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Action in the Brain and in Behaviour
M. J. Tetel

Neuroscience Program, Wellesley College, Wellesley, MA, USA.

Steroid hormones have profound effects on homeostasis, develop-

ment, reproduction and behaviour. Many of the biological effects of

steroid hormones are mediated through their respective receptors,

which are members of the steroid ⁄ nuclear receptor superfamily of

transcriptional activators (1, 2). Receptors for oestrogens (ER) and

progestins (PR) can function in a classical, genomic mechanism by

acting as ligand-dependent nuclear transcription factors. Nuclear

receptor coregulators, consisting of coactivators and corepressors,

are critical for modulating the transcriptional activity of ER and PR,

as well as other nuclear receptors. Although ER and PR can also

function in the brain independent of ligand and at the membrane to

rapidly activate cytoplasmic signalling pathways (3–6), these recep-

tors elicit many changes in behaviour and physiology by acting

through classical, genomic mechanisms. This review focuses on the

function of these important nuclear receptor coactivators in geno-

mic mechanisms of ER and PR action in the brain and in behaviour.

Steroid receptor structure and genomic mechanisms
of action

Steroid receptors have a modular domain structure consisting of an

amino-terminal region (N-domain), a central DNA binding domain

and a carboxy-terminal ligand binding domain (1, 2). In general,

steroid receptors have two transcriptional activation domains: one

in the amino terminal (AF-1) and one in the carboxyl terminal

ligand binding domain (AF-2) (7). Intracellular ER exist in two

forms, a and b, which are transcribed from different genes (8, 9).

These subtypes differ in their abilities to bind different ligands (10),

distribution in the brain (11–14) and functions in the brain and in

behaviour (15–18). In addition, cell culture experiments indicate

that ERa is a stronger transcriptional activator than ERb due to dif-

ferences in the AF-1 region (19). In most species, PR are expressed

in two forms: the full-length PR-B and the truncated PR-A, which

are encoded by the same gene, but are under the regulation of dif-

ferent promoters (20). Under certain conditions, studies conducted

in vitro indicate that human PR-B is a stronger transcriptional acti-

vator than PR-A (21–23) due to an additional AF domain in the

N-terminus of PR-B (24). These two PR isoforms appear to have dis-

tinct functions in reproductive behaviour and physiology (25, 26).

In the classical, ligand-dependent, genomic mechanism of action

of steroid receptors, in the absence of hormone, receptors are com-

plexed with several chaperone molecules, including heat shock pro-

teins (hsp). These interactions are requisite for proper protein folding

and assembly of stable receptor–hsp heterocomplexes that are com-

petent to bind ligand (27). Upon binding hormone, steroid receptors

undergo a conformational change that causes dissociation of these

hsp and allows the receptors to dimerise (28). Activated receptors

bind directly to specific steroid response elements (SREs) and SRE-

like sequences in the promoter regions of target genes (1, 2). Binding

of receptors to DNA increases or decreases gene transcription by
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altering the rate of recruitment of general transcription factors and

influencing the recruitment of RNA polymerase II to the initiation

site (29, 30). Thus, in the brain, it is thought that steroids can act via

their respective receptors to alter neuronal gene transcription,

resulting in profound changes in behaviour and physiology (31, 32).

Nuclear receptor coregulators

Nuclear receptor coregulators are required for efficient transcrip-

tional regulation by nuclear receptors (33, 34). The importance of

these coregulators in a variety of human diseases, including cancer

and some neurological disorders, is becoming more apparent (35).

Coregulators consist of coactivators and corepressors that are

required for efficient transcriptional regulation by nuclear receptors.

Nuclear receptor coactivators dramatically enhance the transcrip-

tional activity of nuclear receptors, including ER and PR (33, 34).

Nuclear receptor coactivators influence receptor transcription

through a variety of mechanisms, including acetylation, methyla-

tion, phosphorylation and chromatin remodelling (33). Studies per-

formed in vitro using antibodies against nuclear receptor

coactivators indicate that recruitment of coactivators is rate-limit-

ing in steroid receptor-mediated gene transcription (33, 36). In fur-

ther support for nuclear receptor coactivator-dependent facilitation

of transcription in vitro, squelching, or the repression of the tran-

scriptional activity of one steroid receptor by another, is reversed

by the addition of coactivators (37). Thus, a critical component of

efficient steroid receptor transcription is the recruitment of nuclear

receptor coactivators, which dramatically enhance transcriptional

activity. Under most conditions, steroid receptors interact with co-

activators in the presence of an agonist, but not in the absence of

ligand or in the presence of an antagonist or a selective receptor

modulator (37–40); but see also (41–43). Corepressors and their

complexes associate with nuclear receptors when unliganded or

bound to antagonists and serve to repress nuclear receptor tran-

scription by recruiting corepressor complexes to the cis-active ele-

ments in the promoter and enhancers of target genes (33).

