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A method of calculating an autocorrelation function with extremely narrow peaks is described. 
This is done by including terms in the autocorrelation expression corresponding to delays at 
2•', 3•', etc., in addition to the usual term with delay •'. Implications in the frequency domain 
are explored. Graphs of this autocorrelation function for a number of violin sound samples, 
including a two-octave scale, vibrato, and glissando, are presented. Graphs of the 
autocorrelation function for some synthetic sound samples are also included. 

PACS numbers: 43.60.Gk, 43.75.De 

INTRODUCTION 

In assessing various fundamental frequency detection 
methods previously used in speech analysis to determine 
their applicability to the problem of extracting frequency 
from music, we have examined the method of autocorrela- 
tion. The use of a zero phase method, such as autocorrela- 
tion, is particularly promising for the study of musical sig- 
nals since this means that contributions from all of the 

harmonics occur at the period of the fundamental, and any 
problem of a "missing" (or weak) fundamental is thus cir- 
cumvented. 

Although in one previous study • an extremely narrow 
peak in the autocorrelation function was obtained, this. was 
accomplished after a complicated method of spectral flatten- 
ing of the waveform achieved in hardware. Another study 2 
employed nonlinear processing of the input signal to achieve 
spectral flattening. In general, however, autocorrelation 
studies have relied on the identification of a rather broad 

peak to determine the pitch period. 3 
We shall describe herein an elegant software method of 

obtaining a narrow peak in the autocorrelation function and 
shall demonstrate this narrowing quantitatively for a pure 
tone. Application to musical examples will be included, but 
the major focus of this article is on the calculation. In a later 
article, we shall give a detailed report on pitch tracking ex- 
periments that rely on the identification of this narrow peak, 
and these will be compared to several other methods used for 
musical pitch tracking. 

Autocorrelation methods of analysis are most appropri- 
ate in the study of signals whose durations are at least several 
times the longest period studied. This requirement is met for 
most musical signals. The narrowing is obtained at the cost 
of an increase in the length of the sample analyzed and this 
results in less precision in time. 

A narrow peak in the autocorrelation function is of in- 
terest for the study of musical signals as the identification of 
the peak can be thrown off by the presence of periodic noise 
with even a low amplitude. In Fig. 1 are graphs of the ordi- 
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nary autocorrelation and two calculations with the autocor- 
relation function successively narrowed. The signal consists 
of two pure tones of frequencies 330 Hz (E4) and 392 Hz 
(G4), with the higher tone having one fourth the amplitude 
of the lower tone. This smaller component represents period- 
ic noise in this simulation. For the ordinary correlation there 
appears to be only one tone present, and the peak position is 
shifted down (meaning a smaller period) relative to the 
"correct" position of the principal component. For the next 
graph the principal peak is in the correct position, but it is 
not clear that there is more than one periodic component. 
Finally, for the lowest graph, which has the narrowest peaks, 
the second component is clearly present, and both peaks are 
in their theoretical positions. 

Thus it is clear that a narrowed autocorrelation function 

is useful both for determining peak position and for identifi- 
cation of components present. Periodic noise, such as that in 
this simulation, can arise, for example, with the violin, where 
one string might ring when another is bowed. Nonperiodic 
noise present in musical signals, such as the sound of breath 
in the flute or striking noise from the keys of the piano, is not 
a problem for autocorrelation. 
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FIG. 1. Ordinary autocorrelation function (top) and two successively nar- 
rowed autocorrelation functions [calculation with Eq. (lb) using two 
terms, five terms, and ten terms] for two sounds of periods 97 and 81 sam- 
ples with amplitudes in the ratio of 4 to 1. 
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I. BACKGROUND 

The autocorrelation function is defined as the product 

g(•') ---- f_• f(t)'f(t-- •')dt. 
It is convenient to calculate this as ( I f (t) -I- f ( t -- r ) 12), 
where the cross term gives the autocorrelation. 

