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In two recent papers, a description is given of a means of obtaining an arbitrarily narrow peak 
in the calculation of the autocorrelation function [J. C. Brown, and M. S. Puckette, 
"Calculation of a narrowed autocorrelation function," J. Acoust. Sec. Am. 85, 1595-1601 
(1989) ] or era narrow valley in the calculation of an inverse autocorrelation [J. C. Brown, 
and M. S. Puekette, "Musical information from a narrowed autocorrelation function," 
Proceedings of the 1987 International Conference on Computer Music, Urbana, Illinois, 84-88 
(1987) ]. These calculations are applied to the determination of the fundamental frequency of 
musical signals produced by keyboard, wind, and string instruments. These results are 
compared to frequency tracking results obtained on these sounds with conventional 
autocorrelation. In so doing it is determined first whether the method of autocorrelation is 
well-adapted to the problem of tracking the frequency of musical signals, and, second, under 
what conditions "narrowed" autocorrelation is advantageous. 

PACS numbers: 43.60.Gk, 43.75.Yy 

INTRODUCTION 

Musical frequency tracking has been relatively little ex- 
plored in comparison to the massive efforts that have been 
carried out by the speech community for use with various 
speech encoders for communications purposes. Musical ap- 
plications have, for the most part, been in the area of intelli- 
gent systems, where an accurate frequency tracker is a neces- 
sity at the front end. 

An initial effort at a musical transcription system was 
made by Piszczalski and Galler (1977). This is a system 
whose goal is to take an incoming audio signal, process it, 
and turn out a musical score. Their frequency tracker 
(Piszczalski and Galler, 1979) examined frequency ratios of 
spectral components to form a hypothesis for the fundamen- 
tal frequency. Another musical frequency tracker proposed 
originally in the same year (Terhardt, 1979; Terhardt et aL, 
1982) examined submultiples of spectral components to ar- 
rive at a fundamental frequency. Both of these methods are 
similar to the Schroeder (1968) histogram method. 

In a series of excellent papers going back to the 1970s, 
the group at CCRMA in the Music Department at Stanford 
has worked on a musical transcription system. Various fre- 
quency trackers are discussed by Moorer (1975), Schloss 
(1985), Foster et al. (1982), Mont-Reynaud (1985), and 
Chafe et al. (1985, 1986). A recent report by Serra and 
Wood (1988) summarizes current work at CCRMA and 
gives extensive references to earlier work. 

Barry Vercoe at MIT has worked on a machine intelli- 
gence problem called "the synthetic performer." Its goal is 

Present address: GW Instruments, 35 Medford St., Somerville, MA 
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to be able to replace a member of a live ensemble of per- 
formers with a computer so that the remaining members 
cannot tell the difference. Early work by Vercoe (1984) and 
Vercoe and Puckette (1985) used a frequency tracker based 
on key sensors of a flute. More recently, as reported in a 
segment on the TV show "Discover," a spectral method sim- 
ilar to that of Schroeder (1968) and Amuedo (1985) has 
been used to track the audio signal of a violin. 

I. BACKGROUND 

It has been shown previously that the following equa- 
tion (Brown and Puckette, 1989) can be used for the calcu- 
lation of a narrowed autocorrelation function: 

S•(r)• = If(t) +f(t + r) +f(t + 2r) + --- 

+fit+ (N-- 1)r]l'. (1) 
In the discussion, we showed that terms of the form 

f(t)f(t + 2r),f( t)f( t + 3r) .... etc., in addition to the "ordi- 
nary" autocorrelation term f( t )f( t + r) give rise to a nar- 
rowing of the autocorrelation function. Here, f(t) is the 
time wave analyzed, t is the time, and r is the autocorrelation 
time. For a periodic function, peaks occur at values of the 
autocorrelation time equal to multiples of the period T. 
When iV is equal to 2 in the above equation, the conventional 
or standard autocorrelation function is given by the cross 
term with the other two terms contributing a constant shift. 
The equation can be normalized with the value ofSN (r) 2 for 
r = 0 so that the values of SN(r) 2 range from 0-1. Most 
important, the width of the peaks measured from the maxi- 
mum to the first zero is T/N for the time wave of a single 
harmonic component. 

