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The frequencies that have been chosen to make up the scale of Western music are 
geometrically spaced. Thus the discrete Fourier transform (DFT), although extremely 
effcient in the fast Fourier transform implementation, yields components which do not map 
efficiently to musical frequencies. This is because the frequency components calculated with 
the DFT are separated by a constant frequency difference and with a constant resolution. A 
calculation similar to a discrete Fourier transform but with a constant ratio of center frequency 
to resolution has been made; this is a constant Q transform and is equivalent to a 1/24-oct filter 
bank. Thus there are two frequency components for each musical note so that two adjacent 
notes in the musical scale played simultaneously can be resolved anywhere in the musical 
frequency range. This transform against log (frequency) to obtain a constant pattern in the 
frequency domain for sounds with harmonic frequency components has been plotted. This is 
compared to the conventional DFT that yields a constant spacing between frequency 
components. In addition to advantages for resolution, representation wi•;h a constant pattern 
has the advantage that note identification ("note identification" rather than the term "pitch 
tracking," which is widely used in the signal processing community, is being used since the 
editor has correctly pointed out that "pitch" should be reserved for a perceptual context), 
instrument recognition, and signal separation can be done elegantly by a straightforward 
pattern recognition algorithm. 

PACS numbers: 43.75.Bc, 43.75.Cd, 43.60.Lq 

INTRODUCTION 

The present work is based on the property that, for 
sounds made up of harmonic frequency components, the po- 
sitions of these frequency components relative to each other 
are the same independent of fundamental frequency if they 
are plotted against log frequency. An example of this proper- 
ty is found in Fig. 1, which is a plot of a hypothetical spec- 
trum with equal amplitude frequency components f, 2f, 3f,... 
and so on. The spacing between the first two harmonics is log 
(2), that between the second and third harmonics is 
log(3/2), and so forth. That is, the absolute positions de- 
pend on the frequency of the fundamental, but the relative 
positions are constant. Thus these spectral components form 
a "pattern" in the frequency domain, and this pattern is the 
same for all sounds with harmonic frequency components. 
Differences will, of course, be manifested in the amplitudes 
of the components despite their fixed relative positions; these 
reflect differences in timbre of the sound analyzed. 

The conventional linear frequency representation given 
by the discrete Fourier transform gives rise to a constant 
separation between components for musical sounds consist- 
ing of harmonic components. This is the dominant feature in 
the pattern produced, and both the separation constant and 
the overall position of this pattern vary with fundamental 
frequency. The result is that it is more difficult to pick out 
differences in other features of the sound, such as timbre and 
attack and decay. 

The log frequency representation, on the other hand, 

gives a constant pattern for the spectral components, and 
thus, the problem: of instrument identification or of funda- 
mental frequency identification becomes a straightforward 
problem of recognizing a previously determined pattern. In 
addition to its practical advantages, this idea has theoretical 
appeal for its similarity to modern theories of pitch percep- 
tion based on pattern, recognition. i In one of these theories, 
the perception of the pitch of a sound with a missing funda- 
mental is explained by the "pattern" formed by the remain- 
ing harmonics on the basilar membrane. Similarly, we have 
devised a computer algorithm that recognizes the pattern 
made by these harmonics in the log frequency domain; it can 
thus identify the lYequency as that of the fundamental even 
in those cases where there is no spectral energy at the fre- 
quency of the fundamental. 

To demonstrate this "constant pattern" for a variety of 
musical sounds, we first tried to utilize the speed and effi- 
ciency of the fast ]Fourier transform algorithm and then plot 
the data against log(f). It soon became clear that the map- 
ping of these data from the linear to the logarithmic domain 
gave too little infi3rmation at low frequencies (data from a 
few linear points mapping to a large number of logarithmic 
points) and too much information at high frequencies. Even 
more problematic: were resolution considerations. The dis- 
crete short-time Fourier transform gives a constant resolu- 
tion for each bin or frequency sampled equal to the sampling 
rate divided by the window size in samples. This means, for 
example, if we take a window of 1024 samples with a sam- 
pling rate of 32 O30 samples/s (reasonable for musical sig- 
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FIG. 1. Pattern of Fourier transform of harmonic frequency components 
plotted against log (frequency). 

nals), the resolution is 31.3 Hz. At the low end of the range 
for a violin, the frequency ofG 3 is 196 Hz so this resolution is 
16% of the frequency. 

