s position starts at the
start point of the curve.

tan2 is the tangent vector that guides the direction and shape of the curve
as it approaches the end point of the curve. The vector’s position starts at
the end point of the curve.

parameter is an floating point value between 0 and 1, for example, the
value returned by a linstep function.

In the second format, the arguments and return values work in a single
dimension.

Example 1

Suppose you create an object named dust made of one particle at the
origin. To guide its motion along a short upward-bound curve for the first
four seconds of animation, you can write the following runtime
expression:

dust.position = hermite(<<0,0,0>>,<<2,2,0>>,

<<3,0,0>>, <<0,3,0>>, linstep(0,4,time));

When you play the animation, the particle moves from the start point
<0,0,0> along a curve to the end point <2,2,0>. The tangent vector <3,0,0>
sets the curve’s direction and shape as it leaves the start point. The
tangent vector <0,3,0> sets the curve’s direction and shape as it
approaches the end point.

From zero to four seconds of animation play, the particle moves along the
curve as defined by the linstep function. (See page 252 for details on
linstep.)

The function arguments and resulting path of the object follow:

end = <<2,2,0>>

start = <<0,0,0>> tan1 = <<3,0,0>>

tan2 = <<0,3,0>>

X

Y

Object’s path
MEL and Expressions

257

17 | Useful functions
 > hermite
Example 2

Suppose you change the third argument of the previous example
expression to <<6,0,0>>:

dust.position = hermite(<<0,0,0>>,<<2,2,0>>,

<<6,0,0>>, <<0,3,0>>, linstep(0,4,time));

The slope of the path curve steepens because of the longer tan1 vector:

Example 3

The following expression moves dust in an S pattern:

dust.position = hermite(<<0,0,0>>,<<2,0,0>>,

<<0,3,0>>, <<0,3,0>>, linstep(0,4,time));

The tan1 vector <<0,3,0>> sets the direction of the curve from the start
point to a positive Y direction. The tan2 vector <<0,3,0>> sets the direction
of the curve to a positive Y direction as it approaches the end point.

end = <<2,2,0>>

start = <<0,0,0>> tan1 = <<6,0,0>>

tan2 = <<0,3,0>>

X

Y

Object’s path

end = <<2,0,0>>start = <<0,0,0>>

tan1 = <<0,3,0>> tan2 = <<0,3,0>>

X

Y

MEL and Expressions

258

17 | Useful functions

 > hermite
Values between the start and end point curves are interpolated to form an
S pattern.

Example 4

Suppose you change the fourth argument of the previous example
expression to <<0,-3,0>>:

dust.position = hermite(<<0,0,0>>,<<2,0,0>>,

<<0,3,0>>, <<0,-3,0>>, linstep(0,4,time));

The dust particle moves in a pattern resembling a half-circle:

The tan1 vector <<0,3,0>> sets the direction of the curve from the start
point to a positive Y direction. The tan2 vector <<0,-3,0>> sets the
direction of the curve to a negative Y direction as it approaches the end
point.

Example 5

Suppose you change the third argument of the preceding example to
<<0,10,0>>:

dust.position = hermite(<<0,0,0>>,<<2,0,0>>,

<<0,10,0>>, <<0,-3,0>>, linstep(0,4,time));

end = <<2,0,0>>start = <<0,0,0>>

tan1 = <<0,3,0>>

tan2 = <<0,-3,0>>

X

Y

MEL and Expressions

259

17 | Useful functions
 > eval
Because of the longer tan1 vector, the slope of the path curve steepens as it
rises from the start point. Because the tan2 vector has a smaller Y
magnitude than the Y magnitude of the tan1 vector, the slope of the path
curve is flatter as it approaches the end point. The curve’s rise in the Y
direction is greater than the previous example because the magnitude of
tan1’s Y component is larger (10 instead of 3).

General commands
The following functions do various actions in Maya.

eval

Executes a MEL command.

string eval(string command)

command is either a command string enclosed in quote marks or a string
variable containing a command.

end = <<2,0,0>>start = <<0,0,0>>

tan1 = <<0,10,0>>

tan2 = <<0,-3,0>>

X

Y

MEL and Expressions

260

17 | Useful functions

 > eval
The returned value contains command output returned by the command’s
execution.

Example 1

eval("select -cl")

Executes the command select -cl, which deselects all objects in the scene.
Though the return value is not used in this example, it contains the
command output.

Example 2

string $cmd = "select -cl";

eval($cmd);

The first statement assigns the command string select -cl to the string
variable $cmd. The second statement executes the contents of $cmd, which
is the command select -cl.

Example 3

string $mycommand = "sphere";

eval($mycommand+"-r 5");

The first statement assigns the string sphere to the variable $mycommand.
The second statement appends -r 5 to the string sphere and executes the
complete command sphere -r 5. This creates a sphere with a radius of 5
grid units.

Example 4

string $a[];

$a = eval("ls -lights");

print($a);

The first statement defines an array of strings named $a. The second
statement executes the MEL command ls -lights, then assigns the
command’s output to array $a. The third statement displays the contents
of $a to the Script editor as follows:

ambientLightShape1

directionalLightShape1

Note that each line of command output appears on a new line. Each
command output line is an array element. Maya formats array output
with each array element on a new line.

Example 5

Suppose you’ve created a MEL script file named bunk.mel in your Maya
scripts directory and it contains this procedure:

global proc string bunk()

{

string $fog;
MEL and Expressions

261

17 | Useful functions
 > print
if (rand(2) < 1)

$fog = "particle";

else

$fog = "sphere";

return $fog;

}

Further suppose you create this expression:

string $name = bunk();

eval($name);

print($name);

The first expression statement executes the bunk() procedure in the
bunk.mel script file. In the bunk procedure, the if-else statement generates
a random floating point value between 0 and 2, then compares its value to
1.

If the value is less than 1, the statement assigns the MEL command string
particle to $fog. If the value is greater than 1, $fog receives the command
string sphere.

The procedure finishes executing and passes the value of $fog back to the
calling procedure, bunk() in the expression. This assigns the command
string to the variable $name.

The eval function executes the command string stored in the $name. For
example, the statement might execute particle, which creates a particle at
the origin of the workspace.

The fourth statement displays the contents of $name, for example, particle.

The expression executes each frame and creates a new particle or sphere.

print

Displays text in the Script editor. You can use this function to display the
contents of attributes and variables. This is helpful for debugging an
expression.

print(string text)

print(vector number)

print(float number)

print(int number)

print(array number)

text is either a string enclosed in quote marks or an attribute name or
string variable containing text.
MEL and Expressions

262

17 | Useful functions

 > print
number is a number without the quote marks. Numerical arguments
display as strings.

There is no returned value for this function.

Note the following display considerations.

• You can format displayed text with standard C language escape
characters. For example, you can create a new line with “\n” or a tab
character with “\t” in the argument.

• Displaying a floating point value shows the number many digits to
the right of the decimal point, for example 0.3333333333.

• Insignificant 0 digits are truncated from floating point numbers. For
example, floating point number 2.0 is displayed as 2.

• A vector appears with a space separating components and no double
angle brackets. Each vector component has a floating point value with
up to 10 digits to the right of the decimal point.

For example, a vector <<1.518876356, 0, -1.290387446>> appears in the
Script editor as this:

1.518876356 0 -1.290387446

• Arrays are formatted with each array element on a new line.

• You can use the + operator to join two strings in an argument:

"text1" + "text2"

This is displayed as:

text1text2

• You can also append a number to a string:

"text" + 1

This is displayed as:

text1

• You cannot use the + operator with a string array.

• If you assign a string to a variable that’s not a string data type, the
following text appears if you display the variable:

Variable data type String assignment Data
displayed

float "3.14" 3.14

int "3.14" 3

vector "3.14" 3.14 0 0
MEL and Expressions

263

17 | Useful functions
 > system
As shown in the last row of the table, if a variable is assigned a string
that starts with a non-numerical character, Maya converts the string to
0.

• For a non-particle expression consisting of only print statements,
Always Evaluate must be on in the Expression Editor for the
expression to execute.

Examples

print(time);

print("\n");

The first statement displays the value of time. The second statement
displays a new-line character after the value of time, so the time appears
on a separate line in the Script editor.

float $f = 3.14159;

print($f);

Displays the floating point number 3.14159.

string $s = "Hello There";

print($s);

Displays the string Hello There.

vector $v;

$v = <<1.2,2.3,3.4>>;

print($v);

Displays the vector as 1.2 2.3 3.4.

string $a[];

$a = eval("ls -lights");

print($a+" are the lights in my scene.\n");

The print function causes an error message because you cannot use the +
operator with a string array.

system

 This is useful for running a program where you need to use the return
value output from its execution.

string system(string command)

float "pi is 3.14" 0, error message

Variable data type String assignment Data
displayed
MEL and Expressions

264

17 | Useful functions

 > system
command is either a command string enclosed in quote marks or a string
variable containing a command.

The returned value is the output resulting from the command’s execution.
MEL and Expressions

265

17 | Useful functions
 > system
MEL and Expressions

266

18 | FAQ

 > What is the command for getting the Set Editor?
18 FAQ

FAQ

Tasks

How can I get the names of selected objects?

To get the names of all the currently selected objects, use the following
command:

ls -sl;

What is the command for getting the Set
Editor?

tearOffPanel "set editor" "setEditor" true;

Why are the extra attributes I added not in the
Channel Box?

Suppose you have written a script that creates extra attributes on an
object, but they are not being displayed in the Channel Box. Also, their
keyframes don’t show up in the Time Slider.

To get the extra attributes displayed in the Channel Box, you need to use
the following command on the attributes in your script:

setAttr -edit -keyable true

How can I change the order of extra attributes
in the Channel Box?

You can’t change the order of extra attributes in the Channel Box. Maya
requires the order to be the order in which they were created.

You could write a script that reads the current attributes, deletes them all,
and adds them again in the order you want. However, this would break
connections with expressions and other objects.
MEL and Expressions

267

18 | FAQ
 > How can I export selected data to an already opened file?
How do I change projects with MEL?

Here’s an example for a project named trumpet:

workspace -o "/home/matt/maya/projects/trumpet";

np_resetBrowserPrefs;

pv_resetWorkspace;

pv_goCurrentProject;

print ("Current project is trumpet\n");

How can I export selected data to an already
opened file?

You can use a variation on the following:

string $tmp =‘file -q -sn‘;

file -rename "tests" ;

file -es;

file -rename $tmp;

Scripting and syntax

What is the operator for raising to a power?

