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An efficient method of transforming a discrete Fourier transform (DFT) into a constant Q 
transform, where Q is the ratio of center frequency to bandwidth, has been devised. This 
method involves the calculation of kernels that are then applied to each subsequent DFT. Only 
a few multiples are involved in the calculation of each component of the constant Q transform, 
so this transformation adds a small amount to the computation. In effect, this method makes it 
possible to take full advantage of the computational efficiency of the fast Fourier transform 
(FFT). Graphical examples of the application of this calculation to musical signals are given 
for sounds produced by a clarinet and a violin. 

PACS numbers: 43.60.Gk, 43.75.Yy, 43.75.Dc, 43.75.Ef 

I. THEORY 

In many cases, such as that of musical signals, a con- 
stant Q transform gives a better representation of spectral 
data than the computationally efficient fast Fourier trans- 
form. Various solutions to this problem using constant Q 
filterbanks or a "bounded Q" Fourier transform have been 
proposed (Harris, 1976; Schwede, 1983; Mont-Reynaud, 
1985). The music group at Marseilles has proposed a "wave- 
let transform" (Kronland-Martinet, 1988). Brown (1991) 
describes results applied to musical signals based on a direct 
evaluation of the DFT for the desired components. 

We have calculated a constant Q transform based on 
transforming a fast Fourier transform into the log frequency 
domain. The FFT is calculated using a standard FFT pro- 
gram, and the entire calculation takes only slightly longer to 
run than the FFT since there are few operations involved in 
the computation of the transformation. The transformation 
is based upon the following. A constant Q transform can be 
calculated directly (Brown, 1991 ) by evaluating: 

cq = , (1) x [kcq] 
n=O 

where XC•[kcq ] is the k,• component of the constant Q 
transform. Here x In ] is a sampled function of time, and, for 
each value of kc,,w[n,kc• ] is a window function of length 
N [ k,• ]. The exponential has the effect of a filter for center 
frequency 

In a constant Q filterbank the center frequencies are geo- 
metrically spaced; for musical applications, the calculation 
is often based on the frequencies of the equal tempered scale 
with 

r_o• •- (2(l/•2))•qco.•i. (2) 
for semitone spacing. 

The Q of a filter is defined as f/Af, where Af denotes 
bandwidth andf the center frequency. In the case of the filter 
defined in Eq. ( 1 ), this bandwidth depends upon the choice 

of the windowing function w [ n,kcq ], but it is inversely pro- 
portional to N [ kc• ]. We may therefore keep Q constant by 
choosing values of N [ k•q ] inversely proportional to those 
of o%. Often the bandwidth is chosen as o•% +t --co%, 
which is proportional to the center frequencies a•n,, because 
of their geometric spacing. In the case of the equal tempered 
scale, this leads to 

Q = 1/(2 (•/t2) - 1) -• 17. 

The direct evaluation of Eq. { 1 ) is computationally ineffi- 
cient. However, it can be shown that for any two discrete 
functions of time x [ n I and y[n ]: 

N--I 1 /V--I 

• x[nly*[n] =•oX[klY*[k], (3) 
where X[ k] and Y[ k] are the discrete Fourier transforms of 
x[n] andy[n], and Y* [k] is the complex conjugateof Y[k]. 
Equation (3) is a form of Parseval's equation (Oppenheim, 
1975). 

We can use Eq. (3) to evaluate Eq. ( 1 ) as follows. Let- 
ting 

w[n,k w ]e-•%•" = •-f* [n,kcq ]. (4) 
Equation (3) gives 

N--I 

x•q[kc,] = • x[n]o,•f*[n,k,•] 

=-- X[• ]K*[•,•c•], (5) 
Nk o 

where K [k,k•] is the discrete Fourier transform of 
•9f [ n,k½• ]; that is 

N--I 

K[k,k•,] = • w[n,k•,]d'%"e -•'•"/~. (6) 
We will refer to the K [ k, kcq ] in the frequency domain as the 
spectral kernels of the transformation and to the •f [ n,k,v ] 
as the temporal kernels. We have used a Hamming window: 

to[ n,kcq ] = ct -- ( 1 -- ct )cos( 2rrn/N [ kcq ] ), 
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where a = 25/46. In practice, we have chosen the window 
and the exponential to be symmetric about the center of the 
interval and thus evaluated 