If, instead, we consider the sum 

S•r(•') ----f(t) -Ff(t--•') -Ff(t--2•-)-"f(t-- (N-- 1 )•'), 
(la) 

then its square 

ISN()l 2 = (If(t) -F f (t- •-) 

-i-f (t-2r)...f{t- (N-- 1)r)l 2) (lb) 
will involve cross products of each pair of terms. The quanti- 
ty defined in Eq. (lb} will be referred to as the narrowed 
autocorrelation. The case N---- 2 gives the usual autocorrela- 
tion. 

For a periodic function with period T, all of the terms in 
Eq. (la) will be in phase for delays r equal to an integral 
multiple of T. This is the same behavior as in the usual case 
with N---- 2, but now for a small change in •- to ( T-F A) the 
nth term is (n -- 1)A out of phase with the first term. Thus 
these functions get out of phase very rapidly, leading to 
greatly narrowed peak. Here, (n -- 1 ) A < T. 

Quantitatively, if we consider a single harmonic compo- 
nent of unit amplitude exp(jcoot) in Eq. ( la}, 

S•/(•')---- • exp[jcOo(t--n•'}] , 

---- [ 1 -- exp(-jcOoNr) ]/[ 1 -- exp(--jCOor) ], 

and its square 

ISs ( •')12 -__ sin2 ( cooNr/2 ) /sin2 ( COor/2 ), 

which has maxima of height N 2 at r --- 0, nTwhere n is an 
integer and the period T----2•r/co o. Most important, the 
peaks have a half-width of T/N measured from the peak to 
the first zero of the function. This means that the peaks are 
2/N times narrower than for the usual autocorrelation. Ex- 

amples are found in Fig. 2. Here, as predicted, the half- 
widths in samples of the functions are 4, 8, and 20 for the 
cases ofN = 10, 5, and 2, respectively. Further details of the 
calculations for the figures are given in Sec. V. 

A complex sound will demonstrate the same behavior as 
that described above for each of its Fourier components. The 
situation is, of course, complicated by the coincidence of 
peaks. For example, with the analysis of a sound consisting 
of a fundamental of period Tand harmonics with periods T/ 
2, T/3 ..... etc., peaks of all harmonics coincide at multiples of 
the period T; peaks from all of the even harmonics will coin- 
cide at multiples of T/2 and so on. 

In Fig. 3 we have included the analysis of a sound con- 
sisting of ten harmonics of equal amplitude calculated with 
five terms in Eq. (lb). Although the narrowed autocorrela- 
tion is quite complex, the position of the period of the funda- 
mental is totally unambiguous. This figure is of interest, also, 
because it shows the loss of resolution due to discrete sam- 

pling, which is particularly apparent at 2T. This problem 

AUTOCORRELATION TIME IN SAMPLES -• 

FIG. 2. Narrowed autocorrelation function for a sinusold with period 40 
samples calculated with Eq. (lb) using two terms, five terms, and ten terms. 

becomes more troublesome the narrower the peak; it could, 
of course, be corrected with a higher sampling rate, but at a 
high cost in computation time. 

The width of the peaks at T, 2T, etc., is much narrower 
for a complex sound than for a pure tone, as it consists of the 
superposition of peaks due to the presence of each harmonic 
component. The ha!f-width of each component is propor- 
tional to the inverse product of N times the number of the 
component. Thus the width of the peak in the general case 
depends on the exact amplitudes of the harmonics present 
and the greater the amplitude of higher harmonics, the nar- 
rower the peak. 

It is interesting to note that the mathematical treatment 
of a single harmonic component described above is identical 
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AUTOCORRELATION TIME IN SAMPLES 

FIG. 3. Narrowed autocorrelation function for a signal with ten harmonics 
of equal amplitude. Five terms were included in Eq. (lb). 
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to that used to describe the diffraction of light by N slits 
where the beam from each slit is delayed (or advanced) by r 
relative to that from adjacent slits. 4 

II. FOURIER TRANSFORM 

Since it is well known that the Fourier transform of the 

autocorrelation function is the power spectrum? it is of 
interest to calculate the Fourier transform of the narrowed 

autocorrelation. Our measured function is 

(IS•v(r)[ 2) = If(t) +f(t--r) 

+ f (t-- 2r)'"f(t-- (W- 1)rjl2 dt. 
(2) 

Carrying out the square, we find N terms that are time- 
shifted functions of the form J' [f(t)]2dt. There are 
2(N- 1 ) terms that are time-shifted functions of the form 
.ff(t )f(t - r) dt, 2(N- 2) terms that are time-shifted 
functions of the form œf(t ) f(t - 2r) dt, and so on to two 
terms of the form œf(t )f(t - (N- 1)r)dt. 