The operator is pow. For example, $x pow 5 will raise the value of $x to
the 5th power.

How can I find out what variables have been
declared?

Use the env command. This stores a list of all currently declared global
variables. Then parse through the list comparing the name of the variable
that you are checking against the list. Return a 1 if that is in the list and a 0
otherwise.

How do I list all global variables?

Use the env command. The env command returns a list of all global
variables that have been defined. Note that if a global variable exists in a
script that hasn’t been run yet, it will not show up in the output from env.

How can I change an integer to a string?

Here’s an example:

int $counter = 1;

string $bob = "bob";

string $number = $counter;
MEL and Expressions

268

18 | FAQ

 > Can I specify a dynamic matrix?
Can I specify a dynamic matrix?

You can’t specify the size of a matrix with a variable. Also, there is no
command which will clear a matrix and free up the memory it uses.

How do I simulate variable length argument lists?

At the procedure definition site, declare your argument as an array of
whatever data type you need.

At the call site, use an array variable of the same type. Alternatively, you
can use the array expression notation to create a array without having to
declare a variable and do all of the assignments into it.

For example:

proc foo (float $f[], string $s[]) {

 print("size of f=" + size($f) + "\n");
 for ($i=0; $i < size($f); ++$i) {
 print("f[" + $i + "]=" + $f[$i] + "\n");
 }

 print("size of s=" + size($s) + "\n");
 for ($i=0; $i < size($s); ++$i) {
 print("s[" + $i + "]=" + $s[$i] + "\n");
 }
 }

 float $ff[2]={0.9, 1.2};
 float $gg[];
 for ($i=0; $i < 10; ++$i) {
 $gg[$i] = $i;
 }

 foo $ff {}; // passes the array "$ff" and the empty array to foo.
 foo $gg {"hello", "world"}; // passes the array "$gg" and an array of 2
strings
 // to foo.
 foo {} {}; // calls foo with 2 empty arrays.

Note that array expressions get their base type from the type of the first
element in the list. So, to force your array expression to be of a certain
type, you can cast the first element:

foo {(float)1, 2, 3} {"hello"};

// make first array an array of float, not int.
MEL and Expressions

269

18 | FAQ
 > How do I execute a statement created at runtime?
How do I execute a statement created at
runtime?

Use the eval command. The eval command is designed to allow
execution of a string that is built at runtime.

For example:

switch($timeOfDay) {

 case "morning":

 $shape = "circle";

 break;

 case "afternoon":

 $shape = "sphere";

 break;

 case "evening":

 $shape = "cone";

 break;

 default:

 $shape = "cylinder";

}

eval $shape -r 5; // create specified shape with radius 5.

Alternatively, you could use eval with function syntax:

eval ($shape+" -r 5");

You can also use the evalEcho and evalDeferred commands.

What is the difference between eval,
backquotes, and ()?

Commands and procedures are executed in the same way. The following
examples illustrate this point.

proc float myTime(string $dummyFlag, float $time) {return

$time;}

 currentTime -e 1;

 myTime -e 1;

 currentTime "-e" "1";

 myTime "-e" "1";

 currentTime("-e", 1);

 myTime("-e", 1);

To execute a command or procedure and get the return value you could
use the eval, ‘‘, or () syntax as the following examples illustrate.

string $transforms[];

$transforms = eval("ls -type transform");

$transforms = ‘ls -type transform‘;

$transforms = ls("-type", "transform");
MEL and Expressions

270

18 | FAQ

 > How can I stop a MEL script that is running?
There are important things to remember when using each of these types of
syntax. Below are the key differences between them. Read them so you
know which one to use.

eval

1 Allows for delayed evaluation. Normally when a script is executed, if
a command is not defined, Maya will still try to execute it.

For example, if you try to execute a script that first loads a plug-in and
then immediately executes it, the script will fail when the plug-in
command is executed. This is because Maya initially evaluates the
script to check for commands that it does not know. However, if the
plug-in command is executed using the eval syntax then the script
will not fail.

2 Can embed commands. For example: eval(“sphere; cone; ls”);

3 Entire command, including its arguments, must be a single string. For
example: eval(“ls -type transform”);

backquotes

1 Immediate evaluation.

2 Can not embed commands.

3 Do not need to put string arguments in quotes. For example: string
$trans2[] = ‘ls -type transform‘;

4 Can not use this syntax as a stand-alone command because it’s
intended for assigning the result of one command or building another
command. For example, you can not do the following: ‘ls -type
transform‘;

()

1 Immediate evaluation.

2 Can not embed commands.

3 Must put string arguments in quotes. For example, if $faces represents
the number of faces in an object, you might use () to build a string to
print out.

print("This object has " + $faces + “ faces \n”);

How can I stop a MEL script that is running?

Unfortunately, you cannot abort a MEL script while its running. The only
thing you can do is undo the operation once its done.
MEL and Expressions

271

18 | FAQ
 > How can I count polygons?
Modeling

How can I count polygons?

You can count polygons with the polyEvaluate -f command.

How can I get the name of a (selected) shape
node?

In general, you can use ls -sl for getting the names of currently selected
nodes. To get shape node names only, you can use ls -s.

You can also use the listRelatives command to get the names of all the
shape nodes that are hierarchically below (that is, child nodes) the
currently selected nodes. For example:

string obj[]= ‘ls -sl‘;

 listRelatives -s $obj[0];

Commands to pick curve on surface

What is the command to pick a curve on surface? Suppose you would like
to set up marking menus to pick curves and curve on surface.

You can do the following:

selectMode -object;
 selectType -allObjects false; selectType -curveOnSurface true;

Now you can drag the results to the shelf, and you’re ready to rock!

Alternatively, drag this to the shelf:

setObjectPickMask "All" 0;

editMenuUpdate MayaWindow|mainEditMenu;

setObjectPickMask "Curve" true;

updateComponentSelectionMasks;

updateObjectSelectionMasks;

How do I get and set specific UV values on a
polygon?

Use the PolyMoveUV command. A good way to use this command is in
conjunction with setAttr statements.

To see how MEL implements this, create a polyPlane, then pick some
polyUV’s on that plane. Select the plane then open Window > UV Texture
Editor. This shows us the UV coordinates for the selected object. With the
PolyUV(s) still selected, choose Polygon > Move component then use the
MEL and Expressions

272

18 | FAQ

 > How can I create a closestPointOnSurface node?
manipulators displayed in the UV Texture Editor to see what MEL
commands get written to the Script editor window. Generally, the output
looks something like:

setAttr "polyMoveUV5.translate" -type double2 0 -0.1187236 ;

You can set or store the outputs using normal arrays.

How can I create a closestPointOnSurface
node?

To create this node, simply enter the following in the Script editor:

 createNode closestPointOnSurface

Then you can connect it to another node using the Connection Editor.

How can I get an object’s pivot point in world
space?

Use the getAttr command. For example:

getAttr ball.scalePivot;

// Result: 7.099792 7.984488 -4.93999 //

getAttr ball.rotatePivot;

// Result: 7.099792 7.984488 -4.93999 //

Animation, dynamics, and rendering

How do I get or set the position along the
timeline using MEL?

You can set the current time with the currentTime command.

You can query the currentTime command to return the current time in a
format controlled by the currentUnit command.

The following commands store the current time in seconds in the $time
variable:

// Save the current time unit in a variable

string $timeFormat = ‘currentUnit -query -time‘;

// Set the current time unit to seconds

currentUnit -time sec;

// Store the current time in $time

float $time = ‘currentTime -q‘;

// Restore the original time unit we saved earlier
MEL and Expressions

273

18 | FAQ
 > How to randomize keyframes?
currentUnit -time $timeFormat;

How to randomize keyframes?

Basically. you’ll use the keyframe command with the -vc (valueChange)
option, and you’ll pass it a “rand MIN MAX” as argument. For example,
to randomize sphere.tx between 1.5 and 3.2:

float $random;

 int $n=‘keyframe -q -kc sphere.tx‘;

//total number of keyframes in tx

 for($i=0;$i<$n;$i++) {

 $random=‘rand 1.5 3.2‘;

 keyframe -e -at tx -in $i -vc $random sphere;

 }

To randomize all the attributes, you can write an upper loop in which you
change the attribute to be randomized.

How do I export sets from a Maya file?

You can use the following:

ls -typ objectSet;

How can I select a set of particles?

Suppose you wants to be able to select a group or set of particles. For
example, you want to run a simulation, stop it, select some particles, go
back to frame 1, deselect the particles, run the simulation, and then be able
to reselect the same set of particles.

You can either use the quick set or a MEL script. In MEL, you can do the
following:

//Saves current selection for later use.

 string $selectionSet[];

 $selectionSet = ‘ls -sl‘;

 //Recalls saved selection.

 select -r $selectionSet;
MEL and Expressions

274

18 | FAQ

 > How do I kill individual particles?
How do I kill individual particles?

The only way to kill a certain particle Id is to give it a lifespan of zero. For
example:

//RUN TIME EXPRESSION FOR REMOVING PARTICLES AFTER THEY REACH
//10 ON Y AXIS

//GET THE POSITION OF PARTICLES
vector $pos= particleShape1.position;
//CHECK TO SEE IF THEY HAVE PASSED A CERTAIN Y VALUE (10 in this example)
if ($pos.y>=10)
{
int $pi=particleId;
//PRINT IDs OF PARTICLES TO BE REMOVED
print ($pi+"\n");
particle -e -at lifespanPP -id $pi -fv 0 particle1;

}

To attach this script to an emitter:

1 Show the particalShape and open the attribute editor.

2 Change the life span from “live forever” to “lifeSpanPP Only”.

3 In the per particleArray section press the right mouse button on the
position attribute and choose Runtime Expression (before or after
dynamics calculation).

4 Paste the script into the expression editor and click Create.

How can I make a list of what objects are
connected to what shading groups?

Here’s an example of how to make a list of what objects are connected to
what shading group:

for ($SG in $listofShadinggroups) {
 string $connectedObjects[] = ‘sets -q $SG‘;
 for ($connectedObject in $connectedObjects){
 print ($connectedObject + " is connected to " + $SG +
"\n");
 }
 }

How can I render from within a script?

You can use the system and batchRender commands to render from
within a script. For example, you could use the batchRender command as
follows:
MEL and Expressions

275

18 | FAQ
 > How do I set the batch render directory in MEL?
batchRender -f "absolute path to filename";

Alternatively, you could do the following:

system ("Render -s 1 -e 10 -b 1 absolutepath to filename");

In this case, you would need to do a file save command before issuing that
command to ensure that the rendered scene is the most current version.