The equation for the inverted autocorrelation function 
was discussed by Brown and Puckette (1987). It was shown 
that the function 
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p(t,r) = (f(t) +f(t + r) +f(t + 2•) 

+..f[t+ (N-- 1 

is the periodic function having period r which best approxi- 
matesf (t) over the interval Nr in the mean-square sense. If 
we consider the difference 

E(r) = {If(t) --p(t,r) ]2), (2) 

then E(r) will have minima for r equal to multiples of the 
period if f (t) is a periodic function. The average over time 
indicated by the angle brackets is taken over a time equal to 
or greater than r. Again we normalize so that the function 
varies from 0 to 1. 

In the discussion that follows, we will refer to calcula- 
tions with Eq. (2) as those of inverted autocorrelation. • 
Where necessary for distinction, calculations using Eq. ( 1 ) 
will be referred to as "erect" or standard autocorrelation. 

Within each of these categories, the calculations with N = 2 
will be called conventional, and those with N> 2 will be 
called "narrowed." 

An important property of musical sounds is that, for the 
most part, they have harmonic spectral components. The 
consequence for the autocorrelation function is that one of 
the peaks of each of the higher components occurs at lhe 
same position as that of the fundamental. For example, the 
second harmonic has a period equal to half of the fundamen- 
tal so its peaks occur at T/2, 2(T/2), 3( T/2)... and so on. 
The second peak of the second harmonic, then, will coincide 
with the first peak of the fundamental with similar reasoning 

for the other harmonics. Thus a large peak corresponding to 
the sum of all spectral components should occur at the peri- 
od of the fundamental (and all integral multiples of the peri- 
od of the fundamental). This is the property that makes the 
method of autocorrelation appear to be a good one for fre- 
quency tracking of musical signals. This property, of course, 
also holds true for the valleys for the inverse autocorrelation 
of Eq. (2). 

II. CALCULATIONS 

Examples of the conventional and narrowed autocorre- 
lation functions for scales played by a piano, a violin, and a 
flute are shown in Figs. 1-6. Each curve is a 200-point auto- 
correlation function of sound from acoustic instruments 

sampled at 32 000 samples per second. An average is taken 
over 500 samples so each curve represents approximately 15 
ms of sound. The time in the sound is given on they axis with 
the autocorrelation time in samples on the x axis. Equation 
( 1 ) was used for these calculations with N = 2 for the con- 
ventional autocorrelation and N = 5 for the narrowed auto- 

correlation. Examples calculated for the inverted autocorre- 
lation function with Eq. (2) are not included. 

The piano sound analyzed in Figs. I and 2 was from a 9- 
foot Bosendorfer which radiated surprisingly little energy in 
the higher harmonics. Since the peak widths are proportion- 
al to the period, a sound with higher harmonics present will 
have an innately narrow peak. As this is not the case here, 
this piano sound represents a good case to see the effect of 

1.2 
1.6 

AUTOCO R ELATION TIME (SAMPLES) 

FIG. 1. Conventional autocorrelation for a C major piano scale over several octaves. This portion is from F3 to E5. 
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AUTOCO R ELATION TIM E (SAMPLES) 

FIG. 2. Narrowed autocorrelation for the sams piano sound as that of Fig. 1. 

AUTOCO R ELATION TIME (SAMPLES) 

200 

FIG. 3. Conventional autocorrelation of a flute scale from C3 to C5. 
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FIG. 4. Narrowed autocorrelation of a flute scale from C3 to C5. 

narrowing on a broad peak. This is quite striking and is 
shown in Figs. 1 and 2. 

The comparison of the flute scale in Figs. 3 and 4 and the 
violin scale in Figs. 5 and 6 show successively narrower natu- 

ral peak widths (Figs. 3 and 5). The effect of narrowing in 
Fig. 6 compared to Fig. 5 is quite apparent and is visually 
preferable. One might, however, suspect that a computer 
could pick the natural peaks of Fig. 5 as easily as the nar- 

o 

LU 

{ I t I I I 
o •5 50 75 •0o ,•.5 ,50 

A U TOC O R ELATION T IM E (SA M P L E S) 

FIG. 5. Conventional autocorrelation oœa violin scale from G3 to GS. 
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FIG. 6. Narrowed autocorrelation of a violin scale from G3 to G5. 

rowed peaks of Fig. 6 since the peaks in Fig. 5 are already 
rather narrow. 