This is much greater than the 6% frequency separation 
for two adjacent notes tuned in equal temperament. At the 
upper end of the piano range, the frequency of Cs is 4186 Hz, 
and 31.3 Hz is equal to 0.7% of the center frequency. Thus at 
this end, we are calculating far more frequency samples than 
are needed. 

It is thus clear that for musical applications the use of 
the conventional Fourier transform is inefficient. What is 

needed is information about the spectral components pro- 
duced across the wide frequency range of a particular musi- 
cal instrument. The resolution should be geometrically relat- 
ed to the frequency, e.g., 3% of the frequency in order to 
distinguish between frequencies with semitone (6%) spac- 
ing. Thus the frequencies sampled by the discrete Fourier 
transform should be exponentially spaced and, if we require 
quartertone spacing, this gives a variable resolution of at 
most (21/24 -- 1 )• 0.03 times the frequency. This means a 
constant ratio of frequency to resolution,f/rf= Q, or a con- 
stant Q transform. Here, Q =f/O.O29f= 34 and the trans- 
form is equivalent to a 1/24-oct filter bank. 

In Sec. II, we describe a particularly straightforward 
means of calculating a constant Q transform starting from 
the discrete Fourier transform. Following this section, we 
show results of this calculation on sounds produced by a 
violin, piano, and flute. These sounds consist of harmonic 
frequency components and demonstrate a constant pattern 
in the log frequency domain as predicted. The conventional 
discrete Fourier transform is included for comparison in two 
cases. In a subsequent article, we will present results for 
these musical instruments using a note identification system 
based on pattern recognition. 

I. BACKGROUND FOR CALCULATION 

The constant Q transform in our implementation is 
equivalent to a 1/24th-oct bank of filters. The constant Q 

filter bank and its similarity to the auditory system has been 
explored in two recent theses 2'3 that reference previous work 
extensively. The article by Higgins 4 is recommended as a 
background discussion of sampling effects in the calculation 
of the discrete Fourier transform for those wishing to review 
the techniques of digital signal processing. The theory of the 
short-time Fourier Transform was originally developed by 
Schroeder and Atal? More recently, it has been extensively 
reviewed by Nawob and Quaffeft in an excellent article. 6 

Various schemes for implementing constant Q spectral 
analysis outside a musical context have been published. TM 
Gambaradella •a'•3 demonstrates equivalence of the constant 
Q transform to the Mellin transform t4 and the existence of 
the inverse transform. This is of importance if manipulation 
of the signal in the spectral domain followed by transforma- 
tion back to the time domain is desired. Most recently 
Teahey et al.]5 have calculated a "tempered Fourier trans- 
form" using four A-to-D conversions. They then exploit the 
"perfect" ratios for the musical intervals of an octave, 
fourth, and fifth to further reduce the complexity of the cal- 
culation. 

Music researchers at the Center for Computer Research 
in Music and Acoustics (CCRMA) ,a at Stanford have used 
a "Bounded Q" Transform similar to that of Harris? They 
calculate a fast transform and discard frequency samples ex- 
cept for the top octave. They then filter, downsample by a 
factor of 2, and calculate another FFT with the same number 
of points as before, which gives twice the previous resolution. 
From this they keep the second highest octave. The proce- 
dure is repeated until they arrive at the lowest octave desired. 
The advantage of this method is that they have the speed of 
the FFT, with variable frequency and time resolution and 
are thus able to optimize information for both frequency and 
time. 

