1. (20 points) Let $\boldsymbol{c}=\boldsymbol{i}+\boldsymbol{j}+2 \boldsymbol{k}$, and let $\boldsymbol{d}=2 \boldsymbol{i}-\boldsymbol{j}+\boldsymbol{k}$.
(a) Find the magnitude of \boldsymbol{d}.

$$
\|\boldsymbol{d}\|=\sqrt{\boldsymbol{d} \cdot \boldsymbol{d}}=\sqrt{(2)(2)+(-1)(-1)+(1)(1)}=\sqrt{6}
$$

(b) Find the angle between \boldsymbol{c} and \boldsymbol{d}. Denote the angle by θ. Then

$$
\cos \theta=\frac{\boldsymbol{c} \cdot \boldsymbol{d}}{\|\boldsymbol{c}\|\|\boldsymbol{d}\|}=\frac{2-1+2}{\sqrt{1+1+4} \sqrt{6}}=\frac{3}{6}=\frac{1}{2}
$$

Therefore $\theta=\frac{\pi}{3}$ or $\theta=60$ degrees.
(c) Give two different vectors that are perpendicular to \boldsymbol{c} and two different vectors that are parallel to \boldsymbol{c}. There are lots of correct choices for both of these. For instance, $\boldsymbol{i}-\boldsymbol{j}+0 \boldsymbol{k}$ and $0 \boldsymbol{i}+2 \boldsymbol{j}-\boldsymbol{k}$ are both perpendicular to \boldsymbol{c}, since each one has zero dot product with \boldsymbol{c}. For two vectors parallel to \boldsymbol{c} we could use, for instance, $2 \boldsymbol{c}=2 \boldsymbol{i}+2 \boldsymbol{j}+4 \boldsymbol{k}$ and $-\boldsymbol{c}=-\boldsymbol{i}-\boldsymbol{j}-2 \boldsymbol{k}$, since each one is a scalar multiple of \boldsymbol{c}.
(d) Find the component of \boldsymbol{c} that is parallel to \boldsymbol{d}. The required vector is

$$
\frac{c \cdot d}{d \cdot d} d=\frac{3}{6} d=i-\frac{1}{2} j+\frac{1}{2} k .
$$

(e) Find the component of \boldsymbol{c} that is perpendicular to \boldsymbol{d}. The required vector is

$$
\boldsymbol{c}-\left(\boldsymbol{i}-\frac{1}{2} \boldsymbol{j}+\frac{1}{2} \boldsymbol{k}\right)=\boldsymbol{i}+\boldsymbol{j}+2 \boldsymbol{k}-\left(\boldsymbol{i}-\frac{1}{2} \boldsymbol{j}+\frac{1}{2} \boldsymbol{k}\right)=\frac{3}{2} \boldsymbol{j}+\frac{3}{2} \boldsymbol{k} .
$$

(f) Find an equation for the plane that passes through the point $(1,1,1)$ and has \boldsymbol{c} as a normal vector.
The equation is $1(x-1)+1(y-1)+2(z-1)=0$ or

$$
x+y+2 z=4
$$

2. (6 points) Show that $\lim _{(x, y) \rightarrow(0,0)} \frac{4 x y}{3 x^{2}+2 y^{2}}$ does not exist. (Hint: try various straightline paths.)
At all points of the x-axis, and all points of the y-axis, the function in question has the value zero. So approach to $(0,0)$ along either of these axes will yield the limit 0 .
On the other hand

$$
\lim _{(x, y) \rightarrow(0,0), x=y} \frac{4 x y}{3 x^{2}+2 y^{2}}=\lim _{x \rightarrow 0} \frac{4 x^{2}}{3 x^{2}+2 x^{2}}=\lim _{x \rightarrow 0} \frac{4 x^{2}}{5 x^{2}}=\lim _{x \rightarrow 0} \frac{4}{5}=\frac{4}{5}
$$

These different limit values (0 and $\frac{4}{5}$) prove that the specified limit does not exist.
3. (4 points) Let $f(x, y)=\frac{x^{4}+x^{2} y^{2}+y^{4}}{x^{2}+y^{2}}$.
(a) Briefly tell why $0 \leq f(x, y) \leq \frac{x^{4}+2 x^{2} y^{2}+y^{4}}{x^{2}+y^{2}}$ for $(x, y) \neq(0,0)$.

The first inequality is true because the expression on the right-hand side of that inequality is a quotient with a positive numerator and a positive denominator. The second inequality is true because both sides of the inequality are nonnegative, both sides have the same denominator, and the right-hand side has a higher numerator.
(b) Verify that $\lim _{(x, y) \rightarrow(0,0)} \frac{x^{4}+2 x^{2} y^{2}+y^{4}}{x^{2}+y^{2}}=0$. (Hint: algebra.)

$$
\lim _{(x, y) \rightarrow(0,0)} \frac{x^{4}+2 x^{2} y^{2}+y^{4}}{x^{2}+y^{2}}=\lim _{(x, y) \rightarrow(0,0)} \frac{\left(x^{2}+y^{2}\right)^{2}}{x^{2}+y^{2}}=\lim _{(x, y) \rightarrow(0,0)}\left(x^{2}+y^{2}\right)=0
$$

(c) What is the value for $\lim _{(x, y) \rightarrow(0,0)} f(x, y)$? Zero. Why?

Except at $(0,0)$, we have

$$
0 \leq f(x, y) \leq g(x, y)=x^{2}+y^{2}
$$

with

$$
\lim _{(x, y) \rightarrow(0,0)} g(x, y)=0
$$

Since the given function $f(x, y)$ is squeezed between two functions that have the same limit, namely zero, as $(x, y) \longrightarrow(0,0)$, the function $f(x, y)$ must also have zero limit as $(x, y) \longrightarrow(0,0)$.

