1. (20 points) Find three (3) of the following four (4) integrals.

(a)
$$\int e^x \cos^3(e^x + 2) \sin(e^x + 2) dx$$

(b)
$$\int \frac{x+3}{x^2+2x} dx$$

(c)
$$\int \arctan 2x dx$$

(d)
$$\int e^{2x} \sin x dx.$$

2. (30 points) Find the indicated limit (number, ∞ , $-\infty$), if it exists. If the limit does not exist at all, say so and explain why. Show your reasoning. Calculator values or graphs are not enough.

(a)
$$\lim_{x \to 0} \frac{\sin x - e^x + 1}{\cos x - 1}$$

(b)
$$\lim_{x \to 1^+} \frac{4+x}{x-1}$$

(c)
$$\lim_{x \to 1} (f(x)(x-1)^2)$$
, given that $f(x) = \begin{cases} 4x & \text{if } x > 1\\ 5 & \text{if } x < 1 \end{cases}$

(d)
$$\lim_{x \to 0} (\cos x + 4x)^{\frac{1}{x}}$$

(e) $\lim_{x \to \infty} x \sin(\frac{1}{x})$

3. (15 points) Evaluate the convergent improper integral $\int_0^{+\infty} x e^{-x} dx$.

- 4. (10 points) The improper integral $\int_{-2}^{1} \frac{1}{x^2} dx$ is divergent. Show why.
- 5. (10 points) For the function $f(x) = x^2 + \sin(\pi x)$, find the Taylor polynomial of order 3 with basepoint a = 1.
- 6. (15 points) For the function $f(x) = e^{x-1}$ and the basepoint a = 1 find the Taylor series, including the general term, in two different ways:
 - (a) by using the definition/formula for Taylor series
 - (b) by making an appropriate modification to the known Maclaurin series for e^x