Kronland-Martinet ]7 and others have employed a "wa- 
velet transform" for musical analysis and synthesis. This is a 
constant Q method similar to the Fourier transform and to 
this method but based on a theoretical treatment for the use 

of so-called "wavelets" as generalized basis functions. Their 
method has been successful as a compositional tool where 
the transform is altered to obtain effects in the time domain 

when the inverse transform is taken. However, this method 
does not have sufficient resolution to be used for note identi- 
fication. 

The present method, described in detail in the following 
section, has two advantages over these other methods. The 
first is its simplicity; the second is that it is calculated for 
frequencies that are exponentially spaced with two frequen- 
cy components per musical note. Thus it supplies exactly the 
information that is needed for musical analysis with suffi- 
cient resolution to distinguish adjacent musical notes. 
Further, a sound with harmonic frequency components will 
give rise to a constant pattern in the log frequency domain. 

II. CALCULATION 

For musical analysis, we would like frequency compo- 
nents corresponding to quarter-tone spacing of the equal 
tempered scale. The frequency of the k th spectral compo- 
nent is thus 
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fk = (21/24)kfmin, ( I ) 

wheref will vary fromfmin to an upper frequency chosen to 
be below the Nyquist frequency. The minimum frequency 
fmm can be chosen to be the lowest frequency about which 
information is desired, e.g. a frequency just below that of the 
G string for calculations on sound produced by a violin. The 
resolution or bandwidth 6f for the discrete Fourier trans- 
form is equal to the sampling rate divided by the window size 
(the number of samples analyzed in the time domain). In 
order for the ratio of frequency to bandwidth to be a constant 
(constant Q), then the window size must vary inversely with 
frequency. 

More precisely, for quarter-tone resolution, we require 

Q = f/dif = f/O.O29f = 34, (2) 

where the quality factor Q is defined asf/6f. We note that the 
bandwidth dif = f/Q. With a sampling rate S = 1/Twhere T 
is the sample time, the length of the window in samples at 
frequencyfk, 

N [k ] --- S/6fk = (S/fk)Q. (3) 

Note also from this equation that the window contains 
Q complete cycles for each frequencyfk, since the period in 
samples is $/fk. This makes sense physically since, in order 
to distinguish betweenfk + • andfk when their ratio is, e.g., 
2 •/24 _• 34/33, we must look at at least 33 cycles. It is also 
interesting for comparison to consider the conventional dis- 
crete Fourier transform in terms of the quality factor Q = 
f/&f We find thatf/6fis equal to the number of the coeffi- 
cient, k, and this is, of course, the number of periods in the 
fixed window for that frequency. 

We obtain an expression for the k th spectral component 
for the constant Q transform by considering the correspond- 
ing component for the discrete short time Fourier trans- 
form: 18 

N--1 

X[k]= • Iv[n]x[n]exp{-j2rrkn/N}. (4) 
n=O 

Here, x[n ] is the nth sample of the digitized temporal func- 
tion being analyzed. The digital frequency is 2rrk/N. The 
period in samples is N/k and the number of cycles analyzed 
is equal to k. Here IV[n] gives the shape of the window and 
will be discussed below. 

For the constant Q transform, taking account of the 
constraints of Eqs. ( 1 )-(3), the digital frequency of the k th 
component is 2rrQ/N[k]. The window function has the 
same shape for each component, but its length is determined 
by N[k] so it is a function ofk as well as n. We must also 
normalize by dividing the sum by N[ k] since the number of 
terms varies with k. Equation (4) thus becomes 

X[kl 

- N[k• n•_-o IV[k,nlx[nlexp(-d2rrQn/N[kl}. 
(5) 

Here, the period in samples is N[k]/Q, and we always ana- 
lyze Q cycles. A comparison of variables appearing in the 
calculation of the constant Q and the conventional Fourier 
transforms is given in Table I. 

In practice, Eq. (5) is used as the basis for our calcula- 

TABLE I. Comparison of variables in calculation of discrete Fourier trans- 
form (DFT) and of constant Q transform. 

