Mathematics 205
HWK 5a Solutions
Section 13.3 p627

Problem 5, §13.3, p627. Given

$$
\begin{gathered}
\vec{a}=2 \vec{j}+\vec{k} \quad \text { or } \quad \vec{a}=(0,2,1) \\
\vec{y}=4 \vec{i}-7 \vec{j} \quad \text { or } \quad \vec{y}=(4,-7,0) \\
\vec{c}=\vec{i}+6 \vec{j} \quad \text { or } \quad \vec{c}=(1,6,0) \\
\vec{z}=\vec{i}-3 \vec{j}-\vec{k} \quad \text { or } \quad \vec{z}=(1,-3,-1)
\end{gathered}
$$

find $(\vec{a} \cdot \vec{y})(\vec{c} \cdot \vec{z})$.

Solution. Since $\vec{a} \cdot \vec{y}=0 \cdot 14+2 \cdot(-7)+1 \cdot 0=-14$ and $\vec{c} \cdot \vec{z}=1-18=-17$ we have

$$
(\vec{a} \cdot \vec{y})(\vec{c} \cdot \vec{z})=(-14)(-17)=238
$$

Problem 6, §13.3, p627. Given \vec{a} and \vec{c} as in problem 5, find $((\vec{c} \cdot \vec{c}) \vec{a}) \cdot \vec{a}$.

Solution. I would probably simplify first. Since $\vec{c} \cdot \vec{c}$ is a scalar, we can rewrite a little:

$$
((\vec{c} \cdot \vec{c}) \vec{a}) \cdot \vec{a}=(\vec{c} \cdot \vec{c})(\vec{a} \cdot \vec{a}) .
$$

Then find $\vec{c} \cdot \vec{c}=37$ and $\vec{a} \cdot \vec{a}=5$, so

$$
((\vec{c} \cdot \vec{c}) \vec{a}) \cdot \vec{a}=(\vec{c} \cdot \vec{c})(\vec{a} \cdot \vec{a})=(37)(5)=185
$$

Alternatively:

$$
((\vec{c} \cdot \vec{c}) \vec{a}) \cdot \vec{a}=(37 \vec{a}) \cdot \vec{a}=37(\vec{a} \cdot \vec{a})=(37)(5)=185 .
$$

Don't go to the effort of computing $37 \vec{a}$ unless you enjoy doing arithmetic.

Problem 7, §13.3, p627. (a) Give a vector that is parallel to, but not equal to, the vector $\vec{v}=4 \vec{i}+3 \vec{j}$. (b) Give a vector that is perpendicular to \vec{v}.

Solution. (a) There are lots of correct answers. For instance, we could use $2 \vec{v}$ (i.e. use $8 \vec{i}+12 \vec{j}$). If you'd rather, use $59 \vec{v}$ or $-\pi \mathrm{e} \vec{v}$. Any scalar multiple $\lambda \vec{v}$ with $\lambda \neq 1$ will do (although $0 \vec{v}$ would be an unusual answer).
(b) Since it's not clear whether \vec{v} is intended to be a 2 -space vector or a 3 -space vector, I'll consider both interpretations.
2-space solution. Look for $\vec{w}=a \vec{i}+b \vec{j}$ satisfying $\vec{v} \cdot \vec{w}=4 a+3 b=0$. There are lots of possibilities. For instance, $\vec{w}=-3 \vec{i}+4 \vec{j}$ would work.
3 -space solution. This is the same idea, only now we want $\vec{w}=a \vec{i}+b \vec{j}+c \vec{k}$ with $4 a+3 b+0=0$.

It doesn't matter what c is, as long as $4 a+3 b=0$. For instance, $w=-3 \vec{i}+4 \vec{j}+5 \vec{k}$ would work, and so would $\vec{w}=-3 \vec{i}+4 \vec{j}$, just to name two possibilities.

Problem 9, $\S 13.3, \mathbf{p 6 2 7}$. Find a normal vector to the plane $z=3 x+4 y-7$.

Solution. From our analysis in class, we know that the plane $a x+b y+c z=d$ has $\vec{n}=$ $a \vec{i}+b \vec{j}+c \vec{k}$ or $\vec{n}=(a, b, c)$ as one possible normal vector. Rewriting $z=3 x+4 y-7$ as $3 x+4 y-z=7$, we can read off one correct answer: $\vec{n}=3 \vec{i}+4 \vec{j}-\vec{k}$ or $\vec{n}=(3,4,-1)$. Other correct answers are possible.

Problem 12, $\S 13.3, \mathbf{p 6 2 7}$. Compute the angle between the vectors $\vec{i}+\vec{j}+\vec{k}$ and $\vec{i}-\vec{j}-\vec{k}$.