How do I set the batch render directory in
MEL?

The workspace command controls project-related settings. You can use it
to set destination directories for files of type: depth, images, iprImages,
lights, renderScenes, sourceImages, and textures.

// This will change the directory where

// batchRender-ed images go:

workspace -renderType "images" "c:/temp";

//Save the change into the workspace.mel afterwards:

workspace -saveWorkspace ;

What is the command to strip shaders from
an object?

deleteCallback nurbsSphereShape1 initialShadingGroup;
MEL and Expressions

276

19 | Example scripts

 > Learning from Maya’s own script files
19 Example scripts

Example scripts

Learning from Maya’s own script files

Maya has many MEL scripts it uses for its user interface and other
operation details. You can examine these scripts to see the techniques of
professional script writers at Alias. The scripts are in the startup and others
directories at these locations by default:

(Mac OS X)/Applications/Maya 6.0/Application Support/scripts

If you want to modify scripts in this directory to alter the Maya interface,
copy them to your local scripts directory first. If a script in your local
scripts directory has the same name as a script in the Maya internal script
files directory, the one in your local scripts directory executes.

Read animation values from a text file

By Luca Pataracchia, Alias Toronto Support.

This procedure will read an ASCII file (use an explicit path) and will key
translation values for the specified object ($objectName).

The file must be laid out in the following format:

frameNumber Xtranslation Ytranslation Ztranslation

For example:

7 2 4 6

10 3.7 3.6 9.3

20 7.4 5.7 3.9

24 4.2 6.789 2.457

32 16.2 3.45 9.75

Note Do not modify or insert scripts in these directories; they hold
scripts for Maya user interface operation. Changes to these
scripts might interfere with Maya operation.
MEL and Expressions

277

19 | Example scripts
 > Particle Collision Boundary
This script is an example of how you can import animation from an ascii
file. This proc can be changed depending on what kind of animation you
need to import. You would have to modify the script to suit the format of
your ascii file.

global proc getAnim(string $fileName, string $objectName)
{
 //open the file for reading
 $fileId=`fopen $fileName "r"`;

 //get the first line of text
 string $nextLine = `fgetline $fileId`;

 //while $nextline is not emtpy(end of file) do the following

 while (size($nextLine) > 0) {

 //tokenize(split) line into separate elements of an array
 string $rawAnimArray[];
 tokenize ($nextLine, " ",$rawAnimArray);

 //place each element of the array into separate variables
 print $rawAnimArray;
 float $frame=$rawAnimArray[0];
 float $x=$rawAnimArray[1];
 float $y=$rawAnimArray[2];
 float $z=$rawAnimArray[3];

 //change the currentTime and set keys for tx, ty, tz

 currentTime $frame ;
 setAttr ($objectName+".tx") $x;
 setKeyframe ($objectName+".tx");
 setAttr ($objectName+".ty") $y;
 setKeyframe ($objectName+".ty");
 setAttr ($objectName+".tz") $z;
 setKeyframe ($objectName+".tz");

 //get the next line in the ascii file.
 $nextLine = `fgetline $fileId`;
 }

 //close file
 fclose $fileId;
}

Particle Collision Boundary

By Bret A. Hughes, Alias Santa Barbara Development Center.
MEL and Expressions

278

19 | Example scripts

 > Particle Collision Boundary
This script, “dynFuncBoundary.mel”, tests the particle collision boundary
for a mesh plane. The script creates an emitter above a sphere that is
above a plane. The emitted particles are affected by gravity as they bounce
off the sphere and the plane.

dynFuncBoundary.mel

// dynFuncBoundary.mel
//
// Alias Script File
// MODIFY THIS AT YOUR OWN RISK
//
// Creation Date: 09 September 1996; Modified 08 January 2000
// Author: bah
//
// Procedure Name:
// dynFuncBoundary
//
// Description:
// Creates scene to test the particle collision boundary for a mesh
// plane.
//
// Input Arguments:
// None.
//
// Return Value:
// None.
//

//
// ========== dynFuncBoundary ==========
//
// SYNOPSIS
// Creates scene to test the particle collision boundary for
// a mesh plane.
//
global proc dynFuncBoundary()
{
 // Clear the scene and reset the timeline.
 //
 file -f -new;
 currentTime -e 1;

 // Display information to the user about what to expect from this
 // subtest and give some time for the user to read this information.
 //
 print("\nParticles fall and collide with ball and plane.\n");
 system("sleep 1");
MEL and Expressions

279

19 | Example scripts
 > Particle Collision Boundary
 // Create the bottom plane.
 //
 nurbsPlane -name plane;
 scale 7.01291 7.01291 7.01291;
 rotate 0rad 0rad -1.5708rad;
 move 0 0.2 0;

 // Create the ball above the plane.
 //
 polySphere -name ball;
 scale 1.20479 1.20479 1.20479;
 move 0 2.7 0;

 // Create the emitter above the ball and plane. Make the particles
 // affected by gravity and have them bounce off the ball and the
 // bottom plane.
 //
 emitter -type omni -r 100 -mnd 0 -mxd 0.7 -spd 1 -pos 0 5 0 -name emitter;
 particle -name particles;
 connectDynamic -em emitter particles;
 gravity -dx 0 -dy -1 -dz 0 -m 9.8 -pos 10 10 0 -name gravity;
 connectDynamic -f gravity particles;
 collision -r 0.50 -f 0.14 plane;
 collision -r 0.50 -f 0.14 ball;
 connectDynamic -c plane -c ball particles;

 // Make the picture a pretty one and play the test.
 //
 select -r particles;
 selectMode -component;
 hide plane ball;

 // Set up the playback options.
 //
 float $frames = 150;
 playbackOptions -min 1 -max $frames -loop once;

 // Time how long it takes to play the scene and then determine the
 // playback frame rate. Make sure when getting the frame rate
 // that no values are divided by zero.
 //
 float $startTime = ‘timerX‘;
 play -wait;
 float $elapsed = ‘timerX -st $startTime‘;
 float $fps = ($elapsed == 0.0 ? 0.0 : $frames/$elapsed);

 // Print the frames per second (fps) of the subtest in the form X.X.
 //
 print("dynFuncBoundary: Done. (");
MEL and Expressions

280

19 | Example scripts

 > Point Explosion
 print((int)($fps * 10)/10.0 + " fps)\n");

} // dynFuncBoundary //

Point Explosion

By Bret A. Hughes, Alias Santa Barbara Development Center.

This script, “dynFuncExplosion.mel”, creates an emitter that emits
particles. The emitter, Explosion, has extra attributes to control several
properties of a simulated explosion. These attributes include the start
frame, duration, intensity, fullness, and power of the explosion.

dynFuncExplosion.mel

// dynFuncExplosion.mel
//
// Alias Script File
// MODIFY THIS AT YOUR OWN RISK
//
// Creation Date: 21 September 1996; Modified 08 January 2000
// Author: bah
//
// Procedure Name:
// dynFuncExplosion
//
// Description:
// Creates a point explosion that can be modified.
//
// Input Arguments:
// None.
//
// Return Value:
// None.
//

//
// ========== dynFuncExplosion ==========
//
// SYNOPSIS
// Creates a point explosion that can be modified.
//
//
global proc dynFuncExplosion()
{
 // First delete anything that might be left over
 // from a previous test.
 //
MEL and Expressions

281

19 | Example scripts
 > Point Explosion
 file -f -new;
 currentTime -e 1;

 // Display information to the user about what to expect from this
 // subtest and give some time for the user to read this information.
 //
 print("\nBOOM!\n");
 system("sleep 1");

 // Create emitter to be the source of the particles eminating from
 // the explosion. Add an internal variable to the emitter to
 // control amplitude attributes of the emitter. Render the particles
 // as multi streaks.
 //
 emitter -type omni -r 100 -mnd 0 -mxd 0 -spd 1 -pos 0 0 0 -n Explosion;
 addAttr -sn "ii" -ln "InternalIntensity" -dv 5 -min 0
 -max 100 Explosion;
 particle -name ExplosionParticle;
 connectDynamic -em Explosion ExplosionParticle;
 setAttr ExplosionParticleShape.particleRenderType 1; // MultiStreak

 // Link some renderable attributes to the particles.
 //
 addAttr -ln colorAccum -dv true ExplosionParticleShape;
 addAttr -ln lineWidth -dv 1.0 ExplosionParticleShape;
 addAttr -ln multiCount -dv 10.0 ExplosionParticleShape;
 addAttr -ln multiRadius -dv 0 ExplosionParticleShape;
 addAttr -ln normalDir -dv 2.0 ExplosionParticleShape;
 addAttr -ln tailFade -dv 0 ExplosionParticleShape;
 addAttr -ln tailSize -dv 3 ExplosionParticleShape;
 addAttr -ln useLighting -dv false ExplosionParticleShape;

 // Create some user-modifiable attributes to modify the
 // explosion.
 //
 select -replace "Explosion";
 addAttr -sn "st" -ln "Start" -dv 10 -min 0 -max 100 Explosion;
 addAttr -sn "du" -ln "Duration" -dv 20 -min 0 -max 200 Explosion;
 addAttr -sn "in" -ln "Intensity" -dv 10 -min 0 -max 100 Explosion;
 addAttr -sn "fu" -ln "Fullness" -dv 10 -min 1 -max 100 Explosion;
 addAttr -sn "po" -ln "Power" -dv 10 -min 0 -max 100 Explosion;

 // Create the time the explosion has been alive for
 // and the fraction of the full explosion for that time.
 // Make the explosion intensity a curve instead of
 // linear interpolation for the explosion fraction.
 // BEWARE of MAGIC NUMBERS!!!!
 //
 expression -ae true -s " \
 Explosion.rate = Explosion.Fullness * 40 * \
MEL and Expressions

282

19 | Example scripts

 > Testing Added Particle Attributes
 Explosion.InternalIntensity; \
 ExplosionParticleShape.multiRadius = \
 Explosion.Fullness * Explosion.Intensity * 0.005; \
 Explosion.speed = Explosion.InternalIntensity \
 * Explosion.Power / 10.0; ";

 expression -ae true -s " \
 if (frame >= Explosion.Start \
 && frame <= Explosion.Start + Explosion.Duration) \
 { \
 float $ExplosionLife = frame - Explosion.Start; \
 float $ExplosionFraction = 1 - (abs($ExplosionLife - \
 Explosion.Duration/2) / (Explosion.Duration/2)); \
 Explosion.InternalIntensity = Explosion.Intensity * \
 pow($ExplosionFraction, \
 121 / pow(Explosion.Power + 1, 2)); \
 } \
 else \
 { \
 Explosion.InternalIntensity = 0; \
 }; " -o Explosion;

 // Set up the playback options.
 //
 float $frames = 70;
 playbackOptions -min 1 -max $frames -loop once;

 // Time how long it takes to play the scene and then determine the
 // playback frame rate. Make sure when getting the frame rate
 // that no values are divided by zero.
 //
 float $startTime = ‘timerX‘;
 play -wait;
 float $elapsed = ‘timerX -st $startTime‘;
 float $fps = ($elapsed == 0.0 ? 0.0 : $frames/$elapsed);

 // Print the frames per second (fps) of the subtest in the form X.X.
 //
 print("dynFuncExplosion: Done. (");
 print((int)($fps * 10)/10.0 + " fps)\n");

} // dynFuncExplosion //

Testing Added Particle Attributes

By Ramsey Harris, Alias Santa Barbara Development Center.

