1. (6 points) Find an equation for the plane through the points $(1,0,-2),(2,1,1),(1,4,3)$.
2. (4 points) Evaluate the determinant for the 4×4 matrix

$$
\left[\begin{array}{llll}
1 & 1 & 0 & 0 \\
0 & 1 & 0 & 0 \\
1 & 2 & 3 & 4 \\
1 & 1 & 1 & 1
\end{array}\right]
$$

3. (6 points) Find an equation for the plane tangent to the surface $z=\sin (x y)+4 x$ at the point where $x=1$ and $y=\pi$.
4. (9 points)
(a) Find the second-order Taylor polynomial $Q(x, y)$ for the function $f(x, y)=\cos 2 x+x y$ using the base point $(0,1)$.
(b) Use this Taylor polynomial to find an approximate numerical value for $f(0.1,0.9)$.
5. (15 points) Let $F(x, y, z)=\mathrm{e}^{x^{2}+y^{2}-z}$.
(a) Find the gradient vector for F at the point $(1,1,2)$.
(b) Find the directional derivative for F at the point $(1,1,2)$ in the direction given by the vector $\vec{i}+\vec{j}+\vec{k}$.
(c) At the point $(1,1,2)$, in which direction does F decrease most rapidly?
