iff: “iff” is an abbreviation for “if and only if”.

Geometric Series: The geometric series \(a + ar + ar^2 + \cdots + ar^{n-1} + \cdots \) will converge if and only if \(|r| < 1\). If \(|r| < 1\), then the sum of the series will be \(\frac{a}{1 - r} \). In other words, \(a + ar + ar^2 + \cdots + ar^{n-1} + \cdots = \frac{a}{1 - r} \) if \(|r| < 1\) and diverges otherwise.

Term Test for Divergence: If \(\lim_{n \to \infty} a_n \neq 0 \) then \(\sum_{n=1}^{\infty} a_n \) diverges. If \(\lim_{n \to \infty} a_n = 0 \), then \(\sum_{n=1}^{\infty} a_n \) has a chance to converge, but further testing is needed to decide whether it does or not.

Harmonic Series: \(\sum_{n=1}^{\infty} \frac{1}{n} = +\infty \) so the harmonic series \(\sum_{n=1}^{\infty} \frac{1}{n} \) diverges.

Problem 9, §8.2, p580. Let \(a_n = \frac{2n}{3n+1} \).

(a) Determine whether the sequence \(\{a_n\} \) is convergent.

(b) Determine whether the series \(\sum_{n=1}^{\infty} a_n \) is convergent.

Solution.

(a) Since \(\lim_{n \to \infty} a_n = \lim_{n \to \infty} \frac{2n}{3n+1} = \lim_{n \to \infty} \frac{2}{3 + \frac{1}{n}} = \frac{2}{3} \), the sequence \(\{a_n\} \) converges (to 3).

(b) From part (a), we know \(\lim_{n \to \infty} a_n = 3 \neq 0 \). According to the Term Test, the series \(\sum_{n=1}^{\infty} a_n \) diverges. (We can also say \(\sum_{n=1}^{\infty} a_n = +\infty \) in this case.)

Determine whether the series converges or diverges. If it converges, find its sum.

Problem 13, §8.2, p580. \(\sum_{n=1}^{\infty} 5 \left(\frac{2}{3} \right)^{n-1} \)

Solution. The given series \(\sum_{n=1}^{\infty} 5 \left(\frac{2}{3} \right)^{n-1} = 5 + 5 \cdot \frac{2}{3} + 5 \cdot \frac{2^2}{3^2} + 5 \cdot \frac{2^3}{3^3} + \cdots \)

is geometric, with initial term \(a = 5 \) and common ratio \(r = \frac{2}{3} \). Since \(|r| = \frac{2}{3} < 1\), the series
converges. For the sum, we have
\[\sum_{n=1}^{\infty} 5 \left(\frac{2}{3} \right)^{n-1} = \frac{5}{1 - \frac{2}{3}} = 15 \]

Problem 17, §8.2, p580. \[\sum_{n=1}^{\infty} \frac{n}{n + 5} \]

Solution. Since \(\lim_{n \to \infty} \frac{n}{n + 5} = \lim_{n \to \infty} \frac{1}{1 + \frac{5}{n}} = 1 \neq 0 \), the Term Test shows that the given series \(\sum_{n=1}^{\infty} \frac{n}{n + 5} \) diverges. In fact, \(\sum_{n=1}^{\infty} \frac{n}{n + 5} = +\infty \).

Problem 18, §8.2, p580. \[\sum_{n=1}^{\infty} \frac{3}{n} \]

Solution. The given series is a variation on the harmonic series. According to Theorem 8(i) p579, if the given series did converge, then the harmonic series \(\sum_{n=1}^{\infty} \frac{1}{n} = \sum_{n=1}^{\infty} \left(\frac{1}{3} \cdot \frac{3}{n} \right) \) would also converge. We know that the harmonic series diverges, so the given series must also diverge. In fact \(\sum_{n=1}^{\infty} \frac{3}{n} = +\infty \).

Problem 26, §8.2, p580. \[\sum_{n=1}^{\infty} \frac{1}{5 + 2^{-n}} \]

Solution. Since \(\lim_{n \to \infty} \frac{1}{5 + 2^{-n}} = \lim_{n \to \infty} \frac{1}{5 + \frac{1}{2^n}} = \frac{1}{5} \neq 0 \), the Term Test shows that the given series diverges: \(\sum_{n=1}^{\infty} \frac{1}{5 + 2^{-n}} = +\infty \).

Problem 28, §8.2, p580. \[\sum_{n=1}^{\infty} \ln \frac{n}{n + 1} \] (See the hint on the HWK 21 assignment page.)