This script, “dynTestAddAttr.mel”, tests dynamics. It keyframes an added
attribute called tailSize and adds it to a particle shape. The particles are
emitted by a simple point emitter.
MEL and Expressions

283

19 | Example scripts
 > Testing Added Particle Attributes
dynTestAddAttr.mel

// dynTestAddAttr.mel
//
// Alias Script File
// MODIFY THIS AT YOUR OWN RISK
//
//
// Creation Date: 31 May 1996; Modified 08 January 2000
// Author: rh
//
// Procedure Name:
// dynTestAddAttr
//
// Description:
// Test adding user attributes to a particle shape.
// Create a particle object, set its render type to
// streak, and add a dynamic attribute "tailSize".
// The streak render plug-in will use the attribute
// "tailSize" if it is available.
//
// Input Arguments:
// None.
//
// Return Value:
// Number of errors that occurred in the test.
//
//

//
// ========== dynTestAddAttr ==========
//
// SYNOPSIS
// Test adding user attributes to a particle shape.
// Create a particle object, set its render type to
// streak, and add a dynamic attribute "tailSize".
// The streak render plug-in will use the attribute
// "tailSize" if it is available.
//
global proc int dynTestAddAttr()
{
 // First delete anything that might be left over
 // from a previous test.
 //
 file -force -new;
 currentTime -e 1;

 // Create emitter and particle object.
 //
MEL and Expressions

284

19 | Example scripts

 > Testing Added Particle Attributes
 emitter -type omni -r 90 -mnd 0 -mxd 0.5 -spd 5 -pos 2 0 2
 -n myEmitter;
 particle -n myParticle;
 connectDynamic -em myEmitter myParticle;

 // Set the render mode to streak and add a dynamic
 // attribute for the tail size.
 //
 setAttr myParticleShape.particleRenderType 6; // Streak
 addAttr -ln tailSize -dv 4 myParticleShape;

 // Set some keyframes on the dynamic attribute.
 //
 setKeyframe -t 0 -v 0 -at tailSize myParticleShape;
 setKeyframe -t 10 -v 1 -at tailSize myParticleShape;
 setKeyframe -t 20 -v 2 -at tailSize myParticleShape;
 setKeyframe -t 30 -v 5 -at tailSize myParticleShape;
 setKeyframe -t 50 -v 10 -at tailSize myParticleShape;
 setKeyframe -t 70 -v 5 -at tailSize myParticleShape;
 setKeyframe -t 90 -v 1 -at tailSize myParticleShape;
 setKeyframe -t 100 -v 0 -at tailSize myParticleShape;

 // Check for correct tail size at start of test.
 //
 //
 currentTime -e 0;
 int $errors = 0;
 float $tailSize = ‘getAttr myParticle.tailSize‘;
 if ($tailSize != 0) // Warning Magic#
 {
 print("dynTestAddAttr: Failure: Start of test: The tail "
 + "size ("+ $tailSize + ") should be 0.\n");
 $errors += 1;
 }

 // Set up the playback options.
 //
 float $frames = 50;
 playbackOptions -min 1 -max $frames -loop once;

 // Time how long it takes to play the scene and then determine the
 // playback frame rate. Make sure when getting the frame rate
 // that no values are divided by zero.
 //
 float $startTime = ‘timerX‘;
 play -wait;
 float $elapsed = ‘timerX -st $startTime‘;
 float $fps = ($elapsed == 0.0 ? 0.0 : $frames/$elapsed);

 // Check for correct tail size at middle of test.
MEL and Expressions

285

19 | Example scripts
 > Testing Added Particle Attributes
 //
 $tailSize = ‘getAttr myParticle.tailSize‘;
 if (($tailSize < 9.9) || ($tailSize > 10.1)) // Warning Magic#
 {
 print("dynTestAddAttr: Failure: Frame 50: The tail size ("
 + $tailSize + ") should be about 10.\n");
 $errors += 1;
 }

 // Print the frames per second (fps) in the form X.X of subtest.
 //
 print("dynTestAddAttr: Subtest 1. (" + (int)($fps * 10)/10.0 +
 " fps)\n");

 // Set up the playback options.
 //
 $frames = 100;
 playbackOptions -min 1 -max $frames -loop once;
 currentTime -e 1;

 // Time how long it takes to play the scene and then determine the
 // playback frame rate. Make sure when getting the frame rate
 // that no values are divided by zero.
 //
 $startTime = ‘timerX‘;
 play -wait;
 $elapsed = ‘timerX -st $startTime‘;
 $fps = ($elapsed == 0.0 ? 0.0 : $frames/$elapsed);

 // Check for correct tail size at end of test.
 //
 $tailSize = ‘getAttr myParticle.tailSize‘;
 if ($tailSize > 0.1)
 {
 print("dynTestAddAttr: Failure: End of test: The "
 + "tail size (" + $tailSize + ") should be close to 0.\n");
 $errors += 1;
 }

 // If there are no errors, the addAttr passed this test.
 //
 if ($errors == 0)
 print("dynTestAddAttr: Passed. (");
 else
 print("dynTestAddAttr: Failed. (");

 // Print the frames per second (fps) in the form X.X.
 //
 print((int)($fps * 10)/10.0 + " fps)\n");
MEL and Expressions

286

19 | Example scripts

 > Testing Dynamics Events
 // Reset the current time to zero so user can replay the test.
 //
 currentTime -e 1;
 return $errors;

} // dynTestAddAttr //

Testing Dynamics Events

By Rob Tesdahl and Jonathan Southard, Alias Santa Barbara Development
Center.

This script, “dynTestEvent.mel”, tests the functionality of particles and
particle collision events. It creates two emitters over a tilted plane. The
particles emitted are affected by gravity as they collide with the tilted
plane. Upon collision the particles either split or emit, depending on
which emitter they came from.

dynTestEvent.mel

// dynTestEvent.mel
//
// Alias Script File
// MODIFY THIS AT YOUR OWN RISK
//
//
// Creation Date: 4 September 1996; Modified 09 January 2000
// Author: robt, js
//
// Procedure Name:
// dynTestEvent
//
// Description:
// Test the basic functionality of collision events.
//
// Input Arguments:
// None.
//
// Return Value:
// Number of errors that occurred in the test.
//
//

//
// ========== dynTestEvent ==========
//
// SYNOPSIS
// Test the basic functionality of collision events.
MEL and Expressions

287

19 | Example scripts
 > Testing Dynamics Events
//
global proc int dynTestEvent()
{
 // First delete anything that might be left over
 // from a previous test.
 //
 file -force -new;
 currentTime -e 1;
 int $errors = 0;

 // Create the planes to bounce off.
 //
 nurbsPlane -d 3 -p 0 0 0 -w 1.5cm -lr 1 -axis 0cm 0cm 0cm
 -name table;
 scale 10 10 10;
 rotate -1.5708rad 0rad 0rad;
 move -os 0.5 0.5 0;
 move -r -5 0 5;
 rotate -r 10 0 0;

 // Create the particle shapes to do the bouncing and splitting.
 // Material assignments will be interesting only if the lighting is
 // set.
 //
 particle -inherit 1.0 -p 0 5 -3 -n blueParticles;
 addAttr -ln colorBlue -dv 1.0 -at double blueParticlesShape;

 particle -inherit 1.0 -p 0 5 -3.5 -n redParticles;
 addAttr -ln colorRed -dv 1.0 -at double redParticlesShape;

 particle -inherit 1.0 -p 0 5 -3.5 -n greenParticles;
 addAttr -ln colorGreen -dv 1.0 -at double redParticlesShape;

 gravity -pos 10 10 10 -m 20 -name gravityField;

 // Warning: Changing resilience will change the (hardcoded)
 // number of particles that this test expects to create.
 //
 collision -r 1.0 -f 0.01 table;
 connectDynamic -f gravityField -c table blueParticles redParticles
 greenParticles;

 event -split 2 -sp 0.2 blueParticles;
 event -emit 3 -die true -sp 0.2 redParticles;
 event -emit 1 greenParticles;

 // Set up the playback options.
 //
 float $frames = 55;
 playbackOptions -min 1 -max $frames -loop once;
MEL and Expressions

288

19 | Example scripts

 > Testing Dynamics Events
 // Time how long it takes to play the scene and then determine the
 // playback frame rate. Make sure when getting the frame rate
 // that no values are divided by zero.
 //
 float $startTime = ‘timerX‘;
 play -wait;
 float $elapsed = ‘timerX -st $startTime‘;
 float $fps = ($elapsed == 0.0 ? 0.0 : $frames/$elapsed);

 // Check whether any blue particles went through the boundary.
 //
 if (‘getAttr blueParticles.boundingBoxMinZ‘
 < ‘getAttr table.boundingBoxMinZ‘)
 {
 print("dynTestEvent: Failure: \"blueParticles\" particles "
 + "went through boundary.\n");
 $errors += 1;
 }

 // Check whether any red particles went through the boundary.
 //
 if (‘getAttr redParticles.boundingBoxMinZ‘
 < ‘getAttr table.boundingBoxMinZ‘)
 {
 print("dynTestEvent: Failure: \"redParticles\" particles "
 + "went through boundary.\n");
 $errors += 1;
 }