Here the window is zero outside the interval 

(N/2 -- N(kcq )/2, N/2 + N(k,q )/2). With the choice of 
frequencies of Eq. (2), we are calculating 12 constant Q 
components per octave corresponding to the 12 tones of the 
equal tempered scale. The choice off,i, = 174.6 Hz corre- 
sponding to F 3, the F below middle C, leads to 60 compo- 
nents of the constant Q transform from F3 to the Nyquist 
frequency. In some cases quarter tone spacing is preferable, 
and for this 

f/<m = 
leading to 24 components per octave for a total of 120 com- 
ponents. In the following section, we will give examples of 
these two choices. 

The spectral kernels are real since •"[n,k,q] 
= o?d'* [ -- n,km ]; that is, the temporal kernels are conju- 
gate symmetric, which is the condition for a real discrete 
Fourier transform. We have evaluated the spectral kernels 
using only the real part of the temporal kernels, since we are 
looking at positive frequency components only. 

Figure I is a display of the real part of the temporal 
kernels as defined in Eq. (4) for the first 30 kernels 
•"[n,k,,•], that is, km goes from 0 to 29 in Eq. (4). The 
vertical axis is labeled with the kernel number kce corre- 
sponding to the frequency of the kernel as defined in Eq. (2), 
and the horizontal axis is labeled with the sample number n 
as it appears in Eq. (4). These kernels are normalized with 
the window length so that sinusoidal components in the sig- 
nal having the same amplitude will occur with the same am- 
plitude for their constant Q transform. Thus the amplitude 
in the figure increases with the number of the component. 

KERNELS: MAGNITUDE OF TRANSFORM 

57 

'--28.5 

• 256 512 0 
FFT bin number -> 

FIG. 2. Magnitude of kernels against number of Fourier frequency compo- 
nent k. Each frequency bin represents 10.8 Hz. 

Figure 2 is a graph of the magnitude of the spectral ker- 
nels as defined in Eq. (6). The lower dotted and upper solid 
lines are artifacts of the plotting program and should be ig- 
nored. These kernels were obtained by taking a standard 
1024 point FFT of the temporal kernels graphed in Fig. 1. 
The vertical axis is labeled with the kernel number k m corre- 
sponding to the frequency ofthe kernel as defined in Eq. (2), 
and the horizontal axis is labeled with the FFT frequency 
component number k as used in Eq. (7) or Eq. (6). These 
kernels need only be calculated once and can then be called 
for use in Eq. (5). It is clear from this figure that the kernels 
are near zero over most of the spectrum so there few multi- 
plies involved in the evaluation of Eq. (5). 

We have estimated the error in keeping only the values 

29 

KERNELS: TIME WAVES 

• 20 

I e+03 

time (samples) -> 
2e+03 

FIG. 1. Real part of temporal kernels plotted against sample number for the 
first 30 temporal kernels. 

FRACTIONAL ERROR VS MINVAL 

0 0.1 0.2 0.3 0.4 0.5 
MINVAL -> 

FIG. 3. Error in dropping small values of kernels {defined in text) plotted 
against cutoff value. 
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greater than an adjustable parameter called MINVAL by 
summing the absolute values of the numbers which are 
dropped and dividing by the sum of the absolute value of all 
values of the kernel. The results are given in Fig. 3 where we 
have plotted the error in the approximation as defined above 
against MINVAL. 

Choosing MINVAL equal to 0.15, then there are only 
two multiplications (or one in a few cases) for components 
up to Xc"[41 ] and two to six multiplications for the remain- 
ing components. In all there are roughly 280 multiplications 
for quarter tone spacing. These are negligible compared to 
the multiplications involved in the evaluation of the FFT. 
For a Q of 17 at a frequency of 175 Hz (the lowest frequency 
for which the constant Q transform is desired) and a sample 
rate of 11 025, a 1024 point FFT is needed. This gives rise to 
1024 log,_(1024) = 10 240 complex multiplies. 