Solution. Let $\vec{v}=\vec{i}+\vec{j}+\vec{k}$, let $\vec{w}=\vec{i}-\vec{j}-\vec{k}$, and denote the angle between \vec{v} and \vec{w} by θ. Then we know $\vec{v} \cdot \vec{w}=\|\vec{v}\|\|\vec{w}\| \cos \theta$. In this case, that gives us $\vec{v} \cdot \vec{w}=-1=\sqrt{3} \sqrt{3} \cos \theta$, so $\cos \theta=-\frac{1}{3}$. Therefore $\theta=\cos ^{-1}\left(-\frac{1}{3}\right) \approx 1.91$ radians or $\approx 109.5^{\circ}$.

Problem 13, $\S 13.3$, p627. Which pairs of the vectors $\sqrt{3} \vec{i}+\vec{j}, 3 \vec{i}+\sqrt{3} \vec{j}, \vec{i}-\sqrt{3} \vec{j}$ are parallel and which are perpendicular?

Solution. Writing $\vec{u}=\sqrt{3} \vec{i}+\vec{j}, \vec{v}=3 \vec{i}+\sqrt{3} \vec{j}$, and $\vec{w}=\vec{i}-\sqrt{3} \vec{j}$, we have $\vec{u} \cdot \vec{v}>0$, $\vec{u} \cdot \vec{w}=0$, and $\vec{v} \cdot \vec{w}=0$. This tells us that the pairs \vec{u}, \vec{w} and \vec{v}, \vec{w} are each perpendicular (hence not parallel), but \vec{u} and \vec{v} are not perpendicular to each other. Looking more carefully at \vec{u} and \vec{v}, see that $\vec{v}=\sqrt{3} \vec{u}$, which shows that \vec{u} and \vec{v} are parallel.

Problem 14, $\S 13.3, \mathbf{p 6 2 7}$. For what values of t are $\vec{u}=t \vec{i}-\vec{j}+\vec{k}$ and $\vec{v}=t \vec{i}+t \vec{j}-2 \vec{k}$ perpendicular? Are there values of t for which they are parallel?

Solution. We have $\vec{u} \perp \vec{v} \Longleftrightarrow \vec{u} \cdot \vec{v}=0 \Longleftrightarrow t^{2}-t-2=0 \Longleftrightarrow(t-2)(t+1)=0 \Longleftrightarrow t=2,-1$.
For \vec{u} and \vec{v} to be parallel, we would need to have either $\vec{v}=\lambda \vec{u}$ for some scalar λ or $\vec{u}=\lambda \vec{v}$ for some scalar λ. The first situation would give $(t, t,-2)=(\lambda t,-\lambda, \lambda)$, which works out to be impossibile. Similarly, the second situation would require $(t,-1,1)=(\lambda t, \lambda t,-2 \lambda)$, which is also impossibile. So, no, it is not possible for \vec{u} and \vec{v} to be parallel, no matter how t is chosen.

Math 205 HWK 5a Solns continued

§13.3 p627

Problem 17, $\S 13.3$, p627. Find an equation for the plane that is perpendicular to $5 \vec{i}+\vec{j}-2 \vec{k}$ and passes through the point $(0,1,-1)$.

Solution. We need only use the equation $\vec{n} \cdot\left(\overrightarrow{P_{0} P}\right)=0$ taking $\vec{n}=5 \vec{i}+\vec{j}-2 \vec{k}, P=(x, y, z)$, and $P_{0}=(0,1,-1)$. This gives us the equation

$$
5 x+1(y-1)-2(z-1)=0
$$

or

$$
5 x+y-2 z=3 .
$$

Problem 19, §13.3, p627. Find an equation for the plane that passes through the point $(1,0,-1)$ and is is parallel to the plane $2 x+4 y-3 z=1$.

Solution. Using $\vec{n}=2 \vec{i}+4 \vec{j}-3 \vec{k}$ and $P_{0}=(1,0,-1)$, find the equation

$$
2(x-1)+4 y-3(z+1)=0
$$

or

$$
2 x+4 y-3 z=5
$$

Problem 21, $\S 13.3, \mathbf{p 6 2 7}$. A certain plane has equation $z=5 x-2 y+7$.
(a) Find a value of λ making $\lambda \vec{i}+\vec{j}+(0.5) \vec{k}$ normal to the plane.
(b) Find a value of a so that the point $(a+1, a, a-1)$ lies on the plane.