 // Make sure that the blue particle hit one Z wall, creating two
 // particles that each hit the other Z wall to create four total particles.
 // This is visually apparent from the side and front views together.
 //
 int $blueParticles_i = ‘particle -count -q blueParticles‘;
 if ($blueParticles_i != 4 && ! $errors) // Warning Magic#
 {
 print("dynTestEvent: Failure: There are " + $blueParticles_i
 + " \"blueParticles\" particles instead of the correct "
 + "value, 4.\n");
 $errors += 1;
 }

 // Test that the number of events resulting in a red particle
 // creation is correct.
 //
 int $redParticles_i = ‘particle -count -q redParticles‘;
 if ($redParticles_i != 9 && ! $errors) // Warning Magic#
 {
 print("dynTestEvent: Failure: There are " + $redParticles_i
MEL and Expressions

289

19 | Example scripts
 > Dynamics Time Playback
 + " \"redParticles\" particles instead of the correct "
 + "value, 9.\n");
 $errors += 1;
 }

 // Check the totalEventCount variable.
 //
 if ((‘getAttr redParticles.totalEventCount‘ != 4) ||
 (‘getAttr blueParticles.totalEventCount‘ != 3))
 {
 print("dynTestEvent: Failure: Event count attributes had " +
 "incorrect value(s).\n");
 $errors += 1;
 }

 // Check the event attribute on the green particles.
 //
 float $event[] = ‘particle -at event -order 0 -q greenParticlesShape‘;
 if ($event[0] != 2)
 {
 print("dynTestEvent: Failure: Event attribute had incorrect" +
 "value(s).\n");
 $errors += 1;
 }

 // If there are no errors, the events passed this test.
 //
 if ($errors == 0)
 {
 print("dynTestEvent: Passed. (");
 }
 else
 {
 print("dynTestEvent: Failed. (");
 }

 // Print the frames per second (fps) in the form X.X.
 //
 print((int)($fps * 10)/10.0 + " fps)\n");

 // Reset the current time to zero so user can replay the test.
 //
 currentTime -e 1;
 return $errors;
} // dynTestEvent //

Dynamics Time Playback

By Ramsey Harris, Alias Santa Barbara Development Center.
MEL and Expressions

290

19 | Example scripts

 > Dynamics Time Playback
This script, “dynTimePlayback.mel”,determines the dynamics playback
rate in frames/second from frame 0 to a frame you specify.

dynTimePlayback.mel

//
// Alias Script File
// MODIFY THIS AT YOUR OWN RISK
//
// Creation Date: 8 May 1996
// Author: rh
//
// Description:
// Playback from frame 0 to frame <n> and return the
// the playback rate in frames/sec. If a negative frame
// count is given, this indicates silent mode. In silent
// mode, no output is printed.
//
// This version is intended for use in batch tests of dynamics.
// It requests particle and rigid body positions every frame.
//
// RETURN
// Frame rate in frames/sec
//

global proc float dynTimePlayback(float $frames)
{
 int $silent;

 // Get the list of particle shapes.
 //
 string $particleObjects[] = ‘ls -type particle‘;
 int $particleCount = size($particleObjects);

 // Get the list of transforms.
 // This will include rigid bodies.
 //
 string $transforms[] = ‘ls -tr‘;
 int $trCount = size($transforms);

 // Check for negative $frames. This indicates
 // $silent mode.
 //
 if ($frames < 0)
 {
 $silent = 1;
 $frames = -$frames;
 }
MEL and Expressions

291

19 | Example scripts
 > Dynamics Time Playback
 else
 {
 $silent = 0;
 }

 // Setup the playback options.
 //
 playbackOptions -min 1 -max $frames -loop "once";
 currentTime -edit 0;

 // Playback the animation using the timerX command
 // to compute the $elapsed time.
 //
 float $startTime, $elapsed;

 $startTime = ‘timerX‘;
// play -wait;
 int $i;
 for ($i = 1; $i < $frames; $i++)
 {
 // Set time
 //
 currentTime -e $i;

 int $obj;

 // Request count for every particle object.
 //
 for ($obj = 0; $obj < $particleCount; $obj++)
 {

string $cmd = "getAttr " +
$particleObjects[$obj]+".count";
 eval($cmd);
 }

 // Request position for every transform
// (includes every rigid body).

 //
 for ($obj = 0; $obj < $trCount; $obj++)
 {
 string $cmd = "getAttr " +
$transforms[$obj]+".translate";
 eval ($cmd);
 }

 }

 $elapsed = ‘timerX -st $startTime‘;
MEL and Expressions

292

19 | Example scripts

 > Finding Unshaded Objects
 // Compute the playback frame $rate. Print results.
 //
 float $rate = ($elapsed == 0 ? 0.0 : $frames / $elapsed) ;

 if (! $silent)
 {
 print("Playback time: " + $elapsed + " secs\n");
 print("Playback $rate: " + $rate + " $frames/sec\n");
 }

 return ($rate);

} // timePlayback //

Finding Unshaded Objects

By John R. Gross, Alias Toronto Development Center.

In the course of a complex production, it’s possible that objects can get
accidentally disconnected from their shaders. This script,
“findUnshadedObjects.mel”, finds any unshaded objects, which can help
you identify objects that have been accidentally disconnected from their
shaders.

findUnshadedObjects.mel

//
// Copyright (C) 1997-1998 Alias,
// a division of Silicon Graphics Limited.
//
// The information in this file is provided for the exclusive use of the
// licensees of Alias. Such users have the right to use, modify,
// and incorporate this code into other products for purposes authorized
// by the Alias license agreement, without fee.
//
// Alias DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOFTWARE,
// INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS, IN NO
// EVENT SHALL Alias BE LIABLE FOR ANY SPECIAL, INDIRECT OR
// CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE,
// DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER
// TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
// PERFORMANCE OF THIS SOFTWARE.
//
// Alias Script File
// MODIFY THIS AT YOUR OWN RISK
//
// Creation Date: 5/August/98
//
MEL and Expressions

293

19 | Example scripts
 > Finding Unshaded Objects
// Author: jrg
//
// Procedure Name:
// findUnshadedObjects
//
// Description:
// This procedure examines all geometry in the scene, and reports any
// that are not connected to any shading group. It returns the number of
// such unconnected objects that were found.
// It also reports (but does not include in the reported count) any
objects
// that are connected to multiple shaders.
//
global proc int findUnshadedObjects()
{
 string $listOfShapes[] = ‘ls -geometry‘;
 int $numShapes = size($listOfShapes);
 int $whichShape;
 string $shapeType[];
 string $shaders[];
 int $numShaders;
 int $numUnshaded = 0;

 for ($whichShape = 0; $whichShape < $numShapes; $whichShape++) {
 $shapeType = ‘ls -showType $listOfShapes[$whichShape]‘;

 //
 // Skip over curves, as they are not rendered anyway.
 //
 if ($shapeType[1] == "nurbsCurve") {
 continue;
 }

 //
 // Get a list of all shading engines connected ’downstream’
 // from this geometry.
 //
 $shaders = ‘listConnections -source true -type shadingEngine
$listOfShapes[$whichShape]‘;
 $numShaders = size($shaders);

 if ($numShaders == 0) {
 print("Object " + $listOfShapes[$whichShape]
 + "is not connected to any shading engine.\n"
 + "It will not show up when rendered.\n");
 $numUnshaded++;
 } else if ($numShaders > 1) {
 print("Object " + $listOfShapes[$whichShape]
 + "is connected to " + $numShaders + "shading
engines.\n");
MEL and Expressions