Coactivators of steroid receptors

The p160 family

Steroid receptor coactivator-1 (SRC-1 ⁄ NcoA-1) was one of the first

coactivators found to interact with hormone-bound steroid recep-

tors (37). SRC-1 is a member of a larger family of p160 proteins

that includes SRC-2 (also known as GRIP1, TIF2 and NCoA-2) (44,

45) and SRC-3 (AIB1, TRAM-1, p ⁄ CIP, ACTR, RAC3) (46, 47). The

SRC family of coactivators physically interacts with steroid recep-

tors, including ER and PR, in a ligand-dependent manner (33, 34,

37). The SRCs physically associate with agonist-bound receptors

through multiple LXXLL motifs (L, leucine; X, any amino acid)

that make up nuclear receptor boxes (48). Experiments conducted

in vitro reveal that depletion of SRC-1 in cultured cells by micro-

injection of antibodies to SRC-1 prevents receptor-dependent tran-

scription, suggesting that SRC-1 is important for transcriptional

activity of steroid receptors (36). In cell culture, hormone induced

transactivation of PR is reduced by coexpression of ERa, presum-

ably due to squelching or sequestering of shared coactivators (37).

This squelching can be reversed by over-expression of SRC-1, sug-

gesting that coactivators are a limiting factor necessary for full

transcriptional activation of receptors (37). In further support, over-

expression of SRC-1 relieves thyroid hormone receptor inhibition of

ERa-mediated transcription in a neuroendocrine model (49).

The SRC family of coactivators appears to act as a platform for

the recruitment of other coactivators, including cAMP-response ele-

ment binding protein (CREB) binding protein (CBP) and p300 ⁄ CBP

associated factor (p ⁄ CAF), that possess histone acetyltransferase

activity and aid in chromatin remodelling (50, 51). The p160 coacti-

vators contain two activation domains, AD1 and AD2, in the C-ter-

minal region. AD1 mediates interactions with CBP (52), whereas

AD2 allows binding of other proteins, including the protein arginine

methyltransferase CARM1 (53).

Studies with knockout mice have revealed much about the

in vivo function of these coactivators. SRC-1 knockout mice,

although fertile, have decreased responsiveness in some steriod

target tissues (54), partial resistance to thyroid hormone (55) and

delayed development of cerebellar Purkinje cells (56). In addition,

SRC-1 is critical in maintaining energy balance by regulating both

energy intake and expenditure (57).

As is the case with SRC-1, SRC-2 enhances the transcriptional

activity of a variety of nuclear receptors, including ER and PR

(44, 45). The mid-region of the SRC-2 protein, which mediates

interactions with steroid receptors, has relatively low homology

with SRC-1, suggesting functional differences between these two

proteins (44, 45). SRC-2 knockout mice reveal that this coactivator

is important in fertility and ductal branching in mammary gland

(58–60). Microarray analysis of uteri from SRC-2 null mice reveal

that SRC-2 is involved in the ability of progesterone to repress

specific genes involved in a variety of functions, including cell cycle

and immunity (61).

SRC-3 ⁄ AIB1, which is amplified in human breast tumors (46),

coactivates a variety of nuclear receptors, including ER and PR

(36, 46, 62). Female SRC-3 null mice, although fertile, have delayed

puberty, longer oestrous cycles, ovulate fewer eggs and have

impaired mammary gland development (63, 64). Using chromatin

immunoprecipitation assays, gonadotrophin-releasing hormone

(GnRH) stimulated more efficient recruitment of SRC-3 by PR, on

the progestin response element of a luciferase reporter gene of the

gonadotropin a subunit gene promoter, than progesterone (65).

These findings suggest that phosphorylation of PR and its interac-

tion with SRC-3 and binding to DNA may play an important role in

the possible ligand-independent activation of PR by GnRHs (65).

