Mathematics 205
HWK 18b Solutions
Section 16.2 p750

Problem 9, $\S 16.2, \mathbf{p 7 5 0}$. For the region R as shown, write $\int_{R} f d A$ as an iterated integral.

Solution. Note that the equation for the line that determines the bottom edge of R is $y=\frac{1}{3}(x-1)$. It will be easier to integrate with respect to y first (and thus shoot vertical arrows to determine the inside limits of integration). Shooting a vertical arrow, as shown, through the region R, we see that the arrow enters the region when $y=\frac{1}{3}(x-1)$ and leaves the region when $y=2$. So the inner integral will be over the vertical interval $\left[\frac{1}{3}(x-1), 2\right]$. For these intervals to sweep out R, we need to have x vary from $x=1$ to $x=4$. Or, putting it differently, the leftmost arrow that actually hits the region would be the arrow for $x=1$. Similarly, the rightmost arrow that hits R would be for $x=4$. Thus the interval of integration for the outer integral will be $[1,4]$. In summary, we have

$$
\int_{R} f d A=\int_{1}^{4} \int_{\frac{1}{3}(x-1)}^{2} f(x, y) d y d x
$$

Note that, as always, the limits of integration only depend on the region R that we are integrating over. They do not depend on the function f that is being integrated.

Math 205 HWK 18b Solns continued

Problem 25, $\S 16.2$, p750. Consider the integral $\int_{0}^{4} \int_{0}^{-(y-4) / 2} g(x, y) d x d y$.
(a) Sketch the region over which the integration is being performed.
(b) Write the integral with the order of the integration reversed.

Solution. (a) The inner integral is with respect to x and x varies from 0 to $-\frac{1}{2}(y-4)$. This tells us that a horizontal arrow through the region hits the region at $x=0$ and leaves at $x=-\frac{1}{2}(y-4)$. So the line $x=0$, i.e. the y-axis, will form the left edge of the region, while the line $x=-\frac{1}{2}(y-4)$, or $2 x=-y+4$, will form the right edge of the region. Sketch this much, notice that the line $2 x=-y+4$ hits the y-axis exactly at $y=4$. So the region will have a topmost point at $y=4$ on the y-axis. Finally, the outer integral tells us that the bottom edge of the region is formed by the x-axis, where $y=0$. Putting the pieces together gives us the sketch (shown with a horizontal arrow):

(b) To reverse the order of integration, we use the sketch of the region but begin by shooting a vertical arrow. We will also need to rewrite the equation of the top side in order to have y as a function of x. Solving $x=-\frac{1}{2}(y-4)$ for y in terms of x we find $y=4-2 x$. Use a new sketch:

Math 205 HWK 18b Solns continued

§16.2 p751

With x fixed, a vertical arrow enters the region where $y=0$ and leaves it where $y=4-2 x$. We need to use vertical arrows for x between 0 and 2 . Thus the reversed iterated integral is

$$
\int_{0}^{2} \int_{0}^{4-2 x} g(x, y) d y d x
$$