The problem of determining the fundamental frequency 
for each of the curves of these figures is to find the position of 
the peak corresponding to one period of the fundamental. 
For the inverted autocorrelation, the problem is to identify 
the corresponding minimum. The problem is complicated by 
the fact that we have calculated a discrete autocorrelation, 
and there may not be a sample at the exact postion of the 
maximum (or minimum). An example is given in Fig. 7 
where the valley corresponding to one period (occurring 
between samples 88 and 89) has a value greater than that of 
the valley corresponding to two periods (occurring at sam- 
ple 179). 

To circumvent this problem we have an adjustable pa- 
rameter to denote how much higher (or lower) a peak (or 

150 ]00 

AUTOCOR ELATION TIME (SAMPLES) 

FIG. 7. Example of the narrowed inverted autocorrelation function for a 
violin sound where the peak at autocorrelation time equal one period is low 
due to discrete sampling. 

valley) must be to replace the previous winner. This was 0.03 
for inverted autocorrelation for both narrowed (N> 2) and 

conventional (N = 2) cases. For "erect" autocorrelation a 
percentage difference was used. An exhaustive study re- 
vealed that a lower value (approximately 15%) should be 
used for conventional than for narrowed (25%-35%) cal- 
culations. There was a small variation of the optimum value 
among the instruments. The larger value for the narrowed 
autocorrelation means that there is a greater difference in 
peak heights of the winning peak (sum of all harmonics) 
compared to other combinations of harmonics for the nar- 
rowed case. Since relative heights of individual harmonics 
are theoretically the same for both cases, this must result 
from less overlap of the narrower peaks, and is an advantage 
of the narrowed calculation. 

We have also tried several methods of curve fitting for 
obtaining a better value of the maximum including a qua- 
dratic fit, cubic fit, linear extrapolation of the two points on 
either side of the maximum, and calculation of the maximum 
by considering sums of two adjacent points. This latter 
method was used for the narrowed autocorrelation for the 
violin as its results were as good as those of the other meth- 
ods, and it is more efficient computationally. Other curves 
gave good results with no fitting procedure. 

Another useful parameter is based on the normalization 
of these functions. Errors in frequency determination occur 
almost exclusively at note transitions where there is a mix- 
ture of both notes. There is often a change in amplitude of the 
waveform in these regions as well, and this affects the nor- 
malization. Both of these effects contribute to cause the 

peaks (or valleys for inverted autocorrelation) to differ from 
the ideal value of 1 (or 0). Our programs have the option of 
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returning a zero meaning no frequency determination tf a 
peak was greater than 1.2 or less than 0.8 or ira valley was 
greater than 0.1. This property can be used by an intelligent 
system to signal note changes, if desired. 

It is to be noted above that the quantity E(r) from Eq. 
(2) is expected to be closer to the ideal value 0 than the 
quantity Ss (•-) 2 from Eq. ( 1 ) is to I at •- equal to an integral 
number of periods. For example, iff(t) differs fromf(t ur T) 
by 10%, then E(T) in Eq. (2) is (0. I)2 _-- 0.01, whereas in 
Eq. (1), S.•,(•-) 2 is equal to !.2. This is an advantage of in- 
verted autocorrelation over the usual form. 

Once determined, the period in samples for a given 
frame was passed to an array which converted the period to a 
midinote. The array could be "tuned" so that the tuning of 
the instrument studied corresponded to the appropriate in- 
dices of the array. 

III. RESULTS 

The frequency tracking program was run on the sounds 
graphed in Figs. 1-6 as representatives of the keyboard, 
wind, and string families of instruments. For each sound 
sample, we determined the maximum, subject to the con- 

o 
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ERECT AUTOCORRELATION 

STANDARD 

NARROWED 

INVERTED AUTOCORRELATION 

STANDARD 

NARROWED 

t i rn e • 

FIG. 8. Frequency tracking results using four autocorrelation methods on the violin. 
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straints previously described, for the autocorrelation func- 
tion and for the narrowed autocorrelation function. We sim- 

ilarly determined the minimum for the inverted and 
narrowed inverted autocorrelation functions. These periods 
were then converted to midinotes to map the results to musi- 
cal notes. Our results are shown as graphs of midinote 
against time in Figs. 8-10. Since each of the instruments was 
playing a scale, perfect results would consist of a sequential 
set of horizontal lines rising by one or two midinotes corre- 
sponding to a half or a whole step in the scale. Thus each 
error can be recognized as a point off the appropriate hori- 
zontal line. Errors are summarized in Table I. The poorest 

frequency tracking results of any of our calculations were 
obtained using narrowed inverted autocorrelation on the 
violin as shown at the bottom of Fig. 8. Conventional 
(N = 2) inverted did the best with less than a 3% error. 
Both narrowed and conventional "erect" autocorrelation 
did well for this case, with conventional slightly better. The 
violin spectrum is the richest of the instruments we studied 
with many high harmonics present. As mentioned previous- 
ly, this means an autocorrelation line width that is already 
narrow, and it is not surprising that the calculations with 
narrowing are poor. This is due to the difficulties with dis- 
crete sampling discussed previously. Consistent with this 