Collecting these terms and substituting the definition of 
the autocorrelation function J'• • f ( t )f ( t -- r) dt = G( r) 
gives 

(ISN(r) I 2) -- N.G(O) 

+ 2(N-- 1).G(r) + 2(N- 2)'G(2r) 

+ "' + 2'G((N-- 1)r). (3) 

Taking the Fourier transform of Eq. (3), and noting that the 
Fourier transform of the autocorrelation function is the 

power spectrum, 

F(co) = G(r)exp( -ior) dr. 

Since we are studying time-varying signals and are, in 
essence, interested in the time variation of the spectrum, this 
must be modified to a short-time Fourier transform. 7 We 
thus obtain 

= G(r)exp( -- icor) dr. F( co ) •-• st 
For the terms involving G(kr), this must be modified to give 

1 

2-Mf•st G(kr)exp( - iwr) dr 
-- icou 

= G(u)exp du = F 2P p • ' 
where u = kr and P = kM. 

Then, we find for the transform of our measured func- 
tion I&v( r) 

Fs(co) =N'G(O)6(co) + 2(N-- 1)'F(co) 

+ 2(N- 2)'F(co/2) + 2(N-- 3) 

ß F(co/3)'" + 2'F(co/(N-- 1)}. (4) 

Here, F(co) = I je(co)12, where?(co) is the Fourier transform 
off(t ). 

The first term in Eq. (4) is the average of the square of 
the functionf (t). The second term is the power spectrum of 
f (t) and is the only term that would be present with the 

conventional autocorrelation. Terms three-N arise due to 

the "narrowing" in the time domain and are expanded 
copies of the power spectrum at twice the frequency, 3 times 
the frequency ..... N times the frequency. 

Examples of the Fourier transform of S•(r) 2, as de- 
fined in Eq. ( 1 ), are found in Fig. 4 for N = 2 and N = 5 for 
an input sine wave. For this case, the autocorrelation func- 
tion G(r) = cos(wor). The Fourier transform is 

F(co) = [•5(co + COo) + •5(co -- coo) ]/2, 

where •5 (x) is the Dirac delta function. This can be substitut- 
ed in Eq. (4), to give for positive frequencies 

Fs(co) =N+ (N- 1)'•5(co -- co o) 

+ (N- 2)'•5(co/2 - coo) 

+ "'•5(co/(N- 1 ) -- coo), 

in agreement with Fig. 4. 

III. RESOLUTION 

As discussed in Sec. I, the half-width of a peak in the 
narrowed autocorrelation for a sinusoidal component is T/ 
N, where Nis the number of terms in Eq. (lb). If we define 
the resolution as the correlation time divided by the half- 
width in analogy to the usual definitionf/•Sf for a peak at 
frequencyf of width •Sfin the spectral domain, we obtain 

Resolution = T/( T/N) = N. 

Thus it would first appear that the resolution can be made 
arbitrarily large. For example, musical signals should be re- 
solved to within a semitone. These two frequencies in the 
ratio of the 12th root of 2 ( = 1.059) must thus have correla- 
tion times separated by 0.06T. If we set T/N= 0.06T, we 
find that, for N_• 17, according to this theory, a semitone will 
be resolved. 

