Mathematics 205 HWK 5a Solutions Section 13.3 p627

Problem 5, §13.3, p627. Given

$$\overrightarrow{a} = 2\overrightarrow{j} + \overrightarrow{k} \quad \text{or} \quad \overrightarrow{a} = (0, 2, 1)$$
$$\overrightarrow{y} = 4\overrightarrow{i} - 7\overrightarrow{j} \quad \text{or} \quad \overrightarrow{y} = (4, -7, 0)$$
$$\overrightarrow{c} = \overrightarrow{i} + 6\overrightarrow{j} \quad \text{or} \quad \overrightarrow{c} = (1, 6, 0)$$
$$\overrightarrow{z} = \overrightarrow{i} - 3\overrightarrow{j} - \overrightarrow{k} \quad \text{or} \quad \overrightarrow{z} = (1, -3, -1)$$

find $(\overrightarrow{a} \cdot \overrightarrow{y})(\overrightarrow{c} \cdot \overrightarrow{z})$.

Solution. Since $\overrightarrow{a} \cdot \overrightarrow{y} = 0 \cdot 14 + 2 \cdot (-7) + 1 \cdot 0 = -14$ and $\overrightarrow{c} \cdot \overrightarrow{z} = 1 - 18 = -17$ we have $(\overrightarrow{a} \cdot \overrightarrow{y})(\overrightarrow{c} \cdot \overrightarrow{z}) = (-14)(-17) = 238.$

Problem 6, §13.3, p627. Given \overrightarrow{a} and \overrightarrow{c} as in problem 5, find $((\overrightarrow{c} \cdot \overrightarrow{c}) \overrightarrow{a}) \cdot \overrightarrow{a}$.

Solution. I would probably simplify first. Since $\overrightarrow{c} \cdot \overrightarrow{c}$ is a scalar, we can rewrite a little:

$$((\overrightarrow{c}\cdot\overrightarrow{c})\overrightarrow{a})\cdot\overrightarrow{a}=(\overrightarrow{c}\cdot\overrightarrow{c})(\overrightarrow{a}\cdot\overrightarrow{a}).$$

Then find $\overrightarrow{c} \cdot \overrightarrow{c} = 37$ and $\overrightarrow{a} \cdot \overrightarrow{a} = 5$, so

$$((\overrightarrow{c} \cdot \overrightarrow{c})\overrightarrow{a}) \cdot \overrightarrow{a} = (\overrightarrow{c} \cdot \overrightarrow{c})(\overrightarrow{a} \cdot \overrightarrow{a}) = (37)(5) = 185.$$

Alternatively:

$$((\overrightarrow{c}\cdot\overrightarrow{c})\overrightarrow{a})\cdot\overrightarrow{a} = (37\overrightarrow{a})\cdot\overrightarrow{a} = 37(\overrightarrow{a}\cdot\overrightarrow{a}) = (37)(5) = 185.$$

Don't go to the effort of computing $37 \vec{a}$ unless you enjoy doing arithmetic.

Problem 7, §13.3, p627. (a) Give a vector that is parallel to, but not equal to, the vector $\overrightarrow{v} = 4\overrightarrow{i} + 3\overrightarrow{j}$. (b) Give a vector that is perpendicular to \overrightarrow{v} .

Solution. (a) There are lots of correct answers. For instance, we could use $2\vec{v}$ (i.e. use $8\vec{i} + 12\vec{j}$). If you'd rather, use $59\vec{v}$ or $-\pi e\vec{v}$. Any scalar multiple $\lambda \vec{v}$ with $\lambda \neq 1$ will do (although $0\vec{v}$ would be an unusual answer).

(b) Since it's not clear whether \overrightarrow{v} is intended to be a 2-space vector or a 3-space vector, I'll consider both interpretations.