Constant Q DFT 

Frequency ( 21/24 ) k .fmin k Af 
exponential in k linear in k 

Window variable = N [ k ] = SR' Q constant = N 
fk 

Resolution 

Af variable = fk/Q constant = SR/N 
fk 

constant = Q variable = k 
•f• 

Cycles in constant = Q variable = k 
Window 

tions with N[ k] =: Nmax / (2t/24) k. Nmax is Q times the period 
of the lowest anHysis frequency in samples. The Nyquist 
condition becomes 2rrQ/N[k] <•-, which means N[k] 
> 2Q. This is identical to the usual statement that there must 
be at least two samples per period to avoid aliasing. 

If the window function WI k,n] is set equal to one over 
the interval (0,N[k] - 1), this corresponds to using a rec- 
tangular window. •8 This window can be shown to have max- 
imum spill over into adjacent frequency bins. •9 We have ac- 
cordingly used a Hamming window that has the form, 

W[k,n] = a + ( 1 -- a)cos(2.rrn/N [k ] ), 

where a = 25/46 and O<n<N[k] - 1. 

A number of initial calculations were made with fre- 

quencies correspc, nding to those of the equal tempered scales 
and with a Q of 17 corresponding to a resolution of a semi- 
tone. This resolution is insufficient to distinguish between 
adjacent frequency components particularly for the higher 
harmonics where ratios of frequencies of adjacent compo- 
nents approach 1. We then chose a Q of 34 corresponding to 
quarter-tone spacing as indicated in the preceding equations. 
This was still insufficient to resolve very high harmonics 
such as those in the violin spectrum, so Q was doubled to 68 
for frequencies corresponding to G6 (1568 Hz) and over. 
Since the time w:indows are quite short for these high fre- 
quencies, this did not add appreciably to the calculation 
time. 

Equation (5) was calculated using a storage buffer con- 
taining the values of IV[n,k]cos(2rrQn/N[k]) and 
W[n,k]sin(2rrQr,!/N[k] ) for k-- 1 to 156. From Eq. (1) 
these k values correspond to frequencies of 174.5 Hz to the 
Nyquist frequency. 

We should note that the constant Q transform as calcu- 
lated in Eq. (5) is not invertible for the following reasonsfi 
First, the temporal decimation factor (the number of sam- 
ples between calculations) is greater than the analysis win- 
dow length for the high-frequency bins. This means that 
there are some satnples that are never analyzed for the higher 
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TABLE II. Window length in samples (for a sampling rate of 32 000 samp- 
les/s) and in ms as a function of analysis frequency. 

Channel Midinote Frequency (Hz) Window (Samples) (ms) 

0 53 175 6231 195 
6 56 208 5239 164 

12 59 247 4406 138 
18 62 294 3705 116 

24 65 349 3115 97 

30 68 415 2619 82 
36 71 494 2203 69 
42 74 587 1852 58 

48 77 699 1557 49 

54 80 831 1309 41 
60 83 988 I101 34 

66 86 1175 926 29 

72 89 1398 778 24 

78 92 1664 1308 41 
84 95 1978 1100 34 

90 98 2350 926 29 

96 101 2797 778 24 
102 104 3327 654 20 

108 107 3956 550 17 

114 110 4710 462 14 

120 113 5608 388 12 

126 116 6675 326 10 

132 i19 7942 274 9 

138 122 9461 230 7 

144 125 11 216 194 6 

150 128 13 432 162 5 

frequencies. Second, the bandwidth is less than the frequen- 
cy sampling interval for the bins where Q = 68. The latter 
was not considered a problem since one of the real advan- 
tages of this method is that the analysis center frequencies 

are "tuned" to the frequencies of the source. 
If computing time is an important consideration, the 

algorithm can be modified to low-pass filter at digital fre- 
quency •r/2 and downsample by a factor of two after each 
octave? If filters were chosen requiring, for example, 7 mul- 
tiplies per output point, this would result in a saving in com- 
putation time of about a factor of 5. A large amount of space 
in RAM (random access memory) should also be gained by 
this method as the numbers in the storage buffer would be 
the same for each octave. 