ERECT AUTOCORRELATION 

'"l 
STANDARD 

NARROWED 

INVERTED AUTOCORRELATION 
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E 

NARROWED 

t i rn e • 

FIG. 9. Frequency tracking results using four autocorrelation methods on the piano. 
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mechanism, all errors have a midinote that is too low, usual- 
ly by an octave. This means that the peak (or valley) corre- 
sponding to the period was missed and the second peak (or 
valley), corresponding to two periods, was reported. 

We should note that, with the exception of the narrowed 
inverted results, both these and the following results could 
be perfect simply by requiring the frequency reported by two 
adjacent frames to agree. This was not done as it wotdd 
eliminate the basis for comparisons in the results. 

The results on the piano in Fig. 9 again show errors in 
transition regions. There is no significant difference in the 
results of narrowed over conventional for the inverted auto- 
correlation. Narrowed erect autocorrelation does best of all. 
Two errors on the graph using conventional erect autocorre- 
lation are marked where an average of the two notes in a 
transition is obtained. Correct results are obtained by the 
narrowed calculation, and the mechanism for this improve- 
ment will be discussed further in the following section. 

ERECT AUTOCORRELATION 

STANDARD 

NARROWED 

E 

INVERTED AUTOCORRELATION 

STANDARD 

NARROWED 

t i rn e • 

FIG. 10. Frequency tracking results using four autocorrelation methods on the flute. 
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TABLE I. Summary of errors by frequency trackers. 

Instrument Method Terms Frames Errors 

Violin inverted N' = 2 147 5 

N= 4 26 

erect N = 2 6 

N---5 9 

Piano inverted N = 2 528 10 

N=4 9 

erect N = 2 11 

N=5 8 

Flute inverted N = 2 246 5 

N=4 3 

erect N = 2 2 

N=5 I 

cal, the spectra in this study varied widely and must thus 
indicate success for this method for a broad variety of musi- 
cal sounds. With the exception of the narrowed inverted cal- 
culation for the violin sound, perfect results could have been 
obtained for the sounds in this study simply by requiring that 
results from two successive frames agree. 
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The results on the flute in Fig. 10 were the best of the 
instruments we studied. Again narrowed autocorrelation 
does a little better than conventional for both calculations 

with erect doing slightly better than inverted. Frames 
marked with arrows give an average of two notes in transi- 
tion regions with narrowed doing better than conventional 
at reporting a single correct note. 

IV. DISCUSSION AND CONCLUSIONS 

As mentioned, conventional autocorrelation returns the 
average of two notes in some transition regions, whereas nar- 
rowed autocorrelation is better able to choose between the 

two notes. This mechanism was discussed in Brown and 

Puckette (1989). A simulation of a signal in the presence of 
low-amplitude noise was carried out. The signal consisted of 
a pure tone with another pure tone with a nearby frequency 
serving as noise. It was found that the presence of the noise 
shifted the position of the peak due to the signal for the con- 
ventional autocorrelation. With sufficient narrowing, how- 
ever, the single shifted peak splits into two recognizable 
components with the signal peak at its proper position. It is 
this mechanism that is responsible for some of the improved 
results of narrowed over conventional autocorrelation in the 

transition regions for the flute and the piano. 
The disadvantages of narrowed autocorrelation are two- 

fold. First, the longer analysis time means less is known 
about the exact time for which the calculated midinote ap- 
plies; i.e., we have the usual time/frequency trade-off. Sec- 
ond, the calculation is a little more expensive computational- 
ly as we have an extra N-- 2 additions, where N is the 
number of terms included in Eq. ( 1 ) or (2). 

Finally, it should be emphasized that both conventional 
and narrowed autocorrelation have proven to be excellent 
frequency trackers for the musical sounds of this study. 
While single examples of musical instruments can be atypi- 

It is easy to verify that for the case N = 2 with a sinusold, one oblains a 
function identical to the usual autocorrelation but with the maxima and 

minima interchanged. 
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