2-space solution. Look for $\vec{w} = a\vec{i} + b\vec{j}$ satisfying $\vec{v} \cdot \vec{w} = 4a + 3b = 0$. There are lots of possibilities. For instance, $\vec{w} = -3\vec{i} + 4\vec{j}$ would work.

3-space solution. This is the same idea, only now we want $\vec{w} = a\vec{i} + b\vec{j} + c\vec{k}$ with 4a + 3b + 0 = 0.

Math 205 HWK 5a Solns continued §13.3 p627

It doesn't matter what c is, as long as 4a + 3b = 0. For instance, $w = -3\vec{i} + 4\vec{j} + 5\vec{k}$ would work, and so would $\vec{w} = -3\vec{i} + 4\vec{j}$, just to name two possibilities.

Problem 9, §13.3, p627. Find a normal vector to the plane z = 3x + 4y - 7.

Solution. From our analysis in class, we know that the plane ax + by + cz = d has $\overrightarrow{n} = a\overrightarrow{i} + b\overrightarrow{j} + c\overrightarrow{k}$ or $\overrightarrow{n} = (a, b, c)$ as one possible normal vector. Rewriting z = 3x + 4y - 7 as 3x + 4y - z = 7, we can read off one correct answer: $\overrightarrow{n} = 3\overrightarrow{i} + 4\overrightarrow{j} - \overrightarrow{k}$ or $\overrightarrow{n} = (3, 4, -1)$. Other correct answers are possible.

Problem 12, §13.3, p627. Compute the angle between the vectors $\vec{i} + \vec{j} + \vec{k}$ and $\vec{i} - \vec{j} - \vec{k}$.

Solution. Let $\overrightarrow{v} = \overrightarrow{i} + \overrightarrow{j} + \overrightarrow{k}$, let $\overrightarrow{w} = \overrightarrow{i} - \overrightarrow{j} - \overrightarrow{k}$, and denote the angle between \overrightarrow{v} and \overrightarrow{w} by θ . Then we know $\overrightarrow{v} \cdot \overrightarrow{w} = ||\overrightarrow{v}|| \, ||\overrightarrow{w}|| \cos \theta$. In this case, that gives us $\overrightarrow{v} \cdot \overrightarrow{w} = -1 = \sqrt{3}\sqrt{3}\cos \theta$, so $\cos \theta = -\frac{1}{3}$. Therefore $\theta = \cos^{-1}(-\frac{1}{3}) \approx 1.91$ radians or $\approx 109.5^{\circ}$.

Problem 13, §13.3, p627. Which pairs of the vectors $\sqrt{3}\vec{i} + \vec{j}$, $3\vec{i} + \sqrt{3}\vec{j}$, $\vec{i} - \sqrt{3}\vec{j}$ are parallel and which are perpendicular?

Solution. Writing $\overrightarrow{u} = \sqrt{3} \overrightarrow{i} + \overrightarrow{j}$, $\overrightarrow{v} = 3 \overrightarrow{i} + \sqrt{3} \overrightarrow{j}$, and $\overrightarrow{w} = \overrightarrow{i} - \sqrt{3} \overrightarrow{j}$, we have $\overrightarrow{u} \cdot \overrightarrow{v} > 0$, $\overrightarrow{u} \cdot \overrightarrow{w} = 0$, and $\overrightarrow{v} \cdot \overrightarrow{w} = 0$. This tells us that the pairs \overrightarrow{u} , \overrightarrow{w} and \overrightarrow{v} , \overrightarrow{w} are each perpendicular (hence not parallel), but \overrightarrow{u} and \overrightarrow{v} are not perpendicular to each other. Looking more carefully at \overrightarrow{u} and \overrightarrow{v} , see that $\overrightarrow{v} = \sqrt{3} \overrightarrow{u}$, which shows that \overrightarrow{u} and \overrightarrow{v} are parallel.

Problem 14, §13.3, p627. For what values of t are $\vec{u} = t \vec{i} - \vec{j} + \vec{k}$ and $\vec{v} = t \vec{i} + t \vec{j} - 2\vec{k}$ perpendicular? Are there values of t for which they are parallel?

Solution. We have $\overrightarrow{u} \perp \overrightarrow{v} \iff \overrightarrow{u} \cdot \overrightarrow{v} = 0 \iff t^2 - t - 2 = 0 \iff (t - 2)(t + 1) = 0 \iff t = 2, -1.$

For \vec{u} and \vec{v} to be parallel, we would need to have either $\vec{v} = \lambda \vec{u}$ for some scalar λ or $\vec{u} = \lambda \vec{v}$ for some scalar λ . The first situation would give $(t, t, -2) = (\lambda t, -\lambda, \lambda)$, which works out to be impossibile. Similarly, the second situation would require $(t, -1, 1) = (\lambda t, \lambda t, -2\lambda)$, which is also impossibile. So, no, it is not possible for \vec{u} and \vec{v} to be parallel, no matter how t is chosen.

Math 205 HWK 5a Solns continued §13.3 p627

Problem 17, §13.3, p627. Find an equation for the plane that is perpendicular to $5\vec{i} + \vec{j} - 2\vec{k}$ and passes through the point (0, 1, -1).

Solution. We need only use the equation $\overrightarrow{n} \cdot (\overrightarrow{P_0P}) = 0$ taking $\overrightarrow{n} = 5 \overrightarrow{i} + \overrightarrow{j} - 2 \overrightarrow{k}$, P = (x, y, z), and $P_0 = (0, 1, -1)$. This gives us the equation

$$5x + 1(y - 1) - 2(z - 1) = 0$$

or

$$5x + y - 2z = 3$$

Problem 19, §13.3, p627. Find an equation for the plane that passes through the point (1,0,-1) and is parallel to the plane 2x + 4y - 3z = 1.

Solution. Using $\overrightarrow{n} = 2\overrightarrow{i} + 4\overrightarrow{j} - 3\overrightarrow{k}$ and $P_0 = (1, 0, -1)$, find the equation

$$2(x-1) + 4y - 3(z+1) = 0$$

or

$$2x + 4y - 3z = 5.$$

Problem 21, §13.3, p627. A certain plane has equation z = 5x - 2y + 7.

(a) Find a value of
$$\lambda$$
 making $\lambda i + j + (0.5) k$ normal to the plane.

(b) Find a value of a so that the point (a + 1, a, a - 1) lies on the plane.

Solution. (a) Rewrite the equation of the plane as 5x - 2y - z = -7. Read off the normal vector $\overrightarrow{n} = 5\overrightarrow{i} - 2\overrightarrow{j} - \overrightarrow{k}$. Now we need to choose λ so that \overrightarrow{n} and $\lambda\overrightarrow{i} + \overrightarrow{j} + (0.5)\overrightarrow{k}$ are parallel. One way to find λ is to solve the proportionality condition $\frac{\lambda}{5} = \frac{1}{-2} = \frac{1}{2}$. This gives $\lambda = -\frac{5}{2} = -2.5$.

(b) Merely substitute (x, y, z) = (a + 1, a, a - 1) into the equation of the plane and solve for a:

$$5(a+1) - 2a - (a-1) = -7$$

$$5a - 2a - a = -7 - 5 - 1$$

$$2a = -13$$

$$a = -\frac{13}{2} = -6.5$$

Problem 25, §13.3, p627. Write $\overrightarrow{a} = 3\overrightarrow{i} + 2\overrightarrow{j} - 6\overrightarrow{k}$ as the sum of two vectors, one parallel, and one perpendicular, to $\overrightarrow{d} = 2\overrightarrow{i} - 4\overrightarrow{j} + \overrightarrow{k}$.

