Mathematics 205
HWK 15a Solutions
Section 15.1 p709

Problem 9, §15.1, p709. For the function

$$
f(x, y)=x^{3}+y^{3}-6 y^{2}-3 x+9
$$

find the critical points and classify them as local maxima, local minima, saddle points, or none of these.

Solution. We have

$$
\begin{gathered}
f_{x}(x, y)=3 x^{2}-3=3(x-1)(x+1) \\
f_{y}(x, y)=3 y^{2}-12 y=3 y(y-4) .
\end{gathered}
$$

To find critical points, solve the system

$$
\begin{array}{r}
3(x-1)(x+1)=0 \\
3 y(y-4)=0
\end{array}
$$

From the first equation, we must have $x=1$ or $x=-1$. From the second equation, we must have $y=0$ or $y=4$. Thus there are four critical points, namely $(1,0),(1,4),(-1,0)$, and $(-1,4)$.

The matrix of second partial derivatives is

$$
\left[\begin{array}{ll}
f_{x x} & f_{x y} \\
f_{y x} & f_{y y}
\end{array}\right]=\left[\begin{array}{cc}
6 x & 0 \\
0 & 6 y-12
\end{array}\right]
$$

Testing (1,0). We have

$$
D=\operatorname{det}\left[\begin{array}{cc}
6 x & 0 \\
0 & 6 y-12
\end{array}\right]_{x=1, y=0}=\operatorname{det}\left[\begin{array}{cc}
6 & 0 \\
0 & -12
\end{array}\right]=-72<0
$$

so $(1,0)$ gives a saddle point. The z-value at the saddle point is $f(1,0)=7$.
Testing (1,4). We have

$$
D=\operatorname{det}\left[\begin{array}{cc}
6 x & 0 \\
0 & 6 y-12
\end{array}\right]_{x=1, y=4}=\operatorname{det}\left[\begin{array}{cc}
6 & 0 \\
0 & 12
\end{array}\right]=72>0
$$

and

$$
f_{x x}(1,4)=6>0
$$

so $(1,4)$ gives a local minimum. The local minimum value is $f(1,4)=-25$.
Testing ($-1,0$). We have

$$
D=\operatorname{det}\left[\begin{array}{cc}
6 x & 0 \\
0 & 6 y-12
\end{array}\right]_{x=-1, y=0}=\operatorname{det}\left[\begin{array}{cc}
-6 & 0 \\
0 & -12
\end{array}\right]=72>0
$$

Math 205 HWK 15a Solns continued

§15.1 p709
and

$$
f_{x x}(-1,0)=-6<0
$$

so $(-1,0)$ gives a local maximum. The local maximum value is $f(-1,0)=11$.
Testing ($-1,4$). This time

$$
D=\operatorname{det}\left[\begin{array}{cc}
6 x & 0 \\
0 & 6 y-12
\end{array}\right]_{x=-1, y=4}=\operatorname{det}\left[\begin{array}{cc}
-6 & 0 \\
0 & 12
\end{array}\right]=-72<0
$$

so $(-1,4)$ gives a saddle point. The z-value at the saddle point is $f(-1,4)=-23$.
In summary, we have a local maximum of 11 at $(-1,0)$, a local minimum of -25 at $(1,4)$, and saddle points at $(x, y, z)=(1,0,7)$ and $(x, y, z)=(-1,4,-23)$.

Problem 13, §15.1, p709. For the function

$$
f(x, y)=8 x y-\frac{1}{4}(x+y)^{4}
$$

find the critical points and classify them as local maxima, local minima, saddle points, or none of these.

Solution. The partial derivatives are

$$
\begin{aligned}
& f_{x}(x, y)=8 y-\frac{1}{4} 4(x+y)^{3} \cdot 1=8 y-(x+y)^{3} \\
& f_{y}(x, y)=8 x-\frac{1}{4} 4(x+y)^{3} \cdot 1=8 x-(x+y)^{3} .
\end{aligned}
$$

To find the critical points, solve the system

$$
\begin{aligned}
& 8 y-(x+y)^{3}=0 \\
& 8 x-(x+y)^{3}=0
\end{aligned}
$$

Subtracting the second equation from the first gives $8 y-8 x=0$ or $y=x$. Putting $y=x$ into the first equation gives $8 x-8 x^{3}=0$ or $8 x(1-x)(1+x)=0$. Thus we must have $x=0, x=1$, or $x=-1$ with $y=x$. The critical points are therefore $(0,0),(1,1)$, and $(-1,-1)$.