The number of multiplies in our method is roughly the 
same as for a 512-point discrete Fourier Transform yielding 
256 real points in the frequency domain. This method gives 
much more useful information for frequencies varying over a 
wide range. Finally, if the current trend toward parallel pro- 
cessing machines is realized, the downsampled version of the 
algorithm can be implemented in real time with calculations 
for each of the center frequencies being carried out in parallel 
by 156 processors. 

III. RESULTS 

All calculations were programmed in C and run on a 
Hewlett Packard Model 9000 Series 300 "Bobcat" Comput- 
er. For those interested, the code can be obtained from brow- 
n @ems.media.mit.edu on the arpanet. Examples of sounds 
of musical instruments were digitized from live perfor- 
mances in the Music and Cognition Group at Massachusetts 
Institute of Technology. Other examples were generated us- 
ing Barry Vercoe's Csound software. The calculation is car- 
ried out every 500 samples corresponding to about 15 ms at a 
sampling rate of 32 000 samples/s, but it should be recalled 
from Eq. (3) that different frequencies are analyzed over 
different time periods. Examples of the analysis windows 

•) 

u.I 

FREQUENCY(Hz) '-• 

FIG. 2. Constant Q transform of three 
complex sounds with fundamentals G 3 
(196 Hz), (}4 (392 Hz), and G• (784 
Hz), and each having 20 harmonics with 
equal amplitude. 
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and corresponding times are given in Table II as a function 
of center frequency. Recall that the Q was increased with a 
corresponding increase in window size for frequencies over 
that ofG 6 (1568 Hz). 

Most of the figures are plots of the constant Q transform 
on the vertical axis against logarithm of the frequency on the 
horizontal axis. The labels on the vertical axis correspond to 
the time in the sound that was sampled. The horizontal la- 
bels give the frequency with spacings corresponding to log 
(frequency). 

Figure 2 shows the constant Q transform for three notes 
(G3 = 196 Hz, G4 = 392 Hz, and G 5 = 784 Hz) generated 
in software. The fundamental frequencies increase by an oc- 
tave and each sound contains 20 harmonics of equal ampli- 
tude. It is clear that the pattern of each is identical; only the 
positions on the frequency axis indicate that the notes are 
different. Figure 3 represents a 256-point traditional Fourier 
transform of this same sound for comparison. Here, the har- 
monics are equally spaced, and this is the major feature that 
stands out. The resolution for this case is 62 Hz so the har- 

monics of even the lowest note are resolved. However, the 
frequency of the next note in the musical scale differs from 
that of G 3 by only 12 Hz, so if the two notes were present 
simultaneously in a piece of music, it is clear that they could 
not be resolved. For the constant Q transform of Fig. 2, the 
percentage difference of nearby frequencies is the relevant 
parameter to consider for the question of resolution, and we 
note that these are indeed resolved up to the 20th harmonic 
where the frequencies differ by about 5%. 

Figures 4 and 5 offer a comparison of the traditional 
(Fig. 4) and constant Q {Fig. 5) transforms for the analysis 

of the sound from a violin. Each is the transform of a diatonic 

scale ranging from G 3 to G$. It is very difficult to say any- 
thing at all about spectral content for the conventional plot 
of Fig. 4; it is even difficult to determine note changes for the 
low-frequency notes. Figure 5, on the other hand, shows 
very clearly not only the note changes but also the spectral 
content; for example, G 3 and A 3 have an almost undetecta- 
ble fundamental. Most striking of the spectral features is the 
formant in the region of 3000 Hz. 

Figures 6-10 are included both for their musical interest 
and to demonstrate the power and versatility of this method 
of visualization for a variety of sounds. Figure 6 is the con- 
stant Q transform of a diatonic scale beginning on G 3 played 
pizzicato by the same violin used for Figs. 4 and 5 (and to be 
used in Figs. 7 and 8). The upper harmonics for the plucked 
string drop off in amplitude much more rapidly than for the 
bowed string, and there is little excitation in the region of the 
formant seen in Fig. 5. The low-frequency peak seen 
throughout is due to a ringing of the D string. 