Other coactivators of steroid receptors

Although CBP was initially discovered to be a transcriptional activator

of CREB (66, 67), it is also now known to function as an integrator of

nuclear receptors with other cell signalling pathways, including CREB

and AP-1 (51, 67, 68). As is the case with the p160 family, CBP is

important in ligand-dependent transcriptional activity of nuclear

receptors, including ER and PR (69). Interestingly, mutation of the
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CBP gene causes Rubinstein–Taybi syndrome, which results in

severe mental retardation and a variety of physiological deformities

in humans (70). In mice, mutations of CBP lead to similar physical

deformities as well as impaired memory (71). A variety of studies

performed in vitro indicate that SRC-1 and CBP act synergisti-

cally to enhance ER and PR transcriptional activity and function

(69, 72–74). In support of this concept, SRC-1 physically interacts

with CBP and recruits it to the coactivator complex to form a

ternary complex at target gene promoters (51, 69).

Steroid receptor RNA activator (SRA) is a unique coactivator in

that it functions as an RNA transcript to enhance transcriptional

activity of steroid receptors, including PR, ER, glucocorticoid recep-

tor (GR) and androgen receptor (75, 76). Although liganded ER

reduced PR transcriptional activation, addition of SRA reversed this

squelching effect of ER (76). Treatment of cells with antisense to

both SRC-1 and SRA greatly reduced the activity of ERa or PR (75,

76). Antisense to either SRA or SRC-1 alone had a less dramatic

effect on ERa activity, suggesting the association of SRA with

SRC-1 (75). In further support, SRA copurified with SRC-1, indicat-

ing that SRA exists in a ribonucleoprotein complex containing

SRC-1 (76). Expression of SRA is tissue specific, with SRA mRNA

being expressed at high levels in the liver, skeletal muscle and

heart, and at lower levels in the brain and placenta (76). Over-

expression of SRA in transgenic mice reveals a role for SRA in

oestrogen-induced expression of PR in mammary gland (77).

Finally, there are a variety of other coactivators, including

ERAP140 (78), TRAP220 (79), PGC-1 (80), chromatin high mobility

group proteins 1 and 2 (81) and TIP60 (82), that are known to

interact with ER and PR. With over 285 coactivators and corepres-

sors identified to date (83), there is much more to be learned about

the function of coregulators in nuclear receptor action.

Function of nuclear receptor coactivators in the brain
and in behaviour

Although much is known about the molecular mechanisms of

nuclear receptor coactivators from a variety of cell culture studies

(33, 34), we are just beginning to understand their role in hormone

action in the brain. SRC-1 mRNA and protein are expressed at high

levels in the cortex, hypothalamus and hippocampus, and at low

levels in the lateral septum, of rodents (84–90) and birds (91). For

coactivators to function with steroid receptors, they must be

expressed in the same cells. Indeed, SRC-1 is expressed in the

majority of oestrogen-induced PR cells in reproductively-relevant

brain regions, including the ventromedial nucleus (VMN), medial

preoptic area and arcuate nucleus (92). Given that virtually all oes-

tradiol-induced PR cells in the hypothalamus contain ERa (93, 94),

these findings suggest that these specialised cells represent func-

tional sites of interaction between ovarian steroid receptors and

SRC-1 in the brain (92). It is important to note that not all SRC-1

immunoreactive cells expressed PR, suggesting that SRC-1 may

function with other nuclear receptors in these cells (92). The

expression of the SRC family of coactivators in the brain appears to

be regulated by a variety of factors, including hormones (95–101),

daylength (102) and stress (97, 103, 104).

The function of nuclear receptor coactivators in hormone action

in the brain and in behaviour has been investigated. The role of

SRC-1 in hormone-dependent sexual differentiation of the rodent

sexually dimorphic nucleus (SDN) of the pre-optic area has been

studied (88). On postnatal days (PN) 0–2, the hypothalami of

female rat pups were bilaterally infused with antisense oligonucleo-

tides (ODNs) to SRC-1 mRNA or scrambled control ODNs. On PN 1,

female pups were treated with the aromatisable androgen, testos-

terone propionate, to increase SDN volume. On PN 13, antisense to

SRC-1 was found to reduce the volume of the SDN of androgenised

females by 46% compared to females receiving control ODNs. The

testosterone surge in males just after birth suppresses the develop-

ment of female sexual behaviour in adulthood (105, 106). This sup-

pression is due to oestradiol, aromatised from testosterone, binding

to ER (107). To test whether SRC-1 was critical in development of

sexual behaviour, androgenised female and male rats were treated

with SRC-1 antisense or control ODNs on PN 0–2 (88). Males were

castrated in adulthood and following testosterone treatment, were

tested for male and female sex behaviour. Males and androgenised

females treated with SRC-1 antisense displayed higher levels of

female sexual behaviour than did rats treated with control ODNs.