294

19 | Example scripts

 > Finding Unshaded Objects
 }
 }
 return $numUnshaded;
}

MEL and Expressions

295

19 | Example scripts
 > Finding Unshaded Objects
MEL and Expressions

296

Index
Symbols
! . 45

&& . 45

() . 271

* character . 62

<< >> . 168

= operator . 53

== operator . 53

== operator, errors comparing floats 55

? operator. 47

\n . 263

{ } for blocks . 42

{ } surrounding list of values 32

| character. 60

| in object naming . 208

|| . 45

A
abs function. 217

absolute value . 217

acceleration attribute . 172

assigning constant value to 141

assigning with runtime expression 140

changing value randomly 141

field’s effect on . 155

initialization to zero . 157

working with . 155

acos function . 231

Add Attribute window . 150

Add Dynamic Attributes . 144

Add Initial State Attribute checkbox. 146, 152

adding custom attributes . 150

age attribute . 172

age of particles
at rewind . 136

how to examine . 136

runtime expression execution and 135

alias UNIX command
avoiding use with text editor 81

Always Evaluate checkbox 194

amplitude of sin function . 228

angle function . 234

angular units
conversion of . 102

animation expressions. 71

frame . 74

time . 74

animation values, read (sample MEL script) 277

AppleScript
calling from MEL. 95

arc cosine . 231

arc sine . 232

arc tangent. 232, 233

array (per particle) attributes 146

assigning to array of different length 154

Array option for per particle attributes 152

arrays
about . 31

change size . 32

clear . 33

clearing contents of . 241

contrast with matrix . 35

display format . 263

functions . 241

indexes, invalid assignment to 168

invalid assignment to indexes 168

literal representation . 32

obtaining size of. 241

passed by reference . 192

setting value of an attribute 31

sorting . 242

specify size in a declaration 100

asin function . 232

assigning
to specific particles . 165

to vector components . 168

values to variables and attributes 28

assignment
contrast with initialization 105

convenience operators . 29

operator. 14
MEL and Expressions

297

Index
assignments
chaining. 29

combining with declaration 28

atan function . 232

atan2 function . 233

atan2d function. 233

atand function. 233

Attribute Name attribute . 172

attributeExists statement. 53

attributes
add dynamic. 143

assigning values to . 28

changing order in Channel Box 267

connecting to symbolic placeholders 205

custom data types . 59

custom, in expressions 194

data types . 58

deleting from expressions 202

disconnecting from expressions 202

display disconnected. 203

displaying contents of . 198

displaying disconnected 203

eliminating expression control of 198

FAQs . 267

filtering in Expression Editor. 86

getting recently added into the Channel Box 267

in animation . 71

initial state. 145

linking . 71

multi-value, setting . 61

names. 57

not selecting for particle shape node 74

particle shape node . 143

per object. 144

per particle . 144

reading in expressions 203

removing from expressions 202

renaming with short or long names 207

setting . 59

testing for particles (sample MEL script) 283

unexpected values . 208

using name to search for expressions 76

when expressions don’t apply 74

working with . 57

automatic type conversion 189

B
background processes (non-Windows only) 93

backquotes
for return values . 39

use of . 271

base number raised to exponent 222

batch render, setting . 276

bell curve function . 243

Better Illumination. 172

birthPosition . 172

birthTime. 172

blocks
about . 42

and variable scope . 42

Boolean
data type . 58

values . 46

brackets
double angle . 168

break statement . 52

button
create on shelf for a script 21

C
C language

escape characters . 263

Cache Data . 172

calling stack . 99

case statement. 47

Casts Shadows . 172

catch statement . 98

ceil function . 217

centimeters (internal calculations) 101

Centroid. 171

centroidX, Y, Z . 173

Channel Box
adding recent attributes 267

changing order of attributes 267

for finding out attribute names 57

child, UI, creating. 119

choice command . 202
MEL and Expressions

298

Index
circular motion of NURBS sphere 194

clamp function . 218

clear function . 241

about . 33

clearing
an expression . 79

array contents . 241

closestPointOnSurface node, creating. 273

codes
for strings . 26

collections, creating . 119

collision
example of controlling color resulting from . 160

working with particles 159

collisionFriction . 173

collisionResilience . 173

collisionU, V . 173

color
understanding RGB and HSV 240

working with . 158

Color Accum . 173

color articles . 165

Color Blue . 174

Color Green. 174

Color Red . 174

colorEditor . 240

command line
turn on . 19

command templates for ELF commands 122

commands
attaching to UI elements. 125

confirmDialog . 87

deleteUI. 124

env . 268

error . 97

executing with eval function 260

exists . 52, 69

file . 92

fileDialog . 87

flags . 38

fopen . 89

fprint . 89

fread. 89

ftest . 91

fwrite . 89

get help . 22

getAttr . 59

keyboard . 78

pclose. 94

popen. 94

problems when executed in an expression . . 106

promptDialog. 88

reuse with procedures . 65

run . 19

setAttr . 59

syntax . 37

sysFile . 91

system . 93

test validity with exists . 52

tounix (Mac OS) . 94

trace . 98

uiTemplate . 122

view and record . 21

warning . 97

whatIs . 69

commas
to separate list of values 32

comments . 16

about . 43

adding . 214

converting statements to 202

common mistakes . 54

comparison operators . 45

compiling an expression . 194

compound data type . 59
MEL and Expressions

299

Index
concatenating strings. 26

conditions . 46

confining numerical range 218

confirm dialog, ELF support 128

confirmDialog command . 87

connectAttr command. 205

connecting an attribute . 205

Conserve . 174

continue statement. 52

control statements . 14

controls
creating . 112

conversion
functions . 239

of angular units only . 102

of data types . 189

of data types, unexpected. 210

of user selected units . 101

converting
degrees to radians . 103

measurement units . 102

statements to comments 202

cos function . 223

comparison with sin function 224

cosd function. 225

cosine . 223

in degrees . 225

in radians . 223

wave pattern (animating a ball) 224

Count . 174

Create Event . 160

create mode . 38

creating new expressions . 73

creation expressions. 134

dynamics start frame. 136

example assignment to lifespan 148

execution for emitted particles 134

how often execution occurs 134

using values in runtime expressions 154

when to use. 137

cross function . 235

cross product of two vectors 235

curly braces
for blocks. 42

to surround list of values 32

Current Time . 174

curve functions . 251

curve on surface, picking . 272

curve shape nodes . 61

custom attributes
adding to particle shape node 150

assigning to. 150

data types . 59

examples of assignment 152

when to use in expressions 194

cyclical pattern with sin function 227

D
data

export to an open file . 268

data types
automatic conversion . 189

conversion of displayed strings. 263

conversion with arithmetic operators 211

for multiple values . 61

of attributes . 58

summary . 14

unexpected conversions 210

debugging expressions with print function. 262

debugging features . 97

decimals
deleted in data type conversion 211

precision in display . 263

declaration, combining with assignment 28

declaring variables. 27

default object
in Expression Editor . 86

making an object the . 58

deg_to_rad function . 239

degrees
converting to radians 103, 239

deleteUI command . 124
MEL and Expressions

300

Index
deleting
animation expressions . 83

attribute names . 202

expressions . 204

text from expressions . 78

delimiters. 39

Depth Sort . 174

directories
working with . 93

disconnectAttr command . 202

disconnected attributes, display 203

disconnecting an attribute 202

displaying
attribute contents . 198

disconnected attributes 203

text . 262

variable contents . 198

dnoise function . 246

do ... while statement. 50

dot function. 236

double angle brackets . 168

dynamic attributes
add . 143

adding to object . 144

dynamic matrix (not possible) 269

dynamic per object attribute
example assignment to lifespan 149

dynamic per particle attribute
example assignment to lifespanPP 147

dynamics
changing start frame . 136

events, testing (sample MEL script) 287

how often Maya evaluates 135

playback rate (sample MEL script) 291

testing (sample MEL script) 283

Dynamics Weight. 174

dynamicsWeight attribute 158

E
e raised to power . 221

editing
expressions, in text field 78

editors
Expression . 72

ELF commands. 111

else statements . 46

Emission In World . 174

emitted particles
age of . 136

creation expression execution and 134

local space . 174

working with . 159

emitterRatePP . 175

emitters
obtaining UV coordinates 177, 178

Enforce Count From History 175

env command . 268

equal operators. 53

error command. 97

error handling
catch. 98

for common expression 106

procedure not found . 105

showing the calling stack 99

turn on line numbers. 98

error messages
common . 108

errors
comparing floats with the == operator 55

in flow control statements 54

logic . 106

message format of . 107

syntax . 106

eval function . 260

summary . 271

event attribute
description . 175

display of . 160

when collision count increases 162

eventCount attribute . 160

eventTest attribute . 160

examining two or more expressions 79

example scripts. 277
MEL and Expressions

301

Index
executing
MEL commands in expressions. 207

MEL commands with eval function 260

more quickly. 101

nonparticle expressions 194

exists command . 69

summary . 52

exp function . 221

explicit declaration. 101

explicit typing . 26

exponential functions . 221

Expression Editor
interface. 84

starting . 72

use an external text editor from. 79

expressions
about . 40

animation . 71

animation, omitting object name. 58

blocking. 42

common errors . 106

converting units . 102

create and edit with Expression Editor 72

creating new . 73

creation button . 134

custom attributes . 194

default object . 86

deleting . 202

deleting (animation) . 83

difference with MEL syntax. 43

displaying connected attributes only 86

editing in text field . 78

editing with text editor . 79

eliminating control of attributes 198

erasing . 79

examining two or more 79

execution for nonparticle shapes. 194

field’s influence on . 155

finding . 76

finding by item type . 77

finding by name. 75

finding by selected object 76

for particles . 133

input to . 203

names for particle shape node 76

optimize . 101

output from . 204

problems when executing MEL commands . 106

redundant execution 104, 139

reloading . 79

runtime . 138

runtime execution . 135

saving to file . 80

text field . 73

unexpected attribute values. 208

when unusable for attributes 74

Expressions After Dynamics 175

Expressions list, in Expression Editor. 75

external procedures . 67
MEL and Expressions

302

Index
F
fading opacity . 252

fall-through . 48

false/true tests . 45

FAQs . 267

fclose command . 89

fields
influence on expression 155

turning off effect in an expression. 158

file command . 92

file handle
testing properties . 91

fileDialog command . 87

filenames
in commands . 94

files
already opened, export data to 268

commands to work with. 89

enable selection . 87

length. 215

filesystem operations. 91

filetest command . 91

filtering attributes
from Expression Editor . 86

finding expressions . 75

by connected attribute . 76

by script node name . 75

flags
about . 38

float data type . 58

floating numbers
about . 25

precision limits . 191

floating point values, in a matrix. 34

floor function . 218

flow
controlling for a script. 45

fopen command . 89

for statement . 50

force attribute . 175

Forces In World . 175

for-in statement . 51

form layout, creating . 114

fprint command . 89

frame expression . 74

frame layout, creating . 113

fread command . 89

frequency multiplier of sin function 228

frequency of sin function . 228

function
syntax . 38

testing if available . 69

functions
array. 241

conversion . 239

curve . 251

limit . 217

random number . 198, 243

trigonometric . 223

user-defined procedures. 65

vector . 234

fwrite command . 89

G
gauss function

description . 243

to reproduce randomness 198

general commands. 260

getAttr command. 59

global keyword . 66

global procedures
avoiding . 215