Figure 7 shows the constant Q transform for the violin 
playing the note D5 with vibrato. The second harmonic is 
considerably weaker for the higher region of the vibrato 
while the 7th and 9th harmonics are weaker for the lower 

frequency region. Most remarkable in the spectrum is the 
extremely strong 6th harmonic. This note falls right in the 
formant in the region of 3000 Hz mentioned in connection 
with Fig. 5 so it is amplified by this body resonance. Another 
feature of the constant Q calculation that is brought out in 
this figure is the effect of the relationship between frequency 
of the spectral component and the center frequency of the 
bin in which it falls. This is clearest for the fundamental. 

FREQUENCY(Hz) • 

FIG. 3. Discrete Fourier transform of three 

complex sounds with fundamentals G• (196 
Hz), G 4 (392 Hz), and Ga (784 Hz), and each 
having 20 harmonies with equal amplilude. 
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FREQUENCY(Hz) 

FIG. 4. Discrete Fourier transform of violin 

playing diatonic scale from Ga ( 196 Hz) to O s 
(784 Hz). 

Figure 8 shows a violin glissando from D s to A s and 
associated spectral changes. Figure 9 is a diatonic scale 
played by a flute beginning on Cs where the amplitude is 
increasing dramatically. In the literature, it is often stated 
that the flute is nearly a pure tone, but this is far from the 
case here where approximately nine harmonics are visible. 

Finally, Fig. 10 is the transform of a piano scale played 

from C4 to Cs. The attack on Ds is visible at the upper end. 
The graph is tilted so that the attacks and decays of the spec- 
tral components can be seen. The fundamental shows a rapid 
decay followed by a slow decay; this effect has been discussed 
by Weinrich. 2ø The low end of the frequency range of the 
horizontal axis extends below that of the other graphs begin- 
ning with the frequency corresponding to Bz rather than that 

z 

u.i 

k- 

J.3 

FIG. 5. Constant Q transform of violin 
playing diatonic scale from G3 ( 196 Hz ) 
to G• (784 Hz). 

o3 % % I % 250 ,6O0 1000 2•00 
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I ! 
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FIG. 6. Constant Q transform of violin 
playing diatonic scale pizzicato from O3 
( 196 Hz) to G• (784 Hz). 
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10oo znlo0 

FREQUENCY(Hz) --• 

431 

8.3' 

FREQUENCY(Hz) • 
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FIG. 7. Constant Q transform of violin 
playing D• (587 Hz) with vibrato. 
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FIG. 8. Constant Q transform of violin 
glissando from D5 (587 Hz) to A• (880 
Hz). 

250 •00 1000 Z•00 
FREQUENCY(Hz) '-• 

Z.7 

t 

1.6' 

FIG. 9. Constant Q transform of flute 
playing diatonic scale from C4 (262 Hz) 
to C5 (523 Hz) with increasing ampli- 
tude. 
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FIG. 10. Constant Q transform of piano 
playing diatonic scale from C4 (262 Hz) to C s 
(523 Hz). The attack on D s (587 Hz) is also 
visible. 

FREQUENCY(Hz) --• 

of F 3. This sound was recorded in a rectangular room 
(32 X 12 • 12 ft) with a highly directional microphone to 
minimize the effects of room modes. 

IV. SUMMARY 

We have used a straightforward method of calculating a 
constant Q transform designed for musical representations. 
This has been applied to sounds generated by a violin, flute, 
and piano representing the string, wind, and keyboard fam- 
ilies of instruments. Waterfall plots of these data make it 
possible to visualize the large amount of information present 
in digitized musical waveforms. As predicted for sounds 
with harmonic frequency components, we obtain a constant 
pattern in the log frequency domain. 
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