The direct evaluation ofEq. ( 1 ) involves sums over win- 
dows ranging from 1074 samples at the low-frequency end to 
34 samples at the upper end. For quarter tone spacing this 
leads to roughly 35 000 complex terms. Thus our method 

I leads to an increase of a factor of roughly 32 in computational 
efficiency. 

We have estimated the run time for our algorithm with 
calculations carried out on a 40-MHz Intel i860 using a 
hand-coded routine. With a 512-point FFT and quarter tone 
spacing over three octaves, the FFT takes 343/zs and the 
transform 166 -I- 2/xs (measured on an oscilloscope). This 
can be compared to a time advance of 25 ms between frames, 
so the calculation can easily be carried out in real time. In a 
subsequent article, we shall describe approximations which 
increase the computational efficiency and are appropriate 
for the application of fundamental frequency tracking. 

Although we only discuss the case of constant Q and 
centered windows here, it is sometimes useful to make other 

choices. For example, for low center frequencies one often 
wishes to decrease Q in order that the temporal kernels do 
not exceed a given length of time. This requirement usually 
arises from a need for temporal precision and is not related to 
our method of calculating the transform. For real-time ap- 
plications, in which delay must be kept to a minimum, the 
temporal kernels may be aligned to the end of the sample 
window instead of centering them. 

II. EXAMPLES 

Graphical examples of the output are given in Figs. 4 to 
8 where we have plotted Fourier amplitude, as calculated 
using Eq. (5) versus midi note for time frames with a 25-ms 
separation. The use of midi note for labeling is equivalent to 
that of frequency with middle C (261.6 Hz) assigned the 
value of 60, and each integer added corresponds to a step up 
in the equal tempered scale (or to multiplication by 2 •/u ). 
The sample rate was 11 025 for all examples. The sound 
source of Fig. 4 is a clarinet playing a chromatic scale. Par- 
ticularly prominent in this graph is the absence of even har- 
monics, which is a feature of the spectra of tubes with one 
open end and one closed end. Figure 5 is the transform of the 
same clarinet in a portion of a performance of the piece "Dia- 
logue de l'Ombre Double," by Pierre Boulez. 

CLARINET SCALE 

MIDINOTE -> 

243 

112 

E 

FIG. 4. Constant Q transform for a clarinet playing a chromatic scale plot- 
ted against midi note. The lowest note is 48 corresponding to Ca with a 
frequency of 130.8 Hz. Each time frame on the vertical axis corresponds to 
25 ms. 

Dialogue de !'Ombre Double 

48 •0 112 
MIDINOTE -> 

243 

'121 •' 

FIG. 5. Constant Q transform for a clarinet playing a portion of the piece 
"Dialogue de I'Ombre Double," by Pierre Boulez. The axes are labeled as in 
Fig. 4. 
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VIOLIN VIBRATO 

1oo 

53 83 113 
MIDINOTE -> 

100 

VIOLIN VIBRATO 

0 
53 83 113 

MIDINOTE -> 

FIG. 6. Constant Q transform of a violin executing vibrato on the note D s. 
Axes are labeled as in the two preceding figures, but the lowest frequency is 
midi note 53 corresponding to F• with a frequency of 175 Hz. 

FIG. 8. Constant Q transform of a violin executing vibrato on the note D s. 
This calculation has double the Q of that of Fig. 6 and twice as many fre- 
quency bins. 

VIOLIN GLISSANDO 

80 

MIDINOTE -> 

L 

112 

59 

FIG. 7. Constant Q transform of a violin glissando from D s to A.s. Axes are 
labeled as before with the lowest midi note 48 corresponding to C_• ( 130.8 
Hz). 

Figures 6 and 7 represent the constant Q spectrum of a 
violin with examples ofvibrato in Fig. 6 and glissando in Fig. 
7. The vibrato is not resolved in Fig. 6, so we have redone the 
calculation with quarter tone spacing and an appropriately 
larger window size in Fig. 8. We have chosen these particular 
sounds as examples since they will be used for fundamental 
frequency tracking in a subsequent article. 
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