The problem with this treatment is that it fails to take 
account of the discrete nature of the signal. The ultimate 
constraint in any discrete system is the requirement that two 
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FIG. 4. Fourier transform of the narrowed autocorrelation function of a 

sine wave calculated with two terms (left) and with five terms (right) in Eq. 
(lb). 
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signal peaks be separated by at least two samples so that 
there can be a dip between the maxima. Again, examining 
the requirement that two tones a semitone apart be resolved, 
we set 0.06T>•2 samples, which gives T>•33 samples. At a 
sample rate of 32 K, which is a relatively high sampling rate, 
this would mean that two sinusoids separated by a semitone 
at a frequency over 970 Hz (roughly B5) would not be re- 
solved. In Fig. 5 is found the narrowed autocorrelation cal- 
culated with 17 terms in Eq. (lb) for two notes separated by 
a semitone. Each pair of notes has a duration of 0.1 s, indicat- 
ed on the vertical axis, and the notes (identified with the 
convention that middle C is C4) have the periods given in 
Table I for sampling at 32 000 Hz. 

Note that the predictions of the preceding discussion are 
roughly followed. Note, also, that the peak separation in- 
creases linearly with time, So that all peaks are clearly re- 
solved for correlation times of2T, 3T, etc. Finally, note that 
the time resolution for the changes of note pairs is poor due 
to the long integration times (about 16 ms) and the long 
time spanned by taking 17 terms. The latter means that we 
are looking at a time of 17•- for each point on the correlation 
function, and this is over 0.1 s for the highest correlation 
times. 

Fortunately, it is usually not necessary to carry out the 
analysis with 17 terms since the correlation function of most 
musical signals is narrowed by the presence of higher har- 
monics by the mechanism discussed previously. In Fig. 6 we 
have calculated the narrowed autocorrelation, including 
only five terms in Eq. (lb) for the same pairs of notes as in 
the previous figure, but this time we have included ten har- 
monics of equal amplitude for each note. The resolution is, in 
fact, better here than in the previous figure calculated with 
17 terms. The third and fourth pairs of notes at t = 0.2 s and 
t ---- 0.3 s show clearly the effects of discrete sampling. Fol- 
lowing our previous discussion, the third pair should be re- 
solved and the fourth pair should not be, whereas, in fact, the 
fourth pair is better resolved than the third. 

TABLE I. Periods in samples at 32 000 Hz for the pairs of notes, as found in 
Fig. 5, with a duration of 0.1 s. The notes are identified with the convention 
that middle C is C4. 

Time Period Period 

0.0 C#5 57.7 D5 54.5 
0.1 F5 45.8 F#5 43.2 
0.2 G#5 38.5 A5 36.4 
0.3 C:•6 28.9 D6 27.2 
0.4 F6 22.9 F•6 21.6 
0.5 G#6 19.3 A6 18.2 

IV. CALCULATIONS 

All calculations were programmed in C and carried out 
on a Hewlett-Packard model 9000, series 300 "Bobcat" 
computer. Except where stated otherwise, five terms were 
included in Eq. (lb) since the extremely sharp peaks ob- 
tained with, e.g., ten terms, give rise to resolution problems 
due to discrete sampling, as well as requiring longer run 
times. The equation was integrated over 500 samples (about 
15 ms) to give a 200-point autocorrelation. The latter was 
chosen so as to include G3 for the violin on the low-frequen- 
cy end. The graphics software was written by Barry Vercoe 
at the MIT Experimental Music Studio for the Hewlett- 
Packard computer. 

Sound examples were either generated using Barry Ver- 
coe's C-sound software (Figs. 1-6, 13 ) or were recorded and 
digitized by Greg Tucker at the Experimental Music Studio 
with Chung Pei Ma playing the violin (Figs. 7-12). The 
sample rate was 32 kHz for all samples. 

Most of the figures are plots ofEq. (lb) on the vertical 
axis against correlation time •- in samples on the horizontal 
axis. Although the vertical axis is not labeled with the value 
of the autocorrelation function, all examples were normal- 
ized to a value of 1 for zero delay. On the horizontal axis, one 
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AUTOCORRELATION TIME IN SAMPLES -•' 

FIG. 5. Narrowed autocorrelation function of two ascending sinusoids a 
semitone apart calculated with 17 terms in Eq. (lb). 

25 50 75 100 125 150 175 200 
AUTOCORRELATION TIME IN SAMPLES -•' 

FIG. 6. Narrowed autocorrelation function of two ascending complex 
sounds a semitone apart calculated with five terms in Eq. (lb). 
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AUTOCORRELATION TIME IN SAMPLES -• 

FIG. 7. Conventional autocorrelation function of a violin scale from 03 to 
G4. 