defining . 65

global variables
avoiding . 214

listing . 268

Goal Active . 175

Goal Smoothness . 176

Goal Weight . 176

goalOffset . 175

goalPP . 175

goalU, V. 176

gravity field
acceleration’s effect on 157

groups, creating . 118
MEL and Expressions

303

Index
H
half-circle

creating motion with hermite function 259

help
for a MEL command . 22

hermite function . 256

hexadecimal numbers . 25

HSV conversion to RGB . 240

hsv_to_rgb function . 240

hypot function . 234

I
if statements . 46

imperative syntax
about . 37

and return values. 39

implicit type conversion . 27

incandescencePP . 176

increment operations and unexpected values . . . 209

Inherit Factor . 176

initial state attributes
creation expression execution 136

naming convention . 146

saving values for . 143

understanding . 145

initialization
contrast with assignment 105

input
scripting for . 87

to expressions . 203

Input Geometry Space. 176

integers . 25

change to a string. 268

data type . 58

division truncation . 190

maximum size . 191

internal conversion of units 101

Is Dynamic . 176

Is Full . 176

item type
searching for expressions 77

J
jobs

deleting . 130

using . 129

viewing those running 131

joining text in strings . 263

jot text editor. 80

K
keyboard commands . 78

keyframes
eliminating expression to use 198

expressions as alternative to 72

interference with expressions 74

randomizing . 274

keywords
global . 66

L
layouts

creating . 112

Level Of Detail . 177

lifespan
attribute. 176

in expressions. 164

lifespanPP . 176

limit functions . 217

line numbers, turn on . 98

Line Width . 177

linking attributes . 71

linstep function. 252

comparison with smoothstep 255

listAttributes MEL command. 146

literal representation
of a matrix. 34

of arrays . 32

of vectors. 33

local procedures . 66

log base 10 . 221

log function . 221

logic errors . 106
MEL and Expressions

304

Index
logic operators . 45

looping
errors . 54

statements . 14

testing . 54

M
Mac OS, converting scene files. 94

mag function . 236

magnitude of a vector . 236

mass . 177

mass0 . 177

matrix
about . 34

contrast with arrays. 35

dynamic (not possible) 269

setting values . 34

Max Count. 177

max function . 219

measurement units . 101

MEL
attributes . 57

calling from AppleScript 95

command syntax . 37

commands. 19

debugging features . 97

definition. 13

difference in syntax from expressions 43

distinctions from other programming languages
16

existing scripts . 277

FAQs . 267

get command help . 22

scripts . 19

MEL commands
executing with eval function 260

MELisms . 16

menu bar layout, creating . 113

menus, creating . 118

mesh plane, test particle collision boundary (sample
MEL script) . 279

messages, error . 108

min function . 219

mixed data types
using with arithmetic operators 211

modal dialogs, ELF support 128

modes. 38

modulus operator (%) . 167

Motif window, creating . 111

motion
creating jittery . 155

creating smooth, random 155

Multi Count . 177

Multi Radius . 177

multi-value attributes, setting 61

N
naming

attributes . 207

paths . 60

UI elements created with ELF commands . . . 121

natural logarithm . 221

needParentUV . 177

new line characters in print statement 263

nodes
attributes . 57

closestPointOnSurface 273

paths to . 60

shape . 272

with multiple values . 61

noise function . 244

returned values with frame argument 245

returned values with time argument 245

Normal Dir . 178

Notepad text editor . 80

numbers
automatic conversion rules 189

explicit typing . 26

floating point . 25

hexadecimal . 25

implicit typing . 27

integers . 25

numeric render type . 166
MEL and Expressions

305

Index
O
object names

omitting in expressions. 58

path of . 207

objects
get names . 267

linking attributes . 71

rename. 206

objExists statement . 52

offset with sin function . 228

omitting object names in expressions 58

opacity
attribute . 145

fading over time. 252

particle. 178

Opacity button . 144

opacityPP. 178

shape node . 145

operand
about . 40

operators . 14

about . 40

assignment . 29

comparison . 45

logic . 45

precedence . 41

raising a power . 268

return . 66

optimization
of expressions . 101

of scripts . 100

orbit, altering with custom attribute 195

output
from expression . 204

scripting for . 87

oversample level . 135

P
panes

of Script editor . 24

parent
in UI, creating. 119

nodes, naming . 60

parentheses . 271

parentId . 178

parentU, parentV . 178

particle attributes
arrays, assigning to different lengths 154

list of . 171

Particle Collision Events . 160

Particle Render Type . 179

particleId . 178

particles
age of . 137

assigning to specific . 165

collision boundary (sample MEL script) 279

color . 165

emitter (sample MEL script) 281

expressions for . 133

killing individual . 275

moving position with hermite function 256

selecting sets. 274

shape node attributes . 143

testing attributes (sample MEL script) 283

testing collision events (sample MEL script). 287

transform node attributes. 143

using sphrand to create ellipsoid of 248

working with collisions 159

pathnames
in commands . 94

of objects . 207

paths to nodes. 60

pclose command . 94

per object attributes
about . 144

keyframing . 144

naming conventions . 144

scalar option . 152

per particle attributes
about . 144

Array option . 152

assigning to individual particles 164

how to distinguish. 144

list of data types. 59

naming conventions . 144

Perlin noise field . 244

pipe symbol in object naming 208

pipes, system command I/O 94
MEL and Expressions

306

Index
pivot point, getting . 273

playback rate (sample MEL script) 291

point explosion (sample MEL script) 281

Point Size . 179

polygons
counting . 272

popen command . 94

position attribute . 179

assigning with creation expression 143

assigning with runtime expression 142

field’s effect on . 155

working with . 155

position0 . 179

pow function. 222

power, raising . 268

precedence of operators . 41

precision of float display. 263

print function . 262

printing . 29

procedures
about . 65

calling . 67

cannot be found . 105

defining and calling. 15

finding path . 69

global, avoiding . 215

length. 215

tips . 215

projects
change . 268

prompt windows
ELF support . 128

enabling. 88

promptDialog command . 88

Q
quotation marks

for file names . 94

leaving off with imperative syntax 38

R
radians

angle between two vectors. 234

converting to degrees . 239

internal calculations . 101

Radius . 179

Radius0 . 179

Radius1 . 179

radiusPP . 179

rampAcceleration. 179

rampPosition . 179

rampVelocity . 179

rand function
and randomness . 198

description . 246

random numbers
functions . 243

generating . 198

keeping consistent with seed function 199

picking. 29

randomize
keyframes . 274

ranges of variables . 191

redundant expressions . 104

reloading expressions . 79

removing an attribute . 202

rename an object . 206

render type
numeric . 166

rendering
from within a script. 275

return operator . 66

return values. 39

rewinding
a scene, unexpected values 208

effect on creation expressions 134

RGB conversion to HSV . 240

rgb_to_hsv function. 240

rgbPP . 180

rotate function . 237

rotating
point’s position . 237
MEL and Expressions

307

Index
rounding numbers . 218

runtime
executing statements created at. 270

expressions . 138

expressions, contrast with creation expressions .

134

expressions, execution 135

S
saving

attribute values for initial state 143

expressions . 80

Scalar option for per object attributes 152

scene file
manipulating while open 92

scenes
unexpected values when rewinding. 208

sceneTimeStepSize . 180

Script Editor
error display . 107

interface. 22

introduction . 19

script files
about . 20

script nodes . 185

scriptJobs, using . 129

scripts
bullet-proofing . 215

changing user locations with MEL 193

controlling the flow . 45

create and run . 19

example . 277

FAQs . 267

files in Maya . 277

length. 215

make a shelf button for . 21

optimize . 100

pause for input . 87

stopping . 271

storing in scene files . 185

tips . 215

searching for animation expressions
by name . 75

searching for expressions
by item type . 77

by selected object . 76

seconds (internal calculations) 101

seed
about . 249

attribute description . 180

Selected Only . 180

Selection list, Expression Editor. 85

semicolon
to end MEL statements . 39

to separate rows. 34

Set Editor
getting . 267

Set for All Dynamic . 145

setAttr command . 59

sets
exporting. 274

shaded spheres
how rendered in examples. 139

shaders, stripping from an object 276

shading groups
listing connected objects 275

shape node
getting name of . 272

shelf button
create for a script . 21

sign function . 220

signals
error . 97

trace . 98

warning . 97

sin function . 225

equation for various uses of. 229

sind function . 230

sine . 225

in degrees . 230

in radians . 225

size function
about . 32

description . 241

Smooth Shade All . 139

smoothly increasing opacity 253
MEL and Expressions

308

Index
smoothstep function . 255

comparison with linstep 255

specific particles
assigning to. 165

speeding expression execution 101

spheres
how shaded in examples 139

sphrand function . 247

Sprite Num . 180

Sprite Scale X, Y . 180

Sprite Twist . 180

spriteNumPP . 180

spriteScaleXPP, YPP . 180

spriteTwistPP . 180

sqrt function . 222

square root . 222

S-shaped cycle
sin function and . 227

S-shaped motion
creating with hermite function 258

stack trace
show . 23

window . 99

standard deviation
with Gaussian values . 243

Start Frame . 181

starting the Expression Editor 72

statements
? . 47

about . 41

attributeExists . 53

break . 52

case. 47

catch. 98

common mistakes . 54

continue . 52

differences from other languages 16

do ... while . 50

executing if created at runtime 270

for. 50

for-in . 51

if ... else . 46

objExists . 52

switch . 47

while . 49

string data type . 58

strings
about . 25

codes . 26

concatenating . 26

converting numbers to . 27

data type conversion . 263

inputting . 88

joining . 263

subroutines
see procedures . 65

Suppress Command Results 23

Suppress Error Messages . 23

Suppress Info Messages . 23

Suppress Warning Messages 23

Surface Shading . 181

surface shape nodes. 61

switch statement . 47

symbolic placeholders. 203, 204

syntax
command . 37

difference between MEL and expressions 43

distinctions of MEL . 16

errors . 106

function . 38

imperative. 37

sysFile command . 91
MEL and Expressions

309

Index
system command . 93

system command pipes, I/O 94

system events, using . 129

system function . 264

T
tab layout, creating . 113

Tail Fade . 181

Tail Size . 181

tan function . 230

tand function. 231

tangent . 230, 231

Target Geometry Space . 181

templates for ELF commands. 122

testing file existence . 91

text editor
changing operation settings 82

selecting. 80

selecting default startup 83

use from Expression Editor 79

using on expression. 79

using unlisted. 81

TextEdit text editor . 80

Threshold . 181

time
changing . 135

time expression. 74

timeline, setting position. 273

timesteps . 141

timeStepSize . 182

Total Event Count . 182

tounix Mac OS command . 94

trace command . 98

Trace Depth. 182

traceDepthPP . 182

Transform nodes . 61

transform nodes
not used for particle expressions. 138

trigonometric functions. 223

troubleshooting tips. 105

true/false tests . 45

trunc function . 220

truncating
insignificant numbers . 263

with trunc function . 220

typing
automatic conversion . 189

explicit . 26

implicit . 27

of attributes . 58

U
UI elements

attaching commands . 125

deleting . 124

modifying with ELF commands 111

naming . 121

uiTemplate command . 122

unit function . 238

unit vector . 238

units
internal conversion of . 101

return to default. 102

unshaded objects, finding (sample MEL script) . 293

Use Lighting . 182

user interaction, scripting for 87

user-defined functions . 65

userScalarPP . 182

userVectorPP . 183

UV values on polygons, setting 272

V
variable length argument lists, simulating 269

variable names . 14
MEL and Expressions

310

Index
variables
about . 27

assigning values to . 28

combining declaration and assignment 28

declaring . 27

displaying contents . 198

global vs. local . 68

global, avoiding . 214

in scripts . 214

limiting scope with blocks 42

listing those declared . 268

naming . 214

ranges . 191

unexpected values from data type conversion . .