Solution. (a) Rewrite the equation of the plane as $5 x-2 y-z=-7$. Read off the normal vector $\vec{n}=5 \vec{i}-2 \vec{j}-\vec{k}$. Now we need to choose λ so that \vec{n} and $\lambda \vec{i}+\vec{j}+(0.5) \vec{k}$ are parallel. One way to find λ is to solve the proportionality condition $\frac{\lambda}{5}=\frac{1}{-2}=\frac{\frac{1}{2}}{-1}$. This gives $\lambda=-\frac{5}{2}=-2.5$.
(b) Merely substitute $(x, y, z)=(a+1, a, a-1)$ into the equation of the plane and solve for a :

$$
\begin{gathered}
5(a+1)-2 a-(a-1)=-7 \\
5 a-2 a-a=-7-5-1 \\
2 a=-13 \\
a=-\frac{13}{2}=-6.5
\end{gathered}
$$

Problem 25, $\S 13.3$, p627. Write $\vec{a}=3 \vec{i}+2 \vec{j}-6 \vec{k}$ as the sum of two vectors, one parallel, and one perpendicular, to $\vec{d}=2 \vec{i}-4 \vec{j}+\vec{k}$.

Solution. One solution. I'm going to write \vec{p} (thinking "projection") for the component of \vec{a} that is parallel to \vec{d}, and I'll write \vec{q} for the component that is perpendicular to \vec{d}. We have the formulas (see class notes, though we might have used different letters there)

$$
\vec{p}=\frac{\vec{a} \cdot \vec{d}}{\vec{d} \cdot \vec{d}} \vec{d}, \quad \vec{q}=\vec{a}-\vec{p}
$$

A bit of arithmetic then gives us

$$
\vec{p}=\frac{-8}{21} \vec{d}
$$

and

$$
\vec{q}=\frac{1}{21}(79 \vec{i}+10 \vec{j}-118 \vec{k})
$$

With these choices, we have $\vec{a}=\vec{p}+\vec{q}, \vec{p}$ and \vec{d} parallel, and $\vec{q} \perp \vec{d}$, as required.
Alternative solution. Let $\vec{u}=\frac{1}{\|\vec{d}\|} \vec{d}$. Write \vec{p} and \vec{q} as in the first solution. Then we have the formulas

$$
\vec{p}=(\vec{a} \cdot \vec{u}) \vec{u}, \quad \vec{q}=\vec{a}-\vec{p}
$$

Now do some arithmetic (pretty similar to the earlier arithmetic but not literally the same) and get the same results as before.

Problem 30, $\S 13.3$, p627. A course has four exams, weighted $10 \%, 15 \%, 25 \%, 50 \%$, respectively. The class averages on these exams are $75 \%, 91 \%, 84 \%$, and 87%, respectively. What do the vectors $\vec{a}=(0.75,0.91,0.84,0.87)$ and $\vec{w}=(0.1,0.15,0.25,0.50)$ represent in terms of the course? Calculate the dot product $\vec{w} \cdot \vec{a}$. What does it represent in terms of the course?

Solution. The vector \vec{a} is the vector of class averages on the 4 successive tests. Of course they're written as decimals rather than percentages. The vector \vec{w} is the vector of weights for the tests, again written as decimals. So $\vec{w} \cdot \vec{a}$ is a weighted average: it is the weighted class average for the 4 tests given in the course, and its value is $\vec{w} \cdot \vec{a}=.8565$. The class average for the semester is 85.65%.

Problem 31, $\S 13.3, \mathbf{p 6 2 7}$. A consumption vector of three goods is defined by $\vec{x}=\left(x_{1}, x_{2}, x_{3}\right)$, where x_{1}, x_{2}, and x_{3} are the quantities consumed of the three goods. A budget constraint is represented by an equation $\vec{p} \cdot \vec{x}=k$, where \vec{p} is the price vector for the three goods and k is a constant. Show that the different between two consumption vectors corresponding to points satisfying the same budget constraint is perpendicular to the price vector \vec{p}.

Math 205 HWK 5a Solns continued

§13.3 p627

Solution. Let $\vec{x}=\left(x_{1}, x_{2}, x_{3}\right)$ and $\vec{y}=\left(y_{1}, y_{2}, y_{3}\right)$ be two consumption vectors that correspond to points satisfying the same price constraint (say the constraint with price vector \vec{p} and total budgeted amount k). By definition $\vec{p} \cdot \vec{x}=k$ and $\vec{p} \cdot \vec{y}=k$. We must show that $(\vec{x}-\vec{y}) \perp \vec{p}$, for which it suffices to show that $(\vec{x}-\vec{y}) \cdot \vec{p}=0$, which we can verify as follows:

$$
(\vec{x}-\vec{y}) \cdot \vec{p}=\vec{p} \cdot(\vec{x}-\vec{y})=\vec{p} \cdot \vec{x}-\vec{p} \cdot \vec{y}=k-k=0 .
$$