AUTOCORRELATION TIME IN SAMPLES -• 

FIG. 9. Narrowed autocorrelation function of a violin scale from G4 to G5 

calculated with five terms in Eq. (lb). 

sample is equal to 31.25 ps at our sample rate. For the figures 
with multiple graphs (or frames), the labels on the vertical 
axis correspond to real time in the sound file. The frames 
were calculated sequentially so as not to overlap with the 
average, usually taken over 500 samples as mentioned. 

V. MUSICAL EXAMPLES 

A striking set of examples of the power of the technique 
of narrowed autocorrelation can be found in Figs. 7-13. Fig- 
ure 7 is a conventional autocorrelation function [calculated 
with two terms in Eq. (lb)] of one octave of a violin scale 

from G3 to G4 included for comparison. Figures 8 and 9 
show the narrowed autocorrelation function for the same 

scale. Figure 8 corresponds to the same octave as that of Fig. 
7, and Fig. 9 corresponds to the next octave. The period of 
the fundamental is extremely clear in all cases. It is also easy 
to distinguish which notes are spectrally rich and which are 
relatively pure (for example, the fourth note has only two 
harmonics) by the complexity of the curves. Preliminary 
experiments in pitch tracking of this signal by picking the 
maxima in the numbers graphed in these two figures have 
been quite successful. 

In Fig. 10 is the narrowed autocorrelation function of 

0 12 25 37 50 62 75 87 

AUTOCORRELATION TIME IN SAMPLES -• 

FIG. 8. Narrowed autocorrelation function oœa violin scale from G3 to (34 

calculated with five terms in Eq. (lb). 

AUTOCORRELATION TIME IN SAMPLES -• 

FIG. 10. Narrowed autocorrelation function of violin note bowed very 
quickly and its decay. 
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AUTOCORRELATION TIME IN SAMPLES -• 

FiG. 11. Narrowed autocorrelation function of a violin note played with 
vibrato. 
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AUTOCORRELATION TIME iN SAMPLES -•' 

FIG. 13. Narrowed autocorrelation function of two complex sounds with 
frequency separation increasing from a semitone to two whole steps. 

the note C5 bowed very quickly and then released to decay 
freely. Once the bow is released, the behavior is that of a 
plucked string. It is clear that the spectrum of the bowed 
string is more complex than that of the plucked string. Here, 
we have a particularly strong fifth harmonic (strong peak at 
T/5) for the bowed string and practically a pure tone for the 
decay. No decay in the amplitude of the signal is apparent 
because each frame is normalized to 1 for zero delay time •-. 

Figure 11 shows the effect of vibrato on the narrowed 
autocorrelation for the violin note D5. It is interesting how 
much the spectrum changes as the frequency is lowered. The 
effect is that of having two distinct notes rather than the 
continuous coherent change up and down of each of the 
component harmonics that we might have anticipated for 

AUTOCORRE.LA_TION TIME IN SAMPLES •' 

12. Narrowed autocorrelation function of a violin glissando. 

this small frequency change. This indicates that the body 
resonances of this violin are extremely narrow. Notice, also, 
that the vibrato is much more apparent at correlation times 
of two and three times the fundamental than at that of the 

fundamental itself. 

Figure 12 is the narrowed autocorrelation of a violin 
glissando. As in the case of vibrato, we note that there are 
discontinuous changes in the spectrum of the sound as the 
frequency of the fundamental rises continuously. Here, this 
might have been anticipated, however, as the frequency is 
increasing by a fifth (factor of 1.5). 

Finally, we have included Fig. 13, which is a narrowed 
autocorrelation of two complex sounds to demonstrate the 
promise of this technique for polyphonic pitch tracking. The 
lower note remains on G#4, while the upper notes go from 
A4 to B4 with the separation increasing from a semitone to 
two whole steps. The maxima are clearly resolved and the 
pitches could easily be determined with a program to pick 
out maxima. 
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