210

vectors
about . 33

array data type . 58

assigning to component of array attribute. . . 169

assigning to variable . 168

component operator . 169

dot product . 236

format in print function output 263

formula for magnitude 236

functions . 234

magnitude of 2D . 234

random vectors with sphrand 247

setting values . 33

velocity attribute
assigning with creation expression 137

assigning with runtime expression 138

description . 183

field’s effect on . 155

working with . 155

velocity0 . 183

vertical bar character . 60

vi text editor . 80

vim text editor . 80

Visible In Reflections . 183

Visible In Refractions . 183

W
warning command. 97

whatIs command . 69

while statement . 49

white space . 213

delimiters . 39

wildcards. 62

windows controls, creating 112

windows, creating with ELF commands 111

WINEDITOR setting . 82

World Centroid . 171

World Centroid X, Y, Z . 183

World Position . 183

World Velocity . 183

World Velocity In Object Space 183

worldBirthPosition . 183

X
xemacs text editor . 80
MEL and Expressions

311

Index
MEL and Expressions

312

	Table of contents
	1 Background
	MEL and Expressio ns
	About MEL
	MEL
	The MEL and expressions book
	MEL for programmers
	Quick overview
	Comments
	MELisms

	2 Running MEL
	Using MEL in Maya
	Run MEL commands
	Run a single MEL command
	Create and run a MEL script
	Script files

	See or record the MEL commands associated with actions
	Make a shelf button for a script
	Get help on a MEL command

	MEL windows and editors
	Script editor
	Menus
	Panes

	3 Values and variables
	Values and variables
	Integer and floating point numbers
	Integers
	Floating point numbers
	Non-decimal numbers

	Strings
	Concatenating strings

	Explicit and implicit typing
	Explicit typing
	Implicit type conversion

	Variables
	Declare variables before using them

	Assigning values to variables and attributes
	Combining declaration and assignment
	Chaining assignments
	Convenience assignment operators

	Printing values
	Picking a random number

	4 Arrays, vectors, and matrices
	Arrays, vectors, and matrices
	Arrays
	Getting and setting the value of an array element
	Literal representation
	Arrays are only one dimensional

	Get and change the size of an array
	Clear an array

	Vectors
	Literal representation
	Getting and setting vector values

	Matrices
	Literal representation
	Getting and setting matrix values

	5 Syntax
	Syntax
	Command syntax
	Imperative syntax
	Function syntax
	Flags
	Create, edit, and query modes
	Using return values: function syntax and backquotes

	Delimiters and white space
	Very important note

	Expressions, operators and statements
	Expressions
	Operators
	Statements

	Operator precedence
	Blocks
	Very important note
	Variable scope in blocks

	Comments
	Differences between expression and MEL syntax
	Direct access to object attributes
	time and frame variables
	Comments

	6 Controlling the flow of a script
	Controlling the flow of a script
	Testing and comparing values
	Comparison operators
	Logic operators

	Boolean values
	if...else if...else
	?: operator
	Readability

	switch...case
	Beware of falling

	while
	do...while
	for
	for-in
	break
	continue
	Testing the existence of commands, objects, and attributes
	Commands and scripts: exists
	objects: objExists
	attributes on nodes: attributeExists

	The difference between = and ==
	Common problems
	Modifying variable values in test conditions
	Comparing floating point values to 0 with ==

	7 Attributes
	Working with attributes
	Attributes
	Attribute names
	Omitting an object name in animation expressions

	Data types of attributes
	Data types of custom attributes

	Getting and setting attributes
	In MEL scripts
	In expressions
	Paths to nodes

	Getting and setting multi-value attributes
	Getting multi-values
	Setting multi-values
	Wildcards

	8 Procedures
	Defining and using procedures
	Procedures
	Defining procedures
	Global procedures
	Return values
	Examples
	Local procedures

	Calling procedures
	Calling external procedures

	Global and local variables
	Testing if a function is available in MEL
	Checking where a procedure comes from

	9 Animation expressions
	Create and edit animation expressions
	Animation expressions
	Example
	Example

	Creating animation expressions
	Each attribute can only have one driver
	time and frame keywords
	Find an animation expression you created previously
	Find an expression by name
	Find an expression by selected object
	Find an expression by item type

	Edit text in an animation expression
	Use keyboard commands
	Clear the entire expression text field
	Undoing back to an expression’s previous contents

	Edit an animation expression with a text editor
	Select a text editor (Mac OS X)
	Select a text editor (Windows)
	Select a text editor (IRIX, Linux)
	Start an editor listed in the menu
	Use an editor not listed in the Editor menu (IRIX, Linux)
	Change an editor’s operation settings (IRIX, Linux)
	Select an editor for default startup (IRIX, Linux)

	Delete an animation expression

	MEL windows and editors
	Expression editor
	Menus
	Creating Expression
	Selection lists
	Expressions list
	Hide the Selection list
	Filter attributes from the Selection list

	10 I/O and interaction
	I/O and interaction
	User interaction
	Asking a question with confirmDialog
	Letting the user choose a file with fileDialog
	Getting a string with promptDialog

	Reading and writing files
	Opening a file
	Reading from a file
	Testing for the end of the file
	Writing to a file
	Managing an open file
	Closing an open file

	Testing file existence, permissions, and other properties
	Manipulating files
	Manipulating the open scene file

	Working with directories
	Executing system commands
	Background processes (non-Windows only)
	Filenames
	Line ends

	Reading from and writing to system command pipes
	Calling MEL from AppleScript and vice-versa

	11 Debugging, optimizing, and troubleshooting
	MEL debugging features
	Signaling with error, warning, and trace
	error
	warning
	trace

	Handling errors with catch and catchQuiet
	Showing error line numbers
	Showing the calling stack when an error occurs

	Optimizing script and expression speed
	Optimize scripts
	Specify the size of an array in a declaration whenever it’s known
	Using explicit declaration will produce faster executables

	Optimize expressions
	Reduce redundant expression execution

	Troubleshooting
	Accessing global variables
	Initialization is different from assignment
	Error: line <<XX>>: Cannot find procedure “<<proc name>>”?

	Common expression errors
	Executing MEL commands in an expression can have unintended side effects
	Error message format
	Common error messages

	12 Creating Interfaces
	Creating user interfaces
	ELF commands
	Windows
	Controls
	Layouts
	Frame layout
	Tab layout
	Menu bar layout
	Form layout

	Groups
	Menus
	Collections
	Parents and children
	Default parents

	Naming
	UI command templates
	Deleting UI elements
	Attaching commands to UI elements
	A simple window
	Modal dialogs
	Using system events and scriptJobs
	Seeing your jobs run

	13 Particle expressions
	Particle expressions
	Particle expressions
	Creation expression execution
	Runtime expression execution
	Set the dynamics start frame
	Set attributes for initial state usage
	Write creation expressions
	Write runtime expressions
	Work with particle attributes
	Add dynamic attributes
	Understand per particle and per object attributes
	Understand initial state attributes
	Example of assigning to a dynamic per particle attribute
	Example of assigning to a dynamic per object attribute

	Assign to a custom attribute
	Assign to a particle array attribute of different length
	Use creation expression values in a runtime expression
	Work with position, velocity, and acceleration
	Work with color
	Work with emitted particles
	Example

	Work with collisions
	Work with lifespan
	Work with specific particles
	Assign to vectors and vector arrays
	Assign to a vector variable
	Use the vector component operator with variables
	Assign to a vector array attribute component
	List of particle attributes

	14 Script nodes
	Script nodes
	Script nodes
	Create or edit a script node
	Events
	Internals

	Prevent script nodes from executing when you open a file

	15 Advanced
	Advanced programming topics
	Automatic type conversion
	Limits
	Local array collection
	Array arguments are passed by reference
	Changing the user script locations with MEL

	Advanced animation expressions topics
	How often an expression executes
	Use custom attributes in expressions
	Display attribute and variable contents
	Reproduce randomness
	Remove an attribute from an expression
	Disconnect an attribute
	Display disconnected attributes in expressions
	Connect an attribute to a symbolic placeholder

	Rename an object
	Executing MEL commands in an expression
	Understand path names
	Unexpected attribute values
	Values after rewinding
	Increment operations

	Data type conversions
	Assign to a floating point attribute or variable
	Assign to an integer attribute or variable
	Assign to a vector attribute or variable
	Use mixed data types with arithmetic operators

	16 Style
	Good MEL style
	Style
	Using white space
	Adding comments
	Naming variables
	Use descriptive variable names
	Avoid global variables

	Procedures and scripts
	Avoid global procedures
	Limit procedures and command scripts to 50 lines
	Limit files to 500 lines

	Bullet-proof scripting

	17 Useful functions
	Useful functions
	Limit functions
	abs
	ceil
	floor
	clamp
	min
	max
	sign
	trunc

	Exponential functions
	exp
	log
	log10
	pow
	sqrt

	Trigonometric functions
	cos
	cosd
	sin
	sind
	tan
	tand
	acos
	acosd
	asin
	asind
	atan
	atand
	atan2
	atan2d
	hypot

	Vector functions
	angle
	cross
	dot
	mag
	rot
	unit

	Conversion functions
	deg_to_rad
	rad_to_deg
	hsv_to_rgb
	rgb_to_hsv

	Array functions
	clear
	size
	sort

	Random number functions
	gauss
	noise
	dnoise
	rand
	sphrand
	seed

	Curve functions
	linstep
	smoothstep
	hermite

	General commands
	eval
	print
	system

	18 FAQ
	FAQ
	Tasks
	How can I get the names of selected objects?
	What is the command for getting the Set Editor?
	Why are the extra attributes I added not in the Channel Box?
	How can I change the order of extra attributes in the Channel Box?
	How do I change projects with MEL?

	How can I export selected data to an already opened file?

	Scripting and syntax
	What is the operator for raising to a power?
	How can I find out what variables have been declared?
	How do I list all global variables?
	How can I change an integer to a string?
	Can I specify a dynamic matrix?
	How do I simulate variable length argument lists?

	How do I execute a statement created at runtime?
	What is the difference between eval, backquotes, and ()?
	eval
	backquotes
	()

	How can I stop a MEL script that is running?

	Modeling
	How can I count polygons?
	How can I get the name of a (selected) shape node?
	Commands to pick curve on surface
	How do I get and set specific UV values on a polygon?
	How can I create a closestPointOnSurface node?
	How can I get an object’s pivot point in world space?

	Animation, dynamics, and rendering
	How do I get or set the position along the timeline using MEL?
	How to randomize keyframes?
	How do I export sets from a Maya file?
	How can I select a set of particles?
	How do I kill individual particles?
	How can I make a list of what objects are connected to what shading groups?
	How can I render from within a script?
	How do I set the batch render directory in MEL?
	What is the command to strip shaders from an object?

	19 Example scripts
	Example scripts
	Learning from Maya’s own script files
	Read animation values from a text file
	Particle Collision Boundary
	dynFuncBoundary.mel

	Point Explosion
	dynFuncExplosion.mel

	Testing Added Particle Attributes
	dynTestAddAttr.mel

	Testing Dynamics Events
	dynTestEvent.mel

	Dynamics Time Playback
	dynTimePlayback.mel

	Finding Unshaded Objects
	findUnshadedObjects.mel

	Index