The matrix of second partials is

$$
\left[\begin{array}{ll}
f_{x x} & f_{x y} \\
f_{y x} & f_{y y}
\end{array}\right]=\left[\begin{array}{cc}
-3(x+y)^{2} & 8-3(x+y)^{2} \\
8-3(x+y)^{2} & -3(x+y)^{2}
\end{array}\right]
$$

Testing (0,0). We have

$$
D=\operatorname{det}\left[\begin{array}{cc}
-3(x+y)^{2} & 8-3(x+y)^{2} \\
8-3(x+y)^{2} & -3(x+y)^{2}
\end{array}\right]_{x=0, y=0}=\operatorname{det}\left[\begin{array}{ll}
0 & 8 \\
8 & 0
\end{array}\right]=-64<0
$$

Math 205 HWK 15a Solns continued
§15.1 p709
so $(0,0)$ gives a saddle point. The corresponding z-value is 0 .
Testing (1,1). We have

$$
D=\operatorname{det}\left[\begin{array}{cc}
-3(x+y)^{2} & 8-3(x+y)^{2} \\
8-3(x+y)^{2} & -3(x+y)^{2}
\end{array}\right]_{x=1, y=1}=\operatorname{det}\left[\begin{array}{cc}
-12 & -4 \\
-4 & -12
\end{array}\right]=144-16>0
$$

and

$$
f_{x x}(1,1)=-12<0
$$

so $(1,1)$ gives a local maximum. The local maximum value is $f(1,1)=4$.
Testing ($-1,-1$). We have

$$
D=\operatorname{det}\left[\begin{array}{cc}
-3(x+y)^{2} & 8-3(x+y)^{2} \\
8-3(x+y)^{2} & -3(x+y)^{2}
\end{array}\right]_{x=-1, y=-1}=\operatorname{det}\left[\begin{array}{cc}
-12 & -4 \\
-12 & --4
\end{array}\right]>0
$$

and

$$
f_{x x}(-1,-1)=-12<0
$$

Here, too, there is a local maximum value of 4 . This might also have been predicted by the symmetry in the function, since $f(-x,-y)=f(x, y)$.

Problem 20, $\S 15.1, \mathbf{p 7 0 9}$. Suppose $f(x, y)=A-\left(x^{2}+B x+y^{2}+C y\right)$. What values of A, B, and C give $f(x, y)$ a local maximum value of 15 at the point $(-2,1)$?

Solution. From the given information, we can conclude that $f(-2,1)=15, f_{x}(-2,1)=0$ and $f_{y}(-2,1)=0$. Since $f(x, y)=A-\left(x^{2}+B x+y^{2}+C y\right), f_{x}(x, y)=-2 x-B$, and $f_{y}(x, y)=-2 y-C$, these three pieces of information can be translated into the equations

$$
\begin{gathered}
A-(4-2 B+1+C)=15 \\
4-B=0 \\
-2-C=0
\end{gathered}
$$

The last two equations tell us $B=4$ and $C=-2$. Putting these values into the first equation and solving for A, we find $A-(-5)=15$ or $A=10$.

So far we know that the only possible values for A, B, and C are $A=10, B=4$, and $C=-2$. We don't know for sure, however, that these values actually work, since we've only arranged that $(-2,1)$ be a critical point yielding the right z-value. We need to check that the function $f(x, y)=10-\left(x^{2}+4 x+y^{2}-2 y\right)$ does have a local maximum at $(-2,1)$. We have $D(x, y)=4$ and $f_{x x}(x, y)=-2$, so the second-derivative test assures us that the critical point $(-2,1)$ does yield a local maximum. Thus the values we seek are $A=10, B=4, C=-2$.

Note: If you prefer, you could confirm the local maximum by completing the square and using the

Math 205 HWK 15a Solns continued
§15.1 p709
resulting formula: $f(x, y)=15-(x+2)^{2}-(y-1)^{2}$. This function does have a maximum value of 15 at $(-2,1)$.

Problem 21, $\S 15.1, \mathbf{p 7 0 9}$. At the point (1,3), suppose that $f_{x}=f_{y}=0$ and $f_{x x}>0, f_{y y}>$ $0, f_{x y}=0$.
(a) What can you conclude about the behavior of the function near the point $(1,3)$?
(b) Sketch a possible contour diagram.

Solution. (a) The information from the first partial derivatives tells us that the point $(1,3)$ is a critical point for f. From the information about the second partials we find that $D(1,3)=$ $f_{x x}(1,3) f_{y y}(1,3)-\left[f_{x y}(1,3)\right]^{2}>0$ with $f_{x x}(1,3)>0$. The second-derivative test therefore tells us that f has a local minimum value at $(1,3)$.
(b) There are lots of possibilities. Here's one simple one. The levels, reading from outside in, should be decreasing. For instance, they might be $7,6,5,4,3,2,1$. [If we knew $f_{x x}>0$ everywhere and $f_{y y}>0$ everywhere, then the outer contours should be closer together than the inner ones, but we don't have that stronger information.]