Taken together, these findings suggest that reduction of SRC-1 in

the brain decreases ER activity, and thus alters brain development

and inhibits the defeminising actions of oestrogen during develop-

ment (88).

CBP is expressed in reproductively-relevant brain areas in a

dimorphic manner, and functions in the development of masculine

sexual behaviour (108). On the day of birth, males express 53%

more CBP-immunoreactive (CBP-IR) cells in the medial pre-optic

area, whereas females express 83% more CBP-IR cells in the VMN

than males. These findings of differential expression of CBP suggest

that gonadal steroid hormones alter levels of CBP in the brain dur-

ing development, which in turn influence neural steroid responsive-

ness. In the same study, testosterone-treated females that received

CBP antisense in the hypothalamus on PN 0–2 displayed higher

levels of lordosis than androgenised females treated with control

ODNs (108). Taken together with the findings of the previous study,

it appears that both SRC-1 and CBP are necessary for ER action in

the developing brain.

Our laboratory and others have investigated the role of nuclear

receptor coactivators in hormone-dependent gene expression in the

brain and in behaviour in adult rodents (89, 109). Oestradiol-induc-

tion of PR gene expression in the VMN is important for hormone-

dependent female sexual behaviour (110). Therefore, we tested the

hypothesis that SRC-1 and CBP are critical for modulating ER-med-

iated transactivation of the PR gene in the VMN. Infusions of anti-

sense ODNs to SRC-1 and CBP mRNA into one side of the VMN of

adult female rats reduced the expression of ER-mediated activation

of PR gene expression compared to the contralateral control ODN-

treated VMN (89). These findings are supported by previous in vitro

studies indicating that SRC-1 and CBP function together to modu-

late ER activity (69). In further support of SRC-1 and CBP ⁄ p300

functioning together in the brain, neurones in the rat hippocampus

and dentate gyrus coexpress SRC-1 and p300 (90). A similar study

in the brain supports these findings and extend them to include a
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role of SRC-2, but not SRC-3, in ER-mediated induction of PR in

the VMN (109). Finally, the p160 coactivators function in GR action

in glial cells (111) and in GR-mediated repression of the corticotro-

pin-releasing hormone gene (112). Taken together, these findings

indicate that nuclear receptor coactivator action in the brain is

essential for full steroid receptor transcriptional activity.

Given that nuclear receptor coactivators are critical for hormone-

dependent gene expression in the brain, we tested the hypothesis

that these coactivators act to modulate the expression of hormone-

dependent behaviours (89). Female rats treated with antisense to

both SRC-1 and CBP mRNA into the VMN displayed reduced levels

of hormone-dependent female sexual receptivity compared to

scrambled treated controls (89). Another study supported these

findings with SRC-1 and extended them to include a role for SRC-2

in hormone-dependent behaviour (109). Our laboratory has gone on

to isolate the effects of these nuclear receptor coactivators on both

ER- and PR-dependent aspects of female sexual behaviour. There

are two modes of hormone regulated female reproductive behav-

iour in rats: oestrogen-mediated (elicited by oestradiol alone) and

progesterone-facilitated (requires oestradiol priming followed by

progesterone) (32). To test the hypothesis that nuclear receptor

coactivators function in the brain to modulate ER-mediated aspects

of female reproductive behaviour, animals were injected with oes-

tradiol only (113). Antisense to SRC-1 and CBP infused into the

VMN of animals treated with oestradiol alone decreased lordosis

intensity and frequency, suggesting that these coactivators modu-

late ER-mediated aspects of female sexual behaviour. Proceptive

behaviours by the female, which serve to solicit interaction by the

male, are PR-dependent and include ear-wiggling and hopping and

darting (114–119). Infusion of antisense to SRC-1 and CBP mRNA

into the VMN around the time of progesterone administration

reduced PR-dependent ear wiggling and hopping and darting, but

did not alter lordosis (113). Thus, it appears that nuclear receptor

coactivators function in the brain to modulate PR and ER action

and influence specific aspects of hormone-dependent sexual behav-

iours in rodents. Interestingly, although SRC-1 and SRC-2 are

expressed at high levels in the hypothalamus, SRC-3 is not (101,

109). However, SRC-3 is expressed at high concentrations in the

hippocampus (109). In future studies, it will be important to distin-

guish the functions of these different coactivators in hormone

action in the brain.