Solution. The Term Test is of no use here, since \(\lim_{n \to \infty} \ln \frac{n}{n + 1} = \ln 1 = 0 \). Following the hint,
examine the partial sums S_n. We have

$$S_n = \ln \frac{1}{2} + \ln \frac{2}{3} + \ln \frac{3}{4} + \cdots + \ln \frac{n}{n+1} = \ln \frac{1}{n+1}$$

Therefore

$$\lim_{n \to \infty} S_n = \lim_{n \to \infty} \frac{1}{n+1} = -\infty.$$ By definition, then, the given series diverges. In fact

$$\sum_{n=1}^{\infty} \ln \frac{n}{n+1} = -\infty.$$

Problem 35, §8.2, p580. Find the values of x for which the series $\sum_{n=0}^{\infty} \frac{1}{x^n}$ converges. Find the sum of the series for those values of x for which it converges.

Solution. The given series

$$\sum_{n=0}^{\infty} \frac{1}{x^n} = 1 + \frac{1}{x} + \frac{1}{x^2} + \frac{1}{x^3} + \cdots + \frac{1}{x^n} + \cdots$$

is geometric, with initial term $a = 1$ and common ratio $r = \frac{1}{x}$. It therefore converges iff $|r| = \left| \frac{1}{x} \right| < 1$. Since $\left| \frac{1}{x} \right| < 1$ iff $|x| > 1$, the given series converges iff $|x| > 1$. In other words, it converges if $x < -1$, it diverges if $-1 \leq x \leq 1$, and it converges if $x > 1$. When $|x| > 1$, the series sum is

$$\sum_{n=0}^{\infty} \frac{1}{x^n} = \frac{1}{1 - \frac{1}{x}} = \frac{x}{x-1}$$

Problem 40, §8.2, p580. If the nth partial sum of a series $\sum_{n=1}^{\infty} a_n$ is

$$S_n = 3 - n2^{-n} = 3 - \frac{n}{2^n}$$

find a_n and $\sum_{n=1}^{\infty} a_n$.

Solution. In preparation for finding $\lim_{n \to \infty} S_n$, notice that $\lim_{n \to \infty} \frac{x}{2^n} = \lim_{n \to \infty} \frac{1}{2^n \ln x} = 0$, by l'Hôpital’s Rule for the case $\frac{\infty}{\infty}$. Therefore $\lim_{n \to \infty} \frac{n}{2^n} = 0$, as well. This gives

$$\sum_{n=1}^{\infty} a_n = \lim_{n \to \infty} S_n = \lim_{n \to \infty} \left(3 - \frac{n}{2^n} \right) = 3 - 0 = 3$$
For a_1, we have

$$a_1 = S_1 = 3 - \frac{1}{2} = \frac{5}{2}$$

For $n > 1$, we have

$$a_n = S_n - S_{n-1} = 3 - \frac{n}{2^n} - \left(3 - \frac{n-1}{2^{n-1}}\right) = \frac{n-1}{2^{n-1}} - \frac{n}{2^n} = \frac{2(n-1) - n}{2^n} = \frac{n-2}{2^n}$$

Problem 48, §8.2, p580. Suppose that $\sum_{n=1}^{\infty} a_n$ (with $a_n \neq 0$) is known to be a convergent series. Prove that $\sum_{n=1}^{\infty} \frac{1}{a_n}$ is a divergent series. (See the hint on the HWK 21 assignment page.)

Solution. We’ve supposed that $\sum_{n=1}^{\infty} a_n$ converges. According to the Term Test (more precisely, according to Theorem 6 p578, which gives us the Term Test), we must have $\lim_{n \to \infty} a_n = 0$. Therefore $\lim_{n \to \infty} \left| \frac{1}{a_n} \right| = +\infty$ and so $\lim_{n \to \infty} \frac{1}{a_n} \neq 0$. Applying the Term Test, we see that $\sum_{n=1}^{\infty} \frac{1}{a_n}$ must diverge.

Problem 50, §8.2, p580. If $\sum_{n=1}^{\infty} a_n$ and $\sum_{n=1}^{\infty} b_n$ are both divergent, is $\sum_{n=1}^{\infty} (a_n + b_n)$ necessarily divergent? (See the hint on the HWK 21 assignment page.)

Solution. No, it could happen that both of the series $\sum_{n=1}^{\infty} a_n$ and $\sum_{n=1}^{\infty} b_n$ diverge but that the terms somehow cancel each other out enough so that $\sum_{n=1}^{\infty} (a_n + b_n)$ converges. One example would be to have $\sum_{n=1}^{\infty} a_n$ be the harmonic series $\sum_{n=1}^{\infty} \frac{1}{n}$ and to have $\sum_{n=1}^{\infty} b_n$ be the series $\sum_{n=1}^{\infty} \frac{1}{n}$. In this case, $\sum_{n=1}^{\infty} (a_n + b_n)$ would be $0 + 0 + 0 + \cdots + 0 + \cdots$, which obviously converges to 0. Another example would be $\sum_{n=1}^{\infty} a_n = \sum_{n=1}^{\infty} n$ and $\sum_{n=1}^{\infty} b_n = \sum_{n=1}^{\infty} (-n)$. Theorem 8(ii) only tells us that the term-by-term sum of two convergent series is a convergent series. It tells us nothing about the term-by-term sum of two divergent series, which could converge or diverge.