
Mathematics 205
HWK 15b Solutions

Section 15.2 p716

Problem 3, §15.2, p716. Does the function f(x, y) = −2x2 − 7y2 have global maxima and
minima? Explain.

Solution. The surface z = −2x2 − 7y2 is a paraboloid that opens downward. It has a global
maximum at (0, 0) and no local or global minima.

Or one could argue that the level curves are ellipses that surround the origin, with the z-levels
getting lower as the ellipses get bigger. This confirms the global maximum at (0, 0).

Yet another line of reasoning would be that f(0, 0) = 0 while f(x, y) < 0 for every (x, y) except
(0, 0). As before, conclude there’s a global maximum at (0, 0). Then to show there’s no global
minimum, note, for instance, that f(x, 0) −→ −∞ as x −→ ±∞. Note that this reasoning alone
wouldn’t preclude the possibility of other maxima or of local minima.

Problem 5, §15.2, p716. Find the global maximum and minimum of the function z = x2 + y2

on the square −1 ≤ x ≤ 1, −1 ≤ y ≤ 1, and say whether it occurs on the boundary of the square.
[Hint: Use graphs.]

Solution. The contours for z = x2 + y2 are circles centered at the origin, with larger circles
corresponding to higher z-values. Draw yourself a picture.

To identify the global maximum we’ll look for the points on the square that are farthest from
the origin and therefore lie on the largest possible contour circle. Thus for (x, y) restricted to the
specified square, the highest z-value will occur on the contour circle that goes through the four
corners of the square. This is the contour x2 + y2 = 12 + 12 = 2. So the specified global maximum
value is z = 2, occurring at all four of the points (1, 1), (1,−1), (−1,−1), and (−1, 1).

For (x, y) restricted to the specified square, the lowest z-value will occur at the origin, which is the
center of the concentric contour circles. The global minimum value is z = 0.

One could also argue from the graph of the surface, but that reasoning is more complicated to
describe.

Problem 24, §15.2, p716. An international airline has a regulation that each passenger can
carry a suitcase having the sum of its width, length and height less than or equal to 135 cm.
Find the dimensions of the suitcase of maximum volume that a passenger may carry under this
regulation.

Solution. Denote the width, length, and height by W, L, and H, respectively (with each
measured in centimeters). We may as well assume that W + L + H = 135. Otherwise one could
increase one or more of the dimensions and get a larger volume. We with to maximize the volume
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V = LWH. Using the condition W + L + H = 135, we can reformulate the problem as: find the
values for W > 0 and H > 0 that will maximize V = HW (135−W−H) = 135HW−HW 2−H2W .
Since

∂V

∂W
= 135H − 2HW − H2

and
∂V

∂H
= 135W − W 2 − 2HW

we find critical points by solving the system

135H − 2HW − H2 = 0

135W − W 2 − 2HW = 0

Subtracting the second equation from the first we find

135H − H2 − 135W + W 2 = 0

which can be factored as
(H − W )(135 − H − W ) = 0

This gives us H = W or H + W = 135. We cannot have H + W = 135, lest L = 0 and we have
zero volume. So we must have H = W . Putting H = W into the equation

135H − 2HW − H2 = 0

we find
135H − 2H2 − H2 = 0

or
H(135 − 3H) = 0.

Since H cannot be 0, we have 3H = 135, so H = 45. Then W = H gives W = 45. Finally,
L + W + H = 135, with H = W = 45 gives L = 45. The three dimensions of the suitcase should
each be 45 centimeters. [Of course, no one actually makes suitcases with all three dimensions equal.
If you’ve ever tried to carry a wide suitcase by the handle you know why.]

If we wanted to confirm that these dimensions give a local maximum, we could use the second-
derivative test. However, since this function is not a quadratic, having a single local maximum
won’t necessarily guarantee a global maximum. So some other reasoning will be needed to confirm
that we have a global maximum. In practice one might argue from the physical considerations in
the problem.
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To rigorously confirm, however, that we have a global maximum we could argue as follows. Consider
the set of points (H, W ) where H ≥ 0, W ≥ 0 and H + W ≤ 135. This triangular region, T , say
is a closed, bounded set that includes all of the points (H, W ) that are feasible for the suitcase
problem.

The volume function V = HW (135−W −H) is continuous on the triangular region T , so it has a
global maximum value on T . The global maximum can only occur at an interior critical point or
at a boundary point of T . But at each point of the boundary we will have V = 0 (since we’ll have
H = 0 or W = 0 or H + W = 135). Since the volume value at the sole interior critical point is
higher than the volume value at all the boundary points, the global maximum must occur at the
critical point. In other words, using H = W = L = 45 gives a global maximum, not just a local
maximum.

Problem 27, §15.2, p716. Let f(x, y) = x2(y + 1)3 + y2. Show that f has only one critical
point, namely (0, 0), and that point is a local minimum but not a global minimum. Contrast this
with the case of a function with a single local minimum in one-variable calculus. [Also see the
assignment page for HWK 16.]

Solution. We have
fx(x, y) = 2x(y + 1)3

fy(x, y) = 3x2(y + 1)2 + 2y

For fx = 0 we must have x = 0 or y = −1. However, y = −1 would make fy �= 0. Therefore we
must have x = 0. Using x = 0 in fy = 0 tells us that y = 0, as well. So the only critical point is,
in fact, (0, 0).

The matrix of second partials is [
2(y + 1)3 6x(y + 1)2

6x(y + 1)2 6x2(y + 1) + 2

]
.
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This gives

D = det
[

2(y + 1)3 6x(y + 1)2

6x(y + 1)2 6x2(y + 1) + 2

]
x=0,y=0

= det
[

2 0
0 2

]
= 4 > 0

and
fxx(0, 0) = 2 > 0.

According to the second-derivative test, (0, 0) gives a local minimum for f .

We can show that (0, 0) does not give a global minimum by showing that there is no global
minimum. Note that f(0, 0) = 0. Note that (y + 1)3 dominates y2 in absolute value when |y| is
large and that (y +1)3 < 0 when y is negative with |y| large. Consider the section g(y) = f(1, y) =
(y + 1)3 + y2. As y −→ −∞, we will have g(y) −→ −∞. Thus f(1, y) takes on arbitrarily large
negative values, so f(x, y) does as well. This shows that f cannot have a global minimum value.
For if it did, then f(x, y) could not go below that value, yet f(x, y) goes below every possible value.

The function in this problem has a single critical point, which yields a local minimum, yet it does
not have a global minimum. If this were a function of one variable only, such a situation would
not be possible. For functions of one variable, a single critical point yielding a local minimum
automatically yields a global minimum. Intuitively, to avoid having a global minimum, the function
would have to change directions at some point and go back down again. This can’t happen without
introducing a second critical point. With the extra dimension there’s more room to maneuver. You
might imagine having, in 3-space, a surface z = f(x, y) with no critical points and extending to
both arbitrarily high z-values and arbitrarily low z-values. Then pretend the surface is made out
of stretchable rubber and poke your finger into it just enough to create a local minimum but no
other critical points. That’s rather what the surface in this problem is like.

Note, however: the algebra of quadratic surfaces assures us that a phenomenon like this can’t hap-
pen for them. For quadratic surfaces with a single local minimum [maximum], the local minimum
[maximum] is a global minimum [maximum].
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