Recently, we have begun to take a proteomics-based approach

to study the interactions of steroid receptors with coactivators from

rat brain. To test the hypotheses that SRC-1 from brain physically

associates with ER and PR subtypes in a ligand-dependent manner,

pull-down assays with brain tissue from female rats were developed

(120). SRC-1 from hypothalamus or hippocampus interacted with

ERa and ERb when bound to oestradiol (Fig. 1A), which was con-

firmed by mass spectrometry (120). SRC-1 may function with ERa
in the hypothalamus to mediate expression of female sexual behav-

iour (15–17, 121), and with both ER subtypes in the hippocampus

to differentially modulate the effects of oestrogen effects on cogni-

tion (18, 122) and stress (18, 123). Very little to no association of

SRC-1 from brain was detected with ERa or ERb in the absence of

ligand or in the presence of the selective ER modulator tamoxifen.

These findings suggest tamoxifen is functioning as an antagonist to

prevent receptor-coactivator interactions, and are consistent with a

variety of studies using cell lines demonstrating that oestradiol

facilitates, whereas antagonists prevent, SRC-1 association with ER

(124–126). By contrast to our findings obtained using brain tissue,

cell culture studies suggest that both ERa and ERb can recruit

coactivators to AF-1 in the absence of ligand under certain phos-

phorylation conditions (127, 128). Although little to no interaction

between receptor and SRC-1 from brain in the absence of ligand

was detected, it will be important to investigate whether physiolog-

ically-relevant events that modulate ligand-independent activation

impact on receptor-coactivator interactions in the brain.

In our studies, SRC-1 from the hippocampus appears to interact

equally with ERa and ERb (Fig. 1B). By contrast, SRC-1 obtained
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Fig. 1. Steroid receptor coactivator (SRC)-1 from rat brain associates with

oestrogen receptor (ER)a and ERb in a ligand-dependent and receptor iso-

form-specific manner. (A) SRC-1 from the hypothalamus associates with ERa
and ERb in the presence of oestradiol (E2) (lanes 2 and 5), but not in the

absence of ligand (lanes 3 and 6), or in the presence of the selective ER

modulator, tamoxifen (TX) (lanes 4 and 7). Input (1% of total) of SRC-1 from

hypothalamic extract is shown in Lane 1. (B) In the presence of oestradiol,

both ERa and ERb interacted with hippocampal SRC-1, but little to no inter-

action was detected in the absence of ligand or when receptors were bound

to tamoxifen. Hypothalamic SRC-1 interacted more strongly with ERa than

ERb in the presence of oestradiol. *P < 0.0001, significantly different from

ERa+estradiol. #P < 0.01, significantly different from ERb+ oestradiol.

**P < 0.05, t-test, n = 4–5 per treatment group. Adapted with permission

(120).
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from hypothalamic extracts interacted more with ERa than with

ERb (Fig. 1B). The different functions of the ER subtypes in brain

(discussed above) may be explained in part by the lower transcrip-

tional activity of ERb observed in particular cell lines (19). These

differences in transcriptional abilities between ERa and ERb may be

attributed to differential recruitment of coactivators, or differences

in the ability of the same coactivator to facilitate transcription of

the ER subtypes (129). Although some studies using recombinant

SRC-1 (129) are consistent with our findings that SRC-1 from brain

interacts more with ERa than with ERb, other studies suggest that

SRC-1 associates equally with each ER subtype (130, 131). Although

these later findings are consistent with our results using SRC-1

from hippocampus, we observed that SRC-1 from hypothalamus

interacted more with ERa than with ERb. These data suggest that

ERa is a more efficient transcriptional activator of SRC-1 dependent

signalling pathways in the hypothalamus than ERb. In support, pre-

vious findings from our laboratory indicate that SRC-1 function in

the hypothalamus is important for maximal expression of ER-medi-

ated female sexual behaviour (113), which appears to be ERa-

dependent (15, 132). In addition, SRC-1 from brain interacts more

with PR-B than with PR-A (120). These differential interactions of

SRC-1 from hypothalamus or hippocampus with the ER and PR

subtypes suggest that these brain regions have distinct expression

patterns of cofactors involved in these important protein–protein

interactions. In addition, it is possible that SRC-1 undergoes differ-

ential phosphorylation in these two brain regions, leading to dis-

tinct patterns of interaction with receptors. Future experiments will

need to apply mass spectrometry analysis to determine whether, in

a brain region specific manner, different cofactors are present in

the receptor–coactivator complex and ⁄ or if SRC-1 undergoes differ-

ential phosphorylation. Finally, these findings suggest the impor-

tance of using biologically-relevant tissue, in contrast to the use of

cell lines alone, in investigating receptor–coactivator interactions. It

may be that other cofactors and proteins that are present in tissue

(e.g. brain) are important for appropriate SRC-1 interactions with

receptor. Understanding how nuclear receptor coactivators function

with various steroid receptors, and their subtypes, is critical for

understanding how hormones act in different brain regions to pro-

foundly influence physiology and behaviour. Ultimately, the investi-

gation of these receptor–coactivator interactions using brain tissue

may allow the identification of novel cofactors involved in the ste-

roid receptor complex in brain.

The function of coregulators has also been studied with respect

to hormone action in the bird brain. SRC-1, CBP and L7-SPA are

expressed at high levels in steroid-sensitive brain regions of adult

quail (91), European starlings (133) and zebra finches (134),

respectively. In adult quail, the infusion of antisense to SRC-1

mRNA reduced testosterone-dependent male copulatory behaviours

(135). In addition, SRC-1 was found to function in testosterone-

dependent sex differences in brain volume and aromatase expres-

sion in the preoptic medial nucleus of the quail (135, 136). These

findings indicate that SRC-1 is important in the modulation of

hormone-dependent gene expression, brain plasticity and behaviour

in birds.

Summary

The mechanisms by which steroids act in a region-specific, and cell

type-specific, manner is a fundamental issue with respect to ste-

roid hormone action in the brain. Recent investigations indicate

that, in addition to the bioavailability of hormone and receptor

levels, nuclear receptor coactivators are critical molecules for mod-

ulating steroid receptor-mediated transcription. Studies from cell

lines have revealed much about the molecular mechanisms of

action of these coactivators. Furthermore, work in the brain, as well

as other steroid-sensitive tissues, indicates that nuclear receptor

coactivators are critical for the fine-tuning of steroid-responsive-

ness within individual cells. Understanding the recruitment of dif-

ferent coactivator and corepressor complexes to the promoter,

which is likely to be cell and tissue specific, will be critical for

understanding how hormones function in the brain to regulate

complex behaviours.
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28 DeMarzo A, Beck CA, Oñate SA, Edwards DP. Dimerization of mamma-

lian progesterone receptors occurs in the absence of DNA and is related

to the release of the 90-kDa heat shock protein. Proc Natl Acad Sci

USA 1991; 88: 72–76.

29 Klein-Hitpass L, Tsai SY, Weigel NL, Allan GF, Riley D, Rodriguez R, Sch-

rader WT, Tsai MJ, O’Malley BW. The progesterone receptor stimulates

cell-free transcription by enhancing the formation of a stable preinitia-

tion complex. Cell 1990; 60: 247–257.

30 Kininis M, Chen BS, Diehl AG, Isaacs GD, Zhang T, Siepel AC, Clark AG,

Kraus WL. Genomic analyses of transcription factor binding, histone

acetylation, and gene expression reveal mechanistically distinct classes

of estrogen-regulated promoters. Mol Cell Biol 2007; 27: 5090–5104.

31 Pfaff D. Hormone-driven mechanisms in the central nervous system

facilitate the analysis of mammalian behaviours. J Endocrinol 2005;

184: 447–453.

32 Blaustein JD, Mani SK. Feminine sexual behavior from neuroendocrine

and molecular neurobiological perspectives. In: Blaustein JD, ed. Hand-

book of Neurochemistry and Molecular Neurobiology. New York, NY:

Springer, 2006: 95–150.

33 Rosenfeld MG, Lunyak VV, Glass CK. Sensors and signals: a coactiva-

tor ⁄ corepressor ⁄ epigenetic code for integrating signal-dependent pro-

grams of transcriptional response. Genes Dev 2006; 20: 1405–1428.

34 O’Malley BW. Molecular biology. Little molecules with big goals. Science

2006; 313: 1749–1750.

35 Lonard DM, Lanz RB, O’Malley BW. Nuclear receptor coregulators and

human disease. Endocr Rev 2007; 28: 575–587.

36 Torchia J, Rose DW, Inostroza J, Kamei Y, Westin S, Glass CK, Rosenfeld

MG. The transcriptional co-activator p ⁄ CIP binds CBP and mediates

nuclear-receptor function. Nature 1997; 387: 677–684.
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