1. (20 points) Let $\boldsymbol{c}=\boldsymbol{i}+\boldsymbol{j}+2 \boldsymbol{k}$, and let $\boldsymbol{d}=2 \boldsymbol{i}-\boldsymbol{j}+\boldsymbol{k}$.
(a) Find the magnitude of \boldsymbol{d}.
(b) Find the angle between \boldsymbol{c} and \boldsymbol{d}.
(c) Give two different vectors that are perpendicular to \boldsymbol{c} and two different vectors that are parallel to \boldsymbol{c}.
(d) Find the component of \boldsymbol{c} that is parallel to \boldsymbol{d}.
(e) Find the component of \boldsymbol{c} that is perpendicular to \boldsymbol{d}.
(f) Find an equation for the plane that passes through the point $(1,1,1)$ and has \boldsymbol{c} as a normal vector.
2. (6 points) Show that $\lim _{(x, y) \rightarrow(0,0)} \frac{4 x y}{3 x^{2}+2 y^{2}}$ does not exist.

Hint: try exploring some limits along straight-line paths to $(0,0)$.
3. (4 points) Let $f(x, y)=\frac{x^{4}+x^{2} y^{2}+y^{4}}{x^{2}+y^{2}}$.
(a) Briefly tell why

$$
0 \leq f(x, y) \leq \frac{x^{4}+2 x^{2} y^{2}+y^{4}}{x^{2}+y^{2}}
$$

for $(x, y) \neq(0,0)$.
(b) Verify that

$$
\lim _{(x, y) \rightarrow(0,0)} \frac{x^{4}+2 x^{2} y^{2}+y^{4}}{x^{2}+y^{2}}=0
$$

Hint: first use a little algebra to rewrite the desired limit.
(c) Based on the information we have now collected, what would you say (and why) is the value for $\lim _{(x, y) \rightarrow(0,0)} f(x, y)$?