Solution. One solution. I'm going to write \overrightarrow{p} (thinking "projection") for the component of \overrightarrow{a} that is parallel to \overrightarrow{d} , and I'll write \overrightarrow{q} for the component that is perpendicular to \overrightarrow{d} . We have the formulas (see class notes, though we might have used different letters there)

$$\overrightarrow{p} = \frac{\overrightarrow{a} \cdot \overrightarrow{d}}{\overrightarrow{d} \cdot \overrightarrow{d}} \overrightarrow{d}, \quad \overrightarrow{q} = \overrightarrow{a} - \overrightarrow{p}$$

A bit of arithmetic then gives us

$$\overrightarrow{p} = \frac{-8}{21}\overrightarrow{d}$$

and

$$\overrightarrow{q} = \frac{1}{21} (79\overrightarrow{i} + 10\overrightarrow{j} - 118\overrightarrow{k}).$$

With these choices, we have $\vec{a} = \vec{p} + \vec{q}$, \vec{p} and \vec{d} parallel, and $\vec{q} \perp \vec{d}$, as required.

Alternative solution. Let $\vec{u} = \frac{1}{||\vec{d}||} \vec{d}$. Write \vec{p} and \vec{q} as in the first solution. Then we have the formulas

$$\overrightarrow{p} = (\overrightarrow{a} \cdot \overrightarrow{u}) \overrightarrow{u}, \quad \overrightarrow{q} = \overrightarrow{a} - \overrightarrow{p}.$$

Now do some arithmetic (pretty similar to the earlier arithmetic but not literally the same) and get the same results as before.

Problem 30, §13.3, p627. A course has four exams, weighted 10%, 15%, 25%, 50%, respectively. The class averages on these exams are 75%, 91%, 84%, and 87%, respectively. What do the vectors $\vec{a} = (0.75, 0.91, 0.84, 0.87)$ and $\vec{w} = (0.1, 0.15, 0.25, 0.50)$ represent in terms of the course? Calculate the dot product $\vec{w} \cdot \vec{a}$. What does it represent in terms of the course?

Solution. The vector \overrightarrow{a} is the vector of class averages on the 4 successive tests. Of course they're written as decimals rather than percentages. The vector \overrightarrow{w} is the vector of weights for the tests, again written as decimals. So $\overrightarrow{w} \cdot \overrightarrow{a}$ is a weighted average: it is the weighted class average for the 4 tests given in the course, and its value is $\overrightarrow{w} \cdot \overrightarrow{a} = .8565$. The class average for the semester is 85.65%.

Problem 31, §13.3, p627. A consumption vector of three goods is defined by $\vec{x} = (x_1, x_2, x_3)$, where x_1, x_2 , and x_3 are the quantities consumed of the three goods. A budget constraint is represented by an equation $\vec{p} \cdot \vec{x} = k$, where \vec{p} is the price vector for the three goods and k is a constant. Show that the different between two consumption vectors corresponding to points satisfying the same budget constraint is perpendicular to the price vector \vec{p} .

Math 205 HWK 5a Solns continued $$13.3\ \mathrm{p627}$$

Solution. Let $\overrightarrow{x} = (x_1, x_2, x_3)$ and $\overrightarrow{y} = (y_1, y_2, y_3)$ be two consumption vectors that correspond to points satisfying the same price constraint (say the constraint with price vector \overrightarrow{p} and total budgeted amount k). By definition $\overrightarrow{p} \cdot \overrightarrow{x} = k$ and $\overrightarrow{p} \cdot \overrightarrow{y} = k$. We must show that $(\overrightarrow{x} - \overrightarrow{y}) \perp \overrightarrow{p}$, for which it suffices to show that $(\overrightarrow{x} - \overrightarrow{y}) \cdot \overrightarrow{p} = 0$, which we can verify as follows:

$$(\overrightarrow{x} - \overrightarrow{y}) \cdot \overrightarrow{p} = \overrightarrow{p} \cdot (\overrightarrow{x} - \overrightarrow{y}) = \overrightarrow{p} \cdot \overrightarrow{x} - \overrightarrow{p} \cdot \overrightarrow{y} = k - k